В. Г. Журавлев

ИНФЛЯЦИЯ И ДЕФЛЯЦИЯ ЯДЕРНЫХ РАЗБИЕНИЙ

Введение

Инфляцией

$$\mathcal{T} \xrightarrow{\nabla} \nabla \mathcal{T} \tag{0.1}$$

разбиения \mathcal{T} пространства \mathbb{R}^d называется такая подстановка образующих его фигур-тайлов, в результате которой получается новое, более крупное разбиение $\nabla \mathcal{T}$ пространства \mathbb{R}^d . Дефляция, обратная к (0.1) операция,

$$\mathcal{T} \xrightarrow{\Delta} \Delta \mathcal{T},$$
 (0.2)

наоборот, – измельчает исходное разбиение \mathcal{T} . Наиболее изучены подстановки Δ/∇ вида (0.1), (0.2) для разбиений Пенроуза [1–3]. Исследования другого важного класса двумерных фрактальных разбиений Рози представлены в [4–7].

Цель данной статьи – определить подстановочные преобразования Δ/\bigtriangledown для ядерных разбиений многомерных торов \mathbb{T}^d [8]. Такие разбиения $\mathcal{T}(v)$ порождаются своими ядрами Kr, остовами которых являются звезды v – множества из d + 1 вектора. Ядерные разбиения $\mathcal{T}(v)$ состоят из d + 1 вида параллелепипедов T_k ($k = 0, 1, \ldots, d$). На рис. 2.1 показан пример двумерного ядерного разбиения $\mathcal{T}(v)$ из 14 параллелограммов трех видов.

В частности, указанные выше разбиения Рози представляют собою пример ядерных разбиений из фрактальных многоугольников [9–11].

В теоремах 5.1 и 9.1 для ядерных разбиений $\mathcal{T}(v)$ приведены подстановки Δ/∇ параллеленипедов (см. рис. 6.2 и 9.2)

$$T_k \xrightarrow{\Delta} \Delta T_k, \quad T_k \xrightarrow{\nabla} \nabla T_k, \tag{0.3}$$

преобразующие

$$\mathcal{T}(v) \xrightarrow{\Delta} \Delta \mathcal{T} = \mathcal{T}(v^{\sigma}), \quad \mathcal{T}(v) \xrightarrow{\nabla} \nabla \mathcal{T} = \mathcal{T}(v^{\iota})$$
(0.4)

Ключевые слова: инфляция, дефляция, полиэдральные ядерные разбиения, многомерные цепные дроби.

⁵³

разбиения $\mathcal{T}(v)$ в новые ядерные разбиения $\Delta \mathcal{T} = \mathcal{T}(v^{\sigma})$ и $\nabla \mathcal{T} = \mathcal{T}(v^{\iota})$, отвечающие производной v^{σ} и инфляционной v^{ι} звездам соответственно. Подстановки (0.3) – суть косые сдвиги образующих разбиения параллелепипедов T_k . При дефляции Δ сдвиги сжимающие, а при инфляции ∇ растягивающие. Операция дифференцирования звезд v^{σ} (0.4) впервые появилась в [8], обратная же операция инфляции звезд v^{ι} введена в настоящей статье.

Название ядро, по-видимому, появилось впервые в [12] при изучении одномерных разбиений Фибоначчи. Однако роль ядер была осознана после открытия и исследования фрактального разбиения Рози [9], [10].

К построению ядерных разбиений произвольной размерности *d* ведут два пути: 1) метод дифференцирования индуцированных торических разбиений [8] и 2) метод локальных правил [13,14].

В теории чисел интерес к разбиениям обусловлен их связями с многомерными цепными дробями [4,5,8,15–18]. Исследуемые в статье подстановки (0.4) служат той же цели.

§1. Звезды и их производные

1.1. Звезды. Обозначим через Σ совокупность всех сочетаний σ из двух элементов $\{k_1, k_2\}$ из множества индексов $\mathcal{D} = \{0, 1, ..., d\}$. Пусть $v_0, v_1, ..., v_d$ – произвольные векторы из \mathbb{R}^d и $\sigma' = \{k'_1, ..., k'_{d-1}\} = \mathcal{D} \setminus \sigma$ – дополнительное к σ сочетение. Далее мы будем рассматривать неупорядоченные множества векторов

$$v = \{v_0, v_1, \dots, v_d\}.$$
 (1.1)

Определение 1.1. Пусть любые d-1 вектора из множества v линейно независимы, и пусть любые его два вектора v_{k_1}, v_{k_2} не принадлежат гиперплоскости $H_{\sigma'}$, порождаемой остальными векторами из v, и лежат по отношению к ней в разных полупространствах. Такое множество векторов v из (1.1) назовем звездой.

Непосредственно из определения звезды следует, что любые d вектора из (1.1) линейно независимы.

Критерий 1.1. Обозначим через

 $\Delta(v) = \{\lambda_0 v_0 + \ldots + \lambda_d v_d; \ \lambda_0 + \ldots + \lambda_d \leqslant 1, \ \lambda_0, \ldots, \lambda_d \geqslant 0\}, \quad (1.2)$

где коэффициенты $\lambda_0, \ldots, \lambda_d \in \mathbb{R}$, натянутый на векторы звезды v симплекс, и пусть $\Delta^{\text{int}}(v)$ – внутренняя часть симплекса (1.2). Тогда

условие на множество векторов v быть звездой равносильно условию $\mathbf{0} \in \Delta^{\text{int}}(v)$ для точки $\mathbf{0} = (0, 0, \dots, 0)$ – центра звезды v.

1.2. Производные звезды. Далее мы будем использовать обозначения

$$X = X_1 \sqcup X_2, \quad X = X_1 \cup X_2 \tag{1.3}$$

для строгого (дизъюнктивного) и нестрогого разбиений множества Xв случае, если $X_1 \cap X_2 = \emptyset$ и $X_1^{\text{int}} \cap X_2^{\text{int}} = \emptyset$ соответственно, где X_k^{int} – множество внутренних точек из X_k .

Предположим, что для некоторого сочетания $\sigma = \{k_1, k_2\}$ из Σ сумма векторов $v_{\sigma} = v_{k_1} + v_{k_2}$ звезды $v = \{v_0, v_1, \dots, v_d\}$ не принадлежит

$$v_{\sigma} \notin H_{\sigma'} \tag{1.4}$$

гиперплоскости $H_{\sigma'}$, проходящей через оставшиеся d-1 векторы звезды v с индексами из дополнения σ' к сочетению σ . При этом условии, только одно из множеств

$$v(\sigma) \sqcup v(\sigma') \tag{1.5}$$

будет звездой (1.1). Здесь

$$v(\sigma) = \{v_{k_1}, v_{\sigma}\}$$
 или $v(\sigma) = \{v_{\sigma}, v_{k_2}\}$ (1.6)

в зависимости от того, какие из пар векторов v_{k_1} , v_{σ} или v_{k_2} , v_{σ} принадлежат разным полупространствам $H_{\sigma'}^{\pm}$, и $v(\sigma')$ – дополнительное для $v(\sigma)$ множество векторов из звезды v.

Заметим, что однозначность выбора множества $v(\sigma)$ в (1.6) гарантирована ограничением (1.4) на сумму векторов $v_{\sigma} = v_{k_1} + v_{k_2}$.

Определение 1.2. Обозначим через $v^{\sigma} = v(\sigma) \sqcup v(\sigma')$ то множество векторов из (1.5), которое является звездой. Если существуют звезды v^{σ} для всех сочетаний $\sigma \in \Sigma$, то будем говорить, что звезда $v = \{v_0, v_1, \ldots, v_d\}$ невырождена.

Таким образом, согласно определению 1.2 для всех сочетаний $\sigma = \{k_1, k_2\}$ из Σ на множестве невырожденных звезд $v = \{v_0, v_1, \ldots, v_d\}$ определено отображение

$$v \xrightarrow{\sigma} v^{\sigma} = \{v_0^{\sigma}, v_1^{\sigma}, \dots, v_d^{\sigma}\},$$
(1.7)

где $v_{k_1}^{\sigma} = v_{k_1}, v_{k_2}^{\sigma} = v_{\sigma}$ или $v_{k_1}^{\sigma} = v_{\sigma}, v_{k_2}^{\sigma} = v_{k_2}$ в зависимости от выполнения условия из (1.6) и $v_{k'}^{\sigma} = v_{k'}$ для всех $k' \in \sigma'$. Звезду v^{σ} из (1.7) назовем σ -*производной* нерывожденной звезды v.

§2. Индуцированные разбиения тора

2.1. Перекладывающиеся развертки тора. Пусть

$$L' = \mathbb{Z}[l'_1, \dots, l'_d] \tag{2.1}$$

– полная решетка в пространстве \mathbb{R}^d с базисом l'_1, \ldots, l'_d , т.е. векторы l_1, \ldots, l_d линейно независимы на полем вещественных чисел \mathbb{R} ; и пусть T – некоторое подмножество из \mathbb{R}^d . Будем говорить, что T является разверткой тора $\mathbb{T}^d_{L'} = \mathbb{R}^d/L'$, если отображение

$$T \xrightarrow{\sim} \mathbb{T}^d_{L'} : \quad x \mapsto x \operatorname{mod} L'$$

– биекция. Развертка *T* называется *перекладывающейся*, если задано ее разбиение

$$T = T_0 \sqcup T_1 \sqcup \ldots \sqcup T_d \tag{2.2}$$

и перекладывание

$$T \xrightarrow{S} T: S'(x) = x + v_{\operatorname{col}(x)}$$
 (2.3)

на векторы v_0, v_1, \ldots, v_d , связанные с базисом (2.1) решетки L' равенствами

$$l'_k = v_k - v_0$$
 для $k = 1, \dots, d.$ (2.4)

В (2.3) использовано обозначение col(x) = k для *цвета* точек x, принадлежащих подмножеству T_k из разбиения (2.2), $k = 0, 1, \ldots, d$.

Заметим, что при переходе (2.4) от векторов переклыдывания v_0, v_1, \ldots, v_d к базизу l'_1, \ldots, l'_d решетки L' нарушается симметрия, когда выделяется вектор v_0 . Удобно дать ему дополнительное обозначение

$$v_0 = \alpha'. \tag{2.5}$$

В частности, из (2.4) и (2.5) вытекают сравнения $v_k \equiv \alpha' \mod L'$ для всех $k = 0, 1, \ldots, d$. Поэтому перекладывание (2.3) эквивалентно сдвигу тора $S' = S'_{\alpha'}$ на вектор $\alpha' \mod L'$,

$$T \xrightarrow{S'} T : S'(x) \equiv x + \alpha' \mod L'.$$
 (2.6)

2.2. Перекладывающиеся параллелоэдры. Определим для *m* = 0, 1, ..., *d* замкнутые *d*-мерные параллелепипеды

$$\overline{T}_m = \{\lambda_{k_1} v_{k_1} + \ldots + \lambda_{k_d} v_{k_d}; \ 0 \leqslant \lambda_{k_i} \leqslant 1\},$$
(2.7)

где k_1, \ldots, k_d – дополнительные к *m* индексы в *D*. Если множество векторов $v = \{v_0, v_1, \ldots, v_d\}$ является звездой (1.7), то объединение

$$\overline{T} = \overline{T}_0 \cup \overline{T}_1 \cup \ldots \cup \overline{T}_d \tag{2.8}$$

параллелепипедов (2.7) образует *параллелоэдр* [19], [20] – многогранник, разбивающий пространство

$$\mathbb{R}^d = \bigcup_{l' \in L'} \overline{T}[l'] \tag{2.9}$$

с помощью параллельных переносов $\overline{T}[l'] = \overline{T} + l'$ на векторы l' решетки L'. Причем различные многогранники $\overline{T}[l']$ из (2.9) не имеют общих внутренних точек. Здесь и далее будем пользоваться соглашением (1.3).

Для d = 2 параллелоэдр \overline{T} из (2.8) является выпуклым шестиугольником с попарно равными и параллельными сторонами, для d = 3 – ромбододекаэдром Федорова [21], а для d = 4 – параллелоэдром Вороного [22].

По *i-алгоритму* из [19] вершины, ребра и грани параллеленипедов \overline{T}_m можно распределить между собою так, чтобы получалось разбиение $T = T_0 \sqcup T_1 \sqcup \ldots \sqcup T_d$, имеющее внутреннюю часть $T^{\text{int}} = (\overline{T})^{\text{int}}$ такую же, как и параллелоэдр (2.8), и разбивающее пространство

$$\mathbb{R}^d = \prod_{l' \in L'} T[l'] \tag{2.10}$$

в строгом смысле (1.3), т.е. в (2.10) многогранники $T[l'] \cap T[l''] = \emptyset$, если $l' \neq l''$. Существование разбиения (2.10) равносильно условию незамкнутому параллелоэдру T быть разверткой тора $\mathbb{T}_{L'}^d = \mathbb{R}^d/L'$.

Исходя из *i*-алгоритма, можно считать, что выполняются условия

$$0 \in T_0, v_0 \in T_1, v_0 + v_1 \in T_2, \dots v_0 + v_1 + \dots + v_{d-1} \in T_d.$$
 (2.11)

Если дополнительно предположить выполненными условия (2.11), то в результате каждой звезде $v = \{v_0, v_1, \ldots, v_d\}$ ставится в соответствие перекладывающийся параллелоэдр

$$T = T(v) = T_0 \sqcup T_1 \sqcup \ldots \sqcup T_d, \qquad (2.12)$$

являющийся разверткой тора $\mathbb{T}_{L'}^d$ с векторами перекладывания v_0, v_1, \ldots, v_d в (2.3).

2.3. Вмещающее пространство. Кроме тора $\mathbb{T}_{L'}^d$, нам потребуется еще один тор $\mathbb{T}_L^d = \mathbb{R}^d/L$ для другой полной решетки $L \subset \mathbb{R}^d$. Зададим сдвиг $S = S_\alpha$ тора \mathbb{T}_L^d на вектор $\alpha \in \mathbb{R}^d$, полагая

$$\mathbb{T}_L^d \xrightarrow{S} \mathbb{T}_L^d : \quad x \mapsto S(x) \equiv x + \alpha \mod L. \tag{2.13}$$

Далее торы \mathbb{T}_{L}^{d} будут использоваться, как вмещающие пространства для вложений различных торов $\mathbb{T}_{L'}^{d}$ с изменяющимися решетками L'.

2.4. Вкладывающиеся в тор развертки.

Определение 2.1. Перекладывающаяся развертка T из (2.2) *вкла- дывается*

$$T \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_L$$
 (2.14)

в тор \mathbb{T}^d_L относительно сдвига $S=S_\alpha,$ если выполняются следующие условия.

1. Подмножество $T \subset \mathbb{R}^d$ является *L-различимым*, т.е. для любых элементов x, y из T, связанных сравнением $x \equiv y \mod L$, следует их равенство x = y. Значит, отображение

$$T \xrightarrow{\sim} T \mod L : \quad x \mapsto x \mod L \tag{2.15}$$

будет взаимно однозначным; и поэтому используя отображение (2.15) можем считать развертку T вложенной как множество в тор \mathbb{T}_{L}^{d} ,

$$T \subset \mathbb{T}_L^d. \tag{2.16}$$

2. Векторы перекладывания (2.3) имеют вид

$$v_k \equiv m_k \alpha \mod L \tag{2.17}$$

для всех $k = 0, 1, \ldots, d$ с некоторыми коэффициентами $m_k = 1, 2, 3, \ldots$, называемыми *порядками* векторов v_k .

3. Пусть

$$Orb^{+}(T_{k}) = \{S^{j}(T_{k}); \ j = 1, \dots, m_{k} - 1\}$$
(2.18)

обозначает *орбиту* подмножества $T_k \subset T$. В силу включения (2.16) будем полагать $\operatorname{Orb}_k^+ \subseteq \mathbb{T}_L^d$. Тогда по определению считается, что орбиты (2.18) удовлетворяют условию $\operatorname{Orb}^+(T_k) \cap T = \emptyset$ для $k = 0, 1, \ldots, d$.

Чтобы сформулировать следующий результат, нам потребуется в дополнение к (2.18) определить еще *полные орбиты*

$$Orb(T_k) = \{S^j(T_k); \ j = 0, 1, \dots, m_k - 1\}.$$
(2.19)

Кроме того, будем предполагать вектор сдвига $\alpha = (\alpha_1, \ldots, \alpha_d)$ из (2.13) *иррациональным*, т.е.

числа $1, \alpha_1, \ldots, \alpha_d$ линейно независимы над кольцом \mathbb{Z} . (2.20)

Здесь α_k – координаты α в некотором базисе полной решетки L.

Теорема 2.1. Пусть развертка T вкладывается (2.14) в тор \mathbb{T}_{L}^{d} , развертка T имеет внутреннюю точку, и пусть вектор α для сдвига $S = S_{\alpha}$ из (2.13) будет иррациональным (2.20). Тогда выполняются следующие утверждения.

1. Множества из полных орбит $Orb(T_k)$ не пересекаются, т.е.

$$S^{j_1}(T_{k_1}) \cap S^{j_2}(T_{k_2}) \neq \emptyset$$

только при условии $j_1 = j_2$ и $k_1 = k_2$.

2. Имеет место разбиение тора \mathbb{T}_L^d :

$$\mathcal{T} = \mathcal{T}_0 \sqcup \mathcal{T}_1 \sqcup \ldots \sqcup \mathcal{T}_d, \tag{2.21}$$

где

$$\mathcal{T}_k = T_k \sqcup S^1(T_k) \sqcup \ldots \sqcup S^{m_k - 1}(T_k)$$

– орбитное разбиение, составленное из множеств, входящих в полную орбиту $Orb(T_k)$ из (2.19).

Доказательство. См. [8].

Сумма порядков

$$m = m_0 + m_1 + \ldots + m_d \tag{2.22}$$

всех векторов v_k из (2.17) называется порядком разбиения тора \mathcal{T} .

2.5. Индуцированные отображения и ядро разбиения. Из теоремы 2.1 следует, что сдвиг тора $S': T \longrightarrow T$ из (2.6) является индуцированным отображением или иначе – отображением первого возвращения, отображением Пуанкаре – для сдвига тора $S: \mathbb{T}_L^d \longrightarrow \mathbb{T}_L^d$ из (2.13), что символически будем записывать в виде равенства

$$S' = S|_T$$

Обозначим

$$T = T(v), \qquad \mathcal{T} = \mathcal{T}(v) = \mathcal{T}_0 \sqcup \mathcal{T}_1 \sqcup \ldots \sqcup \mathcal{T}_d$$
 (2.23)

соответственно развертку T из (2.2) и *индуцированное разбиение* (2.21) тора \mathbb{T}^d_L , порождаемое вкладывающейся в тор $T \stackrel{\text{em}}{\to} \mathbb{T}^d_L$ разверткой T.

Множество T по отношению ко всему разбиению тора \mathcal{T} называется (ср. [10]) ядром (karyon) разбиения \mathcal{T} . Чтобы указывать на такую связь между T и \mathcal{T} используется обозначение

$$T = \mathrm{Kr} = \mathrm{Kr}(\mathcal{T}). \tag{2.24}$$

Ядро Kr характеризуется следующим свойством: ядро – это такое подмножество Kr $\subset \mathbb{T}_L^D$, для которого отображение первого возвращения

$$S' = S|_{\mathrm{Kr}},\tag{2.25}$$

индуцированное сдвигом тора $S = S_{\alpha}$ из (2.13), эквивалентно перекладыванию D + 1 подмножеств из разбиения

$$\mathrm{Kr} = \mathrm{Kr}_0 \sqcup \mathrm{Kr}_1 \sqcup \ldots \sqcup \mathrm{Kr}_D. \tag{2.26}$$

В определении Кг важно, что количество областей в разбиении (2.26) на единицу больше размерности вмещающего его тора \mathbb{T}_{L}^{D} . Отсюда, в частности, следует, что Кг является разверткой некоторого тора $\mathbb{T}_{L'}^{D}$, а индуцированное отображение (2.25) изоморфно сдвигу этого тора.

Поскольку определенное в (2.21) разбиение \mathcal{T} порождается вкладывающимся в тор $T \stackrel{\text{em}}{\to} \mathbb{T}^d_L$ ядром T = Kr из (2.24), то оно называется ядерным разбиением тора \mathbb{T}^d_L .

2.6. Критерий вложимости развертки тора.

Теорема 2.2. Определенная в (2.12) развертка тора T = T(v) вкладывается (2.14) в тор $T \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_L$ тогда и только тогда, когда выполняется одно из следующих двух эквивалентных утверждений:

1) множество $\mathcal{T} = \mathcal{T}(v) = \mathcal{T}_0 \sqcup \mathcal{T}_1 \sqcup \ldots \sqcup \mathcal{T}_d$ из (2.23) является разбиением тора \mathbb{T}_L^d ;

2) внутренняя часть T^{int} развертки $T \subset \mathbb{T}_L^d$ не содержит ни одной из точек x_i орбиты

$$Orb^+(0,m) = \{x_j = S^j(0); \ j = 1, 2, \dots, m-1\}$$

порядка т, определенного в (2.22).

Доказательство. См. [8].

Чтобы не вводить новые термины, число m из (2.22) будем также называть и *порядком* развертки тора T = T(v). Саму развертку T = T(v) и порождающую ее звезду v назовем *минимальными*, если выполняется условие 2) из теоремы 2.2.

2.7. Производные вкладывающихся звезд.

Определение 2.2. Пусть $v = \{v_0, v_1, \ldots, v_d\}$ – звезда и T = T(v) – отвечающая ей развертка (2.23) тора $\mathbb{T}_{L'}^d$ с векторами перекладывания v_0, v_1, \ldots, v_d . Если данная развертка T вкладывается $T \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}_L^d$ в тор \mathbb{T}_L^d

относительно некоторого сдвига $S=S_{\alpha},$ то будем говорить, что звезда v вкладывается

$$v \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_L$$
 (2.27)

в тор \mathbb{T}_L^d относительно сдвига S.

Теорема 2.3. Пусть невырожденная звезда $v = \{v_0, v_1, \ldots, v_d\}$ вкладывается (2.27) в тор \mathbb{T}^d_L относительно сдвига $S = S_\alpha$ с иррациональным (2.20) вектором α . Тогда любая ее σ -производная $v^\sigma = \{v_0^\sigma, v_1^\sigma, ..., v_d^\sigma\}$ для $\sigma \in \Sigma$ также вкладывается

$$v^{\sigma} \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}^d_L$$
 (2.28)

в тот же тор \mathbb{T}^d_L относительно сдвига S.

Доказательство. См. [8].

Рис. 2.1. Двумерное ядерное разбиение \mathcal{T} порядка m = 14.

2.8. Двумерное ядерное разбиение. На рис. 2.1 показано двумерное ядерное разбиение $\mathcal{T} = \mathcal{T}(v)$ с ядром $T = T(v) = T_0 \sqcup T_1 \sqcup T_2$, построенным по звезде $v = \{v_0, v_1, v_2\}$. Ее лучи v_0, v_1, v_2 имеют порядки $m_0 = 6, m_1 = 5, m_2 = 3$.

Векторы l_1, l_2 образуют базис решетки $L = \mathbb{Z}[l_1, l_2]$ периодов разбиения \mathcal{T} . По данной решетке строится двумерный тор $\mathbb{T}_L^2 = \mathbb{Z}^2/L$, который разбиение \mathcal{T} делит на $m = m_0 + m_1 + m_2 = 14$ параллелограммов.

§3. Дефляция. Основные определения

3.1. Лучи. Пусть $\mathcal{D} = \{0, 1, \dots, d\}$ – множество индексов из d + 1 элемента; $\sigma = \{0, 1\}$ – сочетание из двух фиксированных элементов $0, 1; \sigma' = \mathcal{D} \setminus \sigma$ – дополнение σ в \mathcal{D} из d' = d - 1 элемента и $\sigma'' \subset \sigma'$ – любое множество из d'' = d - 2 элементов.

Определим следующие лучи:

 v_0, v_1 – связанные лучи, это лучи звезды $v = \{v_0, v_1, \dots, v_d\}$, отвечающие сочетанию σ ;

v₀ – исчезающий луч;

 $v_1 - ocmaющийся луч$ (доминантный луч);

 v_k для $k \in \sigma'$ – свободные лучи;

 $v_0 = v_0 + v_1 - новый луч$ производной звезды $v^{\sigma} = \{v_0, v_1, \dots, v_d\}.$

3.2. Параллелепипеды. Для k = 0, 1, ..., d, определим замкнутые *d*-мерные *параллелепипеды*

$$T_k = \{\lambda_{k_1} v_{k_1} + \ldots + \lambda_{k_d} v_{k_d}; \ 0 \le \lambda_{k_i} \le 1\},\tag{3.1}$$

где k_1, \ldots, k_d – индексы из дополнения $\mathcal{D}_k = \mathcal{D} \setminus \{k\}$ Множество лучей v_{k_1}, \ldots, v_{k_d} назовем *остовом* параллеленинеда T_k .

3.3. Ядро. Если множество векторов $v = \{v_0, v_1, \ldots, v_d\}$ является звездой (1.1), то объединение

$$T = T_0 \cup T_1 \cup \ldots \cup T_d \tag{3.2}$$

параллелепипедов (3.1) образует ядро.

3.4. Производное ядро. Пусть

$$v^{\sigma} = \{v_0^{\sigma}, v_1^{\sigma}, \dots, v_d^{\sigma}\}$$
(3.3)

– производная звезда (1.7) для произвольного $\sigma \subset \mathcal{D}$. Определим *про-изводное ядро*

$$T^{\sigma} = T_0^{\sigma} \cup T_1^{\sigma} \cup \ldots \cup T_d^{\sigma}, \qquad (3.4)$$

составленное из производных параллелепипедов

 $T_k^{\sigma} = \{\lambda_{k_1} v_{k_1}^{\sigma} + \ldots + \lambda_{k_d} v_{k_d}^{\sigma}; \ 0 \leq \lambda_{k_i} \leq 1\},\$

аналогичных параллелепипедам (3.1). По условию, луч v_0 исчезающий, а луч v_1 остающийся, т.е. является доминантным лучом. Поэтому, согласно определению (1.7), производная звезда (3.3) с $\sigma = \{0, 1\}$ примет вид

$$v^{\sigma} = \{v_0^{\sigma}, v_1^{\sigma}, \dots, v_d^{\sigma}\} = \{v_0 + v_1, v_1, \dots, v_d\}.$$
(3.5)

3.5. Производные параллелепипеды. Опишем параллелепипеды из производного ядра T^{σ} (3.4) для $\sigma = \{0, 1\}$.

 $T_{\sigma',1}$ – параллеленипед с остовом $v_{\sigma',1} = \{v_{\sigma'}, v_1\};$

 $T_{\sigma',\mathbf{0}}$ – параллелени
пед с остовом $v_{\sigma',\mathbf{0}} = \{v_{\sigma'}, v_{\mathbf{0}}\}$, где $v_{\sigma'}$ – множество луче
й v_k с индексами $k \in \sigma'$;

 $T_{\sigma'',\mathbf{0},1}$ – параллелепипеды с остовами $v_{\sigma'',\mathbf{0},1} = \{v_{\sigma''}, v_{\mathbf{0}}, v_{1}\}$, где $v_{\sigma''}$ – множество лучей v_k с индексами $k \in \sigma''$, при этом σ'' пробегает все (d-2)-подмножества из σ' . Последних параллелепипедов d-1. Характеристики производных параллелепипедов:

 $T_0^{\sigma} = T_{\sigma',1}$ – неменяющийся параллелепипед;

 $T_1^{\sigma} = T_{\sigma',0}^{\sigma} - компенсирующий$ параллеленинед с уменьшенным объ-

емом; $T_k^{\sigma} = T_{\sigma''.0.1} - \partial e \phi op мирующиеся$ параллелепипеды, сохраняющие

 $T_{k}^{*} = T_{\sigma'',0,1} - de\phi op Mupy ющиеся$ параллелепипеды, сохраняющие объем.

3.6. Исходные параллелепипеды. Новые обозначения. Теперь опишем параллелепипеды исходного ядра T (3.2). Всего параллелепипедов d + 1. Они делятся на *mpu muna*:

 $T_0 = T_{\sigma',1}$ – параллелепипед с остовом $\{v_{\sigma'}, v_1\};$

 $T_1 = T_{\sigma',0}$ – параллеленинед с остовом $\{v_{\sigma'}, v_0\};$

 $T_k = T_{\sigma'',0,1}$, где $k \in \sigma' = \mathcal{D} \setminus \sigma$ (т.е. $k \neq 0,1$) – параллелепипеды с остовами $\{v_{\sigma''}, v_0, v_1\}$.

3.7. Подстановки. Зададим \triangle – подстановку (substitution), действующую на параллелепипеды T_0 , T_1 и T_k ($k \neq 0, 1$) соответственно специализациями \triangle_0 , \triangle_1 и \triangle_k :

$$T_0 = T_{\sigma',1} \xrightarrow{\Delta_0} T_{\sigma',1}, \tag{3.6}$$

$$T_1 = T_{\sigma',0} \xrightarrow{\Delta_1} T_{\sigma',0} \cup (T_0 + v_0), \tag{3.7}$$

$$T_k = T_{\sigma'',0,1} \xrightarrow{\Delta_k} T_{\sigma'',\mathbf{0},1}.$$
(3.8)

§4. Орбиты разбиений

4.1. Орбиты исходного разбиения. Для полных орбит (2.19) введем расширенное обозначение

$$\operatorname{Orb}(T_k)^{m_k} = \{S^j(T_k); \ j = 0, 1, \dots, m_k - 1\},\$$

где T_k – замкнутые параллеле
пипеды (3.1). Тогда разбиение (2.21) тора \mathbb{T}_L^d перепишется в виде

$$\mathcal{T} = \operatorname{Orb}(T_0)^{m_0} \cup \operatorname{Orb}(T_1)^{m_1} \cup \ldots \cup \operatorname{Orb}(T_d)^{m_d},$$
(4.1)

при этом

$$S^{j}(T_{k})^{\text{int}} \cap S^{j'}(T_{k'})^{\text{int}} = \emptyset$$

$$(4.2)$$

с индексами $(j,k) \neq (j',k')$. Разбиение \mathcal{T} состоит из $m_k > 0$ параллелепипедов типа T_k (k = 0, 1, ..., d). Число параллелепипедов разных типов $m = m_0 + m_1 + ... + m_d$ равно порядку (2.22) разбиения \mathcal{T} . Любые два из m указанных параллелепипедов не имеют общих внутренних точек (4.2).

Итак, если развертка $T = T(v) = T_0 \cup T_1 \cup \ldots \cup T_d$ вкладывается

$$T = T(v) \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}_L^d \tag{4.3}$$

в тор \mathbb{T}_{L}^{d} и задан весовой вектор

$$\mathbf{m} = (m_0, m_1, \dots, m_d), \tag{4.4}$$

то по вложению (4.3) и вектору **m** можно построить индуцированное ядерное разбиение тора \mathcal{T} (4.1).

4.2. Орбиты производного разбиения. Если звезда v невырожденная, то по теореме 2.3 любая производная развертка $T^{\sigma} = T(v^{\sigma}) = T_0^{\sigma} \cup T_1^{\sigma} \cup \ldots \cup T_d^{\sigma}$ снова вкладывается $T^{\sigma} = T(v^{\sigma}) \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}_L^d$ в тот же тор \mathbb{T}_L^d , но уже с *производным* весовым вектором

$$\mathbf{m}^{\sigma} = (m_0^{\sigma}, m_1^{\sigma}, \dots, m_d^{\sigma}) = (m_0 + m_1, m_1, \dots, m_d)$$
(4.5)

для $\sigma = \{0, 1\}$ в согласии с формулой производной звезды (3.5). Поэтому существует производное разбиение

$$\mathcal{T}^{\sigma} = \operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}} \cup \operatorname{Orb}(T_1^{\sigma})^{m_1^{\sigma}} \cup \ldots \cup \operatorname{Orb}(T_d^{\sigma})^{m_d^{\sigma}}$$
(4.6)

тора \mathbb{T}^d_L с разложением на орбиты

Orb
$$(T_k^{\sigma})^{m_k^{\sigma}} = \{S^j(T_k^{\sigma}); \ j = 0, 1, \dots, m_k^{\sigma} - 1\}.$$

Производное разбиение \mathcal{T}^{σ} состоит из $m_k^{\sigma}>0$ параллелепипедов типа T_k^{σ} $(k=0,1,\ldots,d).$ В силу (4.5), в разбиении (4.6) параллелепипедов разных типов

$$m^{\sigma} = m_0^{\sigma} + m_1^{\sigma} + \ldots + m_d^{\sigma} = m + m_0.$$

4.3. Типы орбит исходного разбиения. Перечислим эти типы:

$$Orb(T_0)^{m_0} = Orb(T_{\sigma',1})^{m_0} = \{S^j(T_{\sigma',1}); \ j = 0, 1, \dots, m_0 - 1\}, \quad (4.7)$$
$$Orb(T_1)^{m_1} = Orb(T_{\sigma',0})^{m_1} = \{S^j(T_{\sigma',0}); \ j = 0, 1, \dots, m_1 - 1\}, \quad (4.8)$$
$$Orb(T_1)^{m_k} = Orb(T_{\sigma',0})^{m_k} = \{S^j(T_{\sigma',0}); \ j = 0, 1, \dots, m_1 - 1\}, \quad (4.9)$$

$$Orb(T_k)^{m_k} = Orb(T_{\sigma'',0,1})^{m_k} = \{S^j(T_{\sigma'',0,1}); j = 0, 1, \dots, m_k - 1\}, \quad (4.9)$$
для всех $k \neq 0, 1.$

4.4. Типы орбит производного разбиения. Перечислим указанные типы:

$$\begin{aligned}
\operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}} &= \operatorname{Orb}(T_{\sigma',1})^{m_0^{\sigma}} = \{S^j(T_{\sigma',1}); \ j = 0, 1, \dots, m_0^{\sigma} - 1\}, \quad (4.10) \\
\operatorname{Orb}(T_1^{\sigma})^{m_1^{\sigma}} &= \operatorname{Orb}(T_{\sigma',0})^{m_1^{\sigma}} = \{S^j(T_{\sigma',0}); \ j = 0, 1, \dots, m_1^{\sigma} - 1\}, \\
\operatorname{Orb}(T_i^{\sigma})^{m_k^{\sigma}} &= \operatorname{Orb}(T_{u',u'})^{m_k^{\sigma}} = \{S^j(T_{u',u'}); \ i = 0, 1, \dots, m_1^{\sigma} - 1\}, \\
\end{aligned}$$

 $\operatorname{Orb}(T_k^{\sigma})^{m_k^{\sigma}} = \operatorname{Orb}(T_{\sigma'',\mathbf{0},1})^{m_k^{\circ}} = \{S^j(T_{\sigma'',\mathbf{0},1}); \ j = 0, 1, \dots, m_k^{o} - 1\},$ для всех $k \neq 0, 1.$

§5. Подстановки

5.1. Подстановки орбит. Используя (4.7), (3.6), затем (4.8), (3.7) и (4.9), (3.8) определим подстановки

$$\operatorname{Orb}(T_0)^{m_0} = \operatorname{Orb}(T_{\sigma',1})^{m_0} \xrightarrow{\Delta_0} \operatorname{Orb}(T_0)^{m_0} = \operatorname{Orb}(T_{\sigma',1})^{m_0},$$

$$\operatorname{Orb}(T_1)^{m_1} = \operatorname{Orb}(T_{\sigma',0})^{m_1} \xrightarrow{\Delta_1} \operatorname{Orb}(T_{\sigma',0})^{m_1} \cup \operatorname{Orb}(T_0 + v_0)^{m_1},$$

$$\operatorname{Orb}(T_k)^{m_k} = \operatorname{Orb}(T_{\sigma'',0,1})^{m_k} \xrightarrow{\Delta_k} \operatorname{Orb}(T_{\sigma'',0,1})^{m_k}, \quad k \neq 0, 1.$$

5.2. Подстановки в исходных обозначениях. Перечислим эти подстановки:

$$T_0 = T_{\sigma',1} \xrightarrow{\bigtriangleup_0} T_{\sigma',1} = T_0^{\sigma}, \tag{5.1}$$

$$T_1 = T_{\sigma',0} \xrightarrow{\Delta_1} T_{\sigma',\mathbf{0}} \cup (T_0 + v_0) = T_1^{\sigma} \cup (T_0^{\sigma} + v_0), \tag{5.2}$$

$$T_k = T_{\sigma'',0,1} \xrightarrow{\Delta_k} T_{\sigma'',0,1} = T_k^{\sigma}, \quad k \neq 0, 1.$$
(5.3)

5.3. Подстановки для производных орбит. Переход на производные орбиты:

$$\operatorname{Orb}(T_0)^{m_0} \xrightarrow{\Delta_0} \operatorname{Orb}(T_0^{\sigma})^{m_0},$$
 (5.4)

$$\operatorname{Orb}(T_1)^{m_1} \xrightarrow{\Delta_1} \operatorname{Orb}(T_1^{\sigma})^{m_1} \cup \operatorname{Orb}(T_0^{\sigma} + v_0)^{m_1},$$
 (5.5)

$$\operatorname{Orb}(T_k)^{m_k} \xrightarrow{\Delta_k} \operatorname{Orb}(T_k^{\sigma})^{m_k}.$$
 (5.6)

Учитывая вид (4.5) производного весового вектора \mathbf{m}^{σ} , переписываем подстановки (5.4)–(5.6):

$$\operatorname{Orb}(T_0)^{m_0} \xrightarrow{\Delta_0} \operatorname{Orb}(T_0^{\sigma})^{m_0},$$
 (5.7)

$$\operatorname{Orb}(T_1)^{m_1} \xrightarrow{\Delta_1} \operatorname{Orb}(T_1^{\sigma})^{m_1^{\sigma}} \cup \operatorname{Orb}(T_0^{\sigma} + v_0)^{m_1},$$
 (5.8)

$$\operatorname{Orb}(T_k)^{m_k} \xrightarrow{\Delta_k} \operatorname{Orb}(T_k^{\sigma})^{m_k^{\sigma}}.$$
 (5.9)

Так как $m_0^{\sigma} = m_0 + m_1$, то

$$\operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}} = \operatorname{Orb}(T_0^{\sigma})^{m_0} \cup \operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}}_{m_0}, \qquad (5.10)$$

где

$$\operatorname{Orb}(T_0^{\sigma})_{m_0}^{m_0^{\sigma}} = \{ S^j(T_0^{\sigma}); \ j = m_0, m_0 + 1, \dots, m_0^{\sigma} - 1 \}.$$
(5.11)

Согласно (2.17) луч v_0 имеет порядок m_0 . Поэтому хвост орбиты (5.11) – это начало орбиты (5.10), сдвинутое на луч v_0 :

$$\operatorname{Orb}(T_0^{\sigma})_{m_0}^{m_0^{\sigma}} = \operatorname{Orb}(T_0^{\sigma})^{m_1} + v_0 = \operatorname{Orb}(T_0^{\sigma} + v_0)^{m_1}.$$
 (5.12)

Подставляя (5.12) в подстановку (5.8), получим

$$\operatorname{Orb}(T_1)^{m_1} \xrightarrow{\Delta_1} \operatorname{Orb}(T_1^{\sigma})^{m_1^{\sigma}} \cup \operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}}_{m_0}.$$
 (5.13)

Теорема 5.1. Для всех сочетаний $\sigma \in \Sigma$ существует отображение

$$\sigma \to \Delta = \Delta(\sigma) \tag{5.14}$$

в множество подстановок \triangle вида (3.6)–(3.8) такое, что определенное в (2.23) ядерное разбиение $\mathcal{T} = \mathcal{T}(v)$ тора \mathbb{T}_L^d для невырожденной звезды v переводится

$$\mathcal{T} = \mathcal{T}(v) \xrightarrow{\bigtriangleup} \mathcal{T}^{\sigma} = \mathcal{T}(v^{\sigma})$$
 (5.15)

подстановкой \triangle в производное ядерное разбиение $\mathcal{T}^{\sigma} = \mathcal{T}(v^{\sigma})$, порождаемое производной звездой v^{σ} (1.7). **Доказательство.** Случай $\sigma = \{0, 1\}$. Пусть выбрано сочетание $\sigma = \{0, 1\}$. Перепишем исходное разбиение (4.1) в виде

$$\mathcal{T} = \operatorname{Orb}(T_0)^{m_0} \cup \operatorname{Orb}(T_1)^{m_1} \cup_{k \neq 0,1} \operatorname{Orb}(T_k)^{m_k}$$

и, учитывая (5.7), (5.9), (5.13), выполним подстановки:

$$\operatorname{Orb}(T_0)^{m_0} \xrightarrow{\Delta_0} \operatorname{Orb}(T_0^{\sigma})^{m_0},$$
 (5.16)

$$\operatorname{Orb}(T_1)^{m_1} \xrightarrow{\Delta_1} \operatorname{Orb}(T_1^{\sigma})^{m_1^{\sigma}} \cup \operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}}_{m_0},$$
 (5.17)

$$\operatorname{Orb}(T_k)^{m_k} \xrightarrow{\Delta_k} \operatorname{Orb}(T_k^{\sigma})^{m_k^{\sigma}}.$$
 (5.18)

После этого разбиение \mathcal{T} перейдет в объединение

$$\Delta \mathcal{T} = \operatorname{Orb}(T_0)^{m_0} \cup \operatorname{Orb}(T_1^{\sigma})^{m_1^{\sigma}} \cup \operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}}_{m_0} \cup_{k \neq 0,1} \operatorname{Orb}(T_k^{\sigma})^{m_k^{\sigma}}.$$
 (5.19)

Согласно определению (4.10) объединение первой и третьей орбит (5.19) составляет орбиту $\operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}}$. Поэтому

$$\Delta \mathcal{T} = \operatorname{Orb}(T_0^{\sigma})^{m_0^{\sigma}} \cup \operatorname{Orb}(T_1^{\sigma})^{m_1^{\sigma}} \cup_{k \neq 0,1} \operatorname{Orb}(T_k^{\sigma})^{m_k^{\sigma}}$$
(5.20)

и, значит, $\Delta \mathcal{T} = \mathcal{T}^{\sigma}$. Поскольку по теореме 2.3 существует производное ядерное разбиение $\mathcal{T}^{\sigma} = \mathcal{T}(v^{\sigma})$, имеющее разложение на орбиты из правой части равенства (5.20). Это доказывает формулу (5.15) для сочетания $\sigma = \{0, 1\}$.

Случай произвольного σ . Укажем, какие нужно сделать изменения в случае произвольного сочетания $\sigma = \{k_0, k_1\} \in \Sigma$. Не уменьшая общности, можем считать луч v_{k_1} доминантным, а луч v_{k_0} исчезающим.

Зададим подстановку $s = s(k_0, k_1)$ на множестве индексов $\mathcal{D} = \{0, 1, \ldots, d\}$, переводящую $k_0 \to 0$, $k_1 \to 1$, а другие $k \neq k_0, k_1$ биективно в оставшиеся индексы $\mathcal{D} \setminus \{0, 1\}$ произвольным образом. На множестве разбиений $\mathcal{T} = \mathcal{T}(v)$ определим подстановку

$$\Delta(\sigma) = \underbrace{s^{-1}}_{3} \cdot \underbrace{\Delta(0,1)}_{2} \cdot \underbrace{s}_{1}, \qquad (5.21)$$

действующую в указанном порядке. Здесь подстановка *s* производит соответствующую перенумерацию параллелепипедов T_0, T_1, \ldots, T_d разбиения $\mathcal{T}; \Delta = \Delta(0, 1)$ – ранее определенная подстановка (5.16)–(5.18); s^{-1} – обратная перенумерация параллелепипедов $T_0^{\sigma}, T_1^{\sigma}, \ldots, T_d^{\sigma}$ уже в производном разбиении \mathcal{T}^{σ} . Так определенная подстановка $\Delta(\sigma)$ и будет требуемой подстановкой (5.14).

§6. Геометрия подстановок параллелепипедов

6.1. Косые сдвиги. Выясним геометрический смысл подстановок параллелепипедов (5.1)–(5.3).

Подстановка (5.1) с k = 0 тождественная. Рассмотрим подстановки (5.3). По определению $T_k = T_{\sigma'',0,1} - d$ -мерные параллеленинеды с остовами $\{v_{\sigma''}, v_0, v_1\}$. За основание (base) $T_k(v_{\sigma''}, v_1)$ параллеленипеда T_k выберем (d-1)-мерный параллеленинед с остовом $\{v_{\sigma''}, v_1\}$. Представим параллеленинед T_k через сумму Минковского

$$T_k = T_{\sigma'',0,1} = T_k(v_{\sigma''},v_1) + v_0$$

Также запишем и производный параллелепипед

$$T_k^{\sigma} = T_{\sigma^{\prime\prime},\mathbf{0},1} = T_k(v_{\sigma^{\prime\prime}},v_1) + v_{\mathbf{0},\mathbf{0}}$$

где нулевой луч v_0 производной звезды v^{σ} имеет вид $v_0 = v_0 + v_1$. Следовательно, (5.3) есть не что иное, как *косой сдвиг* верхнего основания $T_k(v_{\sigma''}, v_1) + v_0$ вдоль вектора v_1 , принадлежащего нижнему основанию $T_k(v_{\sigma''}, v_1)$. Поэтому преобразования косого сдвига Δ_k для $k \neq 0, 1$ сохраняют объем параллелепипедов, vol $T_k^{\sigma} = \text{vol } T_k$.

Более сложной оказалась подстановка (5.2) –

$$T_1 = T_{\sigma',0} \xrightarrow{\Delta_1} T_{\sigma',0} \cup (T_0 + v_0) = T_1^{\sigma} \cup (T_0 + v_0).$$
(6.1)

Рассмотрим *сужение* \triangle_1^- отображения \triangle_1 :

$$T_1 = T_{\sigma',0} \xrightarrow{\Delta_1} T_1^{\sigma} = T_{\sigma',\mathbf{0}}.$$
 (6.2)

Вернемся к гиперплоскости $H_{\sigma'}$, проходящей через d-1 вектор звезды v с индексами из дополнения $\sigma' = \mathcal{D} \setminus \sigma$ к сочетению $\sigma = \{0, 1\}$. Пусть, для определенности, луч v_0 принадлежит полупространству $H_{\sigma'}^+$, другой луч v_1 – полупространству $H_{\sigma'}^-$. По соглашению v_0 – исчезающий луч, а v_1 – остающийся (доминантный) луч. Поэтому новый луч $v_0 = v_0 + v_1$ производной звезды v^{σ} будет принадлежать тому же полупространству, что и исчезающий луч v_0 . Итак, имеем

$$v_0 \in H^+_{\sigma'}, \quad v_0 \in H^+_{\sigma'}, \quad v_1 \in H^-_{\sigma'}.$$
 (6.3)

В качестве основания $T_1(v_{\sigma'})$ параллелепипеда $T_1 = T_{\sigma',0}$ выберем (d-1)-мерный параллелепипед с остовом $\{v_{\sigma'}\}$. Имеем

$$T_1 = T_{\sigma',0} = T_1(v_{\sigma'}) + v_0; \tag{6.4}$$

$$T_1^{\sigma} = T_{\sigma',\mathbf{0}} = T_1(v_{\sigma'}) + v_{\mathbf{0}} = T_1(v_{\sigma'}) + (v_0 + v_1).$$
(6.5)

Из представлений (6.4), (6.5) и включений (6.3) следует неравенство

$$\operatorname{vol} T_1^{\sigma} = \operatorname{vol} \, \bigtriangleup_1^- T_1 < \operatorname{vol} T_1.$$

Таким образом, сужение \triangle_1^- (6.2) отображения \triangle_1 представляет собою *сжимающий* косой сдвиг $T_1 \xrightarrow{\bigtriangleup_1}^{-} T_1^{\sigma}$.

6.2. Складки. Сдвинутый параллелепипед из (6.1) также представим через сумму Минковского

$$T_0 + v_0 = (T_1(v_{\sigma'}) + v_1) + v_0 = (T_1(v_{\sigma'}) + v_0) + v_1, \qquad (6.6)$$

где $T_1(v_{\sigma'}) + v_0$ – второе основание параллеленинеда $T_1 = T_{\sigma',0}$ (6.4). Рассмотрим сдвоенный невыпуклый многогранник

$$\Delta T_1 = T_1^{\sigma} \cup (T_0 + v_0) = T_{\sigma',\mathbf{0}} \cup (T_0 + v_0), \tag{6.7}$$

который из-за его формы назовем V-складкой (V-fold). Введем для нее обозначение

$$T_1^{\sigma} \vee (T_0 + v_0) = T_1^{\sigma} \cup (T_0 + v_0).$$
(6.8)

Многогранник (6.7) составлен из двух параллелепипедов T_1^{σ} и $T_0 + v_0$ с общей (d – 1)-мерной гранью

$$T_1^{\sigma} \cap (T_0 + v_0) = T_1(v_{\sigma'}) + v_0,$$

расположенной между

$$T_1(v_{\sigma'}) <_{H_{\sigma'}} T_1(v_{\sigma'}) + v_0 <_{H_{\sigma'}} T_1(v_{\sigma'}) + v_0$$
(6.9)

по высоте относительно гиперплоскости $H_{\sigma'}$ в направлении полупространства $H_{\sigma'}^+$. Поскольку $T_1(v_{\sigma'})$ и $T_1(v_{\sigma'}) + v_0$ – противоположные грани параллелепипеда T_1 , то из (6.4), (6.5) и (6.6), (6.7) следует формула

$$\operatorname{vol} \, \bigtriangleup \, T_1 = \operatorname{vol} \, T_1^{\sigma} + \operatorname{vol} \, T_0 \tag{6.10}$$

для объема складки $riangle T_1$ (6.7) – образа параллелени
педа T_1 при подстановке $\triangle = \triangle_1$ (6.1). Из (6.7) и (6.9) получаем инвариантность

vol
$$\triangle T_1 = \operatorname{vol} T_1$$

объема параллелепипеда T_1 при том же преобразовании $\triangle = \triangle_1$. Итак, доказано следующее утверждение.

Предложение 6.1. 1. Определенная в (5.1)–(5.3) подстановка параллелепипедов

$$T_k \xrightarrow{\Delta} T_k^{\sigma}$$

имеет следующий геометрический смысл: $\triangle = \triangle_0$ – тождественное отображение; $\triangle = \triangle_1^-$ – сжимающий косой сдвиг; $\triangle = \triangle_k$ – простой косой сдвиг для остальных $k \neq 0, 1$.

2. Отображение ∨-складки

$$T_1 \xrightarrow{\Delta} \Delta T_1 = T_1^{\sigma} \lor (T_0 + v_0) \tag{6.11}$$

сохраняет объем (6.10).

6.3. Дефляция ядерных разбиений. Пусть $\mathcal{T} = \mathcal{T}(v)$ – разбиение (2.21), (2.23) тора \mathbb{T}_{L}^{d} , индуцированное вкладывающейся в тор $T \stackrel{\text{em}}{\hookrightarrow} \mathbb{T}_{L}^{d}$ разверткой T = T(v); и пусть \triangle – подстановка (3.6)–(3.8) на множестве параллеленинедов T_0, T_1, \ldots, T_d . Далее, пусть

$$\mathcal{T} = \mathcal{T}(v) \xrightarrow{\Delta} \Delta \mathcal{T} = \mathcal{T}^{\sigma}(v) = \mathcal{T}(v^{\sigma})$$
 (6.12)

– отображение (5.15) множества ядерных разбиений $\mathcal{T} = \mathcal{T}(v)$ из теоремы 5.1. По предложению 6.1 отображения $T_k \xrightarrow{\Delta} T_k^{\sigma}$ $(k = 0, 1, \ldots, d)$ или сохраняют объемы параллеленинедов, или уменьшают. При этом недостающий объем всего исходного разбиения \mathcal{T} восполняется (6.11) через образование V-складкок $T_1^{\sigma} \vee (T_0 + v_0)$ в преобразованном разбиении $\Delta \mathcal{T}$ или, иначе, – через добавление в $\Delta \mathcal{T}$ новых параллеленинедов вида T_0 .

Таким образом, в результате преобразования $\mathcal{T} \xrightarrow{\Delta} \Delta \mathcal{T}$ разбиения $\mathcal{T} = \mathcal{T}(v)$ в нем в среднем происходит уменьшение объемов образующих его параллелепипедов T_k . По этой причине преобразование (6.12) целесообразно назвать *дефляцией*.

6.4. Дефляция двумерного ядерного разбиения. Рассматривается ядерное разбиение $\mathcal{T} = \mathcal{T}(v)$ размерности 2, изображенное на рис. 2.1. Для его ядра $T = \text{Kr}(\mathcal{T})$ (2.24) на рис. 6.1 показан процесс образования V-складки $T_1^{\sigma} \vee (T_0 + v_0)$ (6.8) в случае сочетания $\sigma = \{0, 1\}$, когда v_0 – исчезающий луч, а v_1 – остающийся (доминантный) луч.

Звезда $v = \{v_0, v_1, v_2\}$ в разбиении $\mathcal{T} = \mathcal{T}(v)$ имеет лучи v_0, v_1, v_2 порядков $m_0 = 6, m_1 = 5, m_2 = 3$. У дефлированной звезды $v^{\sigma} = \{v_0^{\sigma}, v_1^{\sigma}, v_2^{\sigma}\}$ порядки лучей $m_0^{\sigma} = m_0 + m_1 = 11, m_1^{\sigma} = 5, m_2^{\sigma} = 3$.

Рис. 6.1. (a) Исходное ядро T; (b) образование \lor -складки; (c) ядро T^{σ} после дефляции $\sigma = \{0, 1\}.$

Для того же сочетания $\sigma = \{0, 1\}$ на рис. 6.2 показан процесс дефляции $\mathcal{T} \xrightarrow{\Delta} \Delta \mathcal{T} = \mathcal{T}^{\sigma}$ (6.12) двумерного разбиения $\mathcal{T} = \mathcal{T}(v)$ на рис. 2.1. Весь дефляционный процесс происходит в многоугольной полосе, выделенной жирными границами на рис. 6.2(b). В результате дефляции порядок $m_0 = 6$ становится $m_0^{\sigma} = 11$, поэтому в разбиении $\Delta \mathcal{T} = \mathcal{T}^{\sigma}$ количество параллелограммов типа T_0 возрастает на 5. Все новые параллелограммы типа T_0 лежат в выделенной полосе и входят в образовавшиеся \vee -складки.

§7. Инфляция звезд

7.1. Инфляция звезды и барицентрические координаты. Обозначим через $\Sigma^{\langle\rangle}$ совокупность всех упорядоченных пар $\iota = \langle k_1, k_2 \rangle$ из двух элементов k_1, k_2 из множества индексов $\mathcal{D} = \{0, 1, \ldots, d\}$. Для произвольного $\iota = \langle k_1, k_2 \rangle$ определим операцию инфляции

$$v \xrightarrow{\iota} v^{\iota} = \{v_0^{\iota}, v_1^{\iota}, \dots, v_d^{\iota}\}$$

$$(7.1)$$

на множестве всех звезд $v = \{v_0, v_1, \dots, v_d\}$ (см. определение 1.1), полагая $v_{k_1}^\iota = v_{k_1} - v_{k_2}$ и $v_k^\iota = v_k$ для $k \neq k_1$.

Предложение 7.1. Для произвольной звезды v ее инфляция v^t, опредеоенная в (7.1), также является звездой.

Рис. 6.2. (a) Образование \lor -складок в разбиении \mathcal{T} для $\sigma = \{0, 1\};$ (b) дефлированное разбиение $\bigtriangleup \mathcal{T} = \mathcal{T}^{\sigma}$.

Доказательство. По критерию 1.1 получаем представление

$$\mathbf{0} = \pi_0 v_0 + \pi_1 v_1 + \ldots + \pi_d v_d \tag{7.2}$$

для точки $\mathbf{0} = (0, 0, \dots, 0)$ – центра звезды v и, значит, она имеет барицентрические координаты

$$\mathbf{0}_v = (\pi_0, \pi_1, \dots, \pi_d) \tag{7.3}$$

относительно замкнутого *d*-мерного симплекса $\Delta(v)$ (1.2), вершины которого есть концы лучей звезды *v*. В (7.2) коэффициенты π_k удовлетворяют условию *нормирования*

$$\pi_0 + \pi_1 + \ldots + \pi_d = 1$$
, rge $\pi_k > 0$ $(k = 0, 1, \ldots, d)$.

Пусть для определенности $\iota = \langle k_1, k_2 \rangle = \langle 0, 1 \rangle$. Если переписать представление (7.2) в виде

$$\mathbf{0} = \pi_0(v_0 - v_1) + (\pi_1 + \pi_0)v_1 + \ldots + \pi_d v_d,$$

то после нормирования получим

$$\mathbf{0} = \pi_0^{\iota} v_0^{\iota} + \pi_1^{\iota} v_1^{\iota} + \ldots + \pi_d^{\iota} v_d^{\iota}$$
(7.4)

с коэффициентами

$$\pi_1^{\iota} = \frac{\pi_1 + \pi_0}{1 + \pi_0}, \quad \pi_k^{\iota} = \frac{\pi_k}{1 + \pi_0} \quad \text{для} \quad k \neq 1.$$
(7.5)

Представление (7.4), (7.5) означает, что **0** остается внутренней точкой симплекса $\Delta(v^{\iota})$ для множества лучей v^{ι} из (7.1). Снова применяя критерий 1.1, убеждаемся, что v^{ι} является звездой.

7.2. Типы звезд и их эквивалентность. Будем говорить, что две звезды v и v' аффинно эквивалентны или, просто, – эквивалентны

$$v \sim v', \tag{7.6}$$

если v'=Avдля некоторого преобразования Aиз вещественной группы аффинных преобразования $\mathrm{GL}_d(\mathbb{R})$ размерности d.

В [13] доказана следующая

Лемма 7.1. Имеет место следующая равносильность

$$v \sim v' \Leftrightarrow \mathbf{0}_v \sim \mathbf{0}_{v'},$$
 (7.7)

где эквивалентность $\mathbf{0}_v \sim \mathbf{0}_{v'}$ означает совпадение барицентрических координат с точностью до их перестановки.

Согласно (7.7), барицентрические координаты $\mathbf{0}_{v}$ центра звезды v целесообразно назвать *типом* звезды v.

Скажем, что звезда v имеет *иррациональный* тип, если барицентрические координаты ее центра (7.3) удовлетворяют условию:

$$\pi_0, \pi_1, \dots, \pi_d$$
 линейно независимы над \mathbb{Z} . (7.8)

В [13] доказано, что условия иррациональности (7.8) и (2.20) звезды v и вектора сдвига тора $\alpha = (\alpha_1, \ldots, \alpha_d)$ из (2.13) эквивалентны.

7.3. Связь между производными и инфляционными звездами. Если нужно выделит индексы k_1 , k_2 из сочетания $\sigma = \{k_1, k_2\}$ из Σ , то будем для σ -производной (1.7) использовать еще и другое развернутое обозначение

$$v^{\sigma} = v^{\{k_1, k_2\}}.$$

По определению (1.7) имеет место формула коммутирования

$$v^{\{k_1,k_2\}} = v^{\{k_2,k_1\}}.$$
(7.9)

Поэтому для нерывожденной звезды v существуют

$$\sharp \Sigma = C_{d+1}^2 = \frac{d(d+1)}{2}$$

ее производных звезд v^{σ} .

Аналогично для упорядоченной пары $\iota = \langle k_1, k_2 \rangle$ из $\Sigma^{\langle \rangle}$ введем обозначение

$$v^{\iota} = v^{\langle k_1, k_2 \rangle}.$$

Согласно определению (7.1), в этом случае формула коммутирования (7.9) уже не выполняется

$$v^{\langle k_1,k_2 \rangle} \neq v^{\langle k_2,k_1 \rangle}$$

и, следовательно, для произвольной звезды v по предложению 7.1 инфляционных звезд v^{ι} существует в два раза больше

$$\sharp \Sigma^{\langle \rangle} = d(d+1).$$

Пусть $\iota = \langle k_1, k_2 \rangle$ и $\sigma = \{k_1, k_2\}$. Примем соглашение

$$v^{\iota\sigma} = (v^\iota)^\sigma.$$

Выпишем несколько формул связи между операциями дифференцирования и инфлирования. Первые две формулы

$$v^{\langle k_1, k_2 \rangle \{k_1, k_2\}} = v, \quad v^{\langle k_2, k_1 \rangle \{k_1, k_2\}} = v \tag{7.10}$$

выполняются для произвольной звезды v. Чтобы привести аналогичные (7.10) формулы с другим порядком операций $v^{\sigma\iota}$, введем для про-изводных звезд $v^{\sigma} = v^{\{k_1,k_2\}}$ дополнительные индексы

$$v_{k_1}^{\{k_1,k_2\}}, \quad v_{k_2}^{\{k_1,k_2\}},$$
(7.11)

указывающие, какой из лучей v_{k_1} или v_{k_2} является доминантным. В этих обозначениях для невырожденных звезд v справедливы формулы

$$v_{k_2}^{\{k_1,k_2\}\langle k_1,k_2\rangle} = v, \quad v_{k_1}^{\{k_1,k_2\}\langle k_2,k_1\rangle} = v.$$
(7.12)

Пусть снова для определенности $\iota = \langle k_1, k_2 \rangle = \langle 0, 1 \rangle$. Согласно (7.5) имеет место формула

$$(\pi_0, \pi_1, \dots, \pi_d)^{\iota} = (\pi_0^{\iota}, \pi_1^{\iota}, \dots, \pi_d^{\iota}) = \left(\frac{\pi_0}{1 + \pi_0}, \frac{\pi_1 + \pi_0}{1 + \pi_0}, \dots, \frac{\pi_d}{1 + \pi_0}\right)$$
(7.13)

преобразования барицентрических координат $\pi_0, \pi_1, \ldots, \pi_d$ (7.3) для произвольных звезд v.

Также пусть $\sigma = \{k_1, k_2\} = \{0, 1\}$ и луч v_1 будет доминантным. Тогда используя определение (1.7) производной звезды v^{σ} , в обозначениях (7.11) аналогично (7.13) получаем формулу

$$(\pi_0, \pi_1, \dots, \pi_d)_1^{\sigma} = (\pi_0^{\sigma}, \pi_1^{\sigma}, \dots, \pi_d^{\sigma}) = \left(\frac{\pi_0}{1 - \pi_0}, \frac{\pi_1 - \pi_0}{1 - \pi_0}, \dots, \frac{\pi_d}{1 - \pi_0}\right)$$
(7.14)

для невырожденных звез
дv.Данная формула интересна тем, что позволяет по барицент
рическим координатам центра звезды vопределить е
е свойства.

1) Является ли звезда v невырожденной: $\pi_{k_1} \neq \pi_{k_2}$ для всех $k_1 \neq k_2$? 2) Который из лучей v_{k_1} или v_{k_2} звезды v будет доминантным? Для $\sigma = \{k_1, k_2\}$ луч v_{k_2} будет доминантным, если $\pi_{k_1} < \pi_{k_2}$.

Приведенные выше формулы (7.10) и (7.12) можно проверить с помощью формул преобразования барицентрических координат (7.13) и (7.14).

§8. Инфляция звезд и параллелепипедов

8.1. Вложение инфляционных звезд. Пусть $v = \{v_0, v_1, \ldots, v_d\}$ – звезда имеющая весовой вектор $\mathbf{m} = (m_0, m_1, \ldots, m_d)$ (4.4). Тогда по определению (7.1) инфляционная звезда $v^t = \{v_0^t, v_1^t, \ldots, v_d^t\}$ для $\iota = \langle k_1, k_2 \rangle$ будет иметь весовой вектор

$$\mathbf{m}^{\iota} = (m_0^{\iota}, m_1^{\iota}, \dots, m_d^{\iota}) \tag{8.1}$$

с весами

$$m_{k_1}^{\iota} = m_{k_1} - m_{k_2}, \quad m_k^{\iota} = m_k$$
для $k \neq k_1.$ (8.2)

Скажем, что звезда vс весовым вектором
тdonyckaemинфляцию $\iota=\langle k_1,k_2\rangle$ из $\Sigma^{\langle\rangle},$ если весовой вектор
 инфляционной звезды v^ι положителен,

$$\mathbf{m}^{\iota} > 0, \tag{8.3}$$

т.е. все веса (8.2) положительны.

Если v – звезда, то по предложению 7.1 множество лучей v^{ι} также будет звездой для любой инфляции $\iota \in \Sigma^{\langle \rangle}$; и если звезда v допускает (8.3) инфляцию ι , то для инфляционной звезды v^{ι} существует определенная в (2.23) развертка

$$T^{\iota} = T(v^{\iota}) = T_0^{\iota} \cup T_1^{\iota} \cup \ldots \cup T_d^{\iota}$$

$$(8.4)$$

с векторами перекладывания $v_0^\iota, v_1^\iota, \ldots, v_d^\iota$. Поэтому для инфляционной развертки T^ι можно поставить вопрос о вложении (см. определение 2.1)

$$T^{\iota} \stackrel{\mathrm{em}}{\hookrightarrow} \mathbb{T}^d_L$$

в тор \mathbb{T}_L^d относительно сдвига $S = S_\alpha$ и о соответствующем вложении звезды v^{ι} (см. определение 2.2).

Теорема 8.1. Пусть произвольная звезда $v = \{v_0, v_1, \ldots, v_d\}$ вкладывается (2.27) в тор \mathbb{T}_L^d относительно сдвига $S = S_\alpha$ с иррациональным (2.20) вектором α . Тогда для любой допустимой (8.3) инфляции $\iota \in \Sigma^{(i)}$ инфляционная звезда $v^{\iota} = \{v_0^{\iota}, v_1^{\iota}, \ldots, v_d^{\iota}\}$ также вкладывается

$$v^{\iota} \stackrel{\mathrm{em}}{\hookrightarrow} \mathbb{T}^d_L$$

в тот же тор \mathbb{T}^d_L относительно сдвига S.

Доказательство. На торе \mathbb{T}^d_L рассмотрим следующее множество

$$\mathcal{T}^{\iota} = \operatorname{Orb}(T_0^{\iota})^{m_0} \cup \operatorname{Orb}(T_1^{\iota})^{m_1^{\iota}} \cup \ldots \cup \operatorname{Orb}(T_d^{\iota})^{m_d^{\iota}}$$
(8.5)

состоящее из орбит

$$\operatorname{Orb}(T_k^{\iota})^{m_k^{\iota}} = \{ S^j(T_k^{\iota}); \ j = 0, 1, \dots, m_k^{\iota} - 1 \}$$

с весами m_k^ι из (8.2). Развертка $T^\iota = T(v^\iota)$ (8.4) перекладывается векторами $v_0^\iota, v_1^\iota, \ldots, v_d^\iota$, поэтому множество \mathcal{T}^ι замкнуто относительно сдвига тора S. Так как сдвиг $S = S_\alpha$ иррациональный (2.20), множество (8.5) покрывает весь тор

$$\mathcal{T}^{\iota} = \mathbb{T}^d_L. \tag{8.6}$$

С помощью предложения 9.1 можно показать, что объем всех параллелепипедов $S^{j}(T_{k}^{\iota})$ из множества (8.5) тот же самый, что и объем всех параллелепипедов $S^{j}(T_{k})$ из исходного разбиения \mathcal{T} в (4.1). Отсюда и существования покрытия (8.6) следует, что разные параллелепипеды $S^{j}(T_{k}^{\iota})$ не имеют общих внутренних точек. Таким образом, объединение (8.5) является разбиением тора \mathbb{T}_{L}^{d} на параллеленинеды $S^{j}(T_{k}^{\iota})$.

8.2. Лучи. Пусть $\iota = \langle 0, 1 \rangle$ – последовательность из двух фиксированных элементов 0,1; $\iota' = \mathcal{D} \setminus \iota$ – дополнение ι в \mathcal{D} из d' = d - 1элемента; $\iota'' \subset \iota'$ – любое множество из d'' = d - 2 элементов.

Определим следующие лучи звезды $v = \{v_0, v_1, \dots, v_d\}$:

 v_0, v_1 – связанные лучи: лучи отвечающие ι ;

v₀ – исчезающий луч;

 v_1 – остающийся луч (вычитаемый луч);

 v_k для $k \in \iota'$ – свободные лучи;

 $v_0^{\iota} = v_0 = v_0 - v_1 -$ новый луч инфляционной звезды $v^{\iota} = \{v_0, v_1, ..., v_d\}.$

8.3. Инфляционные параллелепипеды и их характеристики. Перечислим параллелепипеды из инфляционного ядра $T^{\iota} = T(v^{\iota})$ для $\iota = \langle 0, 1 \rangle$:

 $T_0^{\iota} = T_{\iota',1}$ – неменяющийся параллелепипед с остовом $v_{\iota',1} = \{v_{\iota'}, v_1\};$ $T_1^{\iota} = T_{\iota',0}$ – поглощающий параллелепипед увеличенного объема с остовом $v_{\iota',0} = \{v_{\iota'}, v_0\}$, где $v_{\iota'}$ – множество лучей v_k с индексами $k \in \iota';$

 $T_k^{\iota} = T_{\iota'',\mathbf{0},1}$ – сохраняющие объем *деформирующиеся* параллелепипеды с остовами $v_{\iota'',\mathbf{0},1} = \{v_{\iota''}, v_{\mathbf{0}}, v_1\}$, где $v_{\iota''}$ – множество лучей v_k с индексами $k \in \iota''$, при этом ι'' пробегает все (d-2)-подмножества из ι' .

8.4. Подстановки базисных параллелепипедов. Перечислим данные подстановки:

$$T_0 = T_{\iota',1} \xrightarrow{\bigvee_0} T_{\iota',1} = T_0^{\iota},$$
 (8.7)

$$T_1 = T_{\iota',0} \xrightarrow{\nabla_1} T_{\iota',\mathbf{0}} = T_1^{\iota}, \tag{8.8}$$

$$T_k = T_{\iota'',0,1} \xrightarrow{\lor k} T_{\iota'',0,1} = T_k^\iota$$
 для $k \neq 0, 1.$ (8.9)

8.5. Подстановки орбитных параллелепипедов. Согласно (8.1), (8.2), для последовательности $\iota = \langle 0, 1 \rangle$ весовым вектором будет

$$\mathbf{m}^{\iota} = (m_0^{\iota}, m_1^{\iota}, \dots, m_d^{\iota}) = (m_0 - m_1, m_1, \dots, m_d).$$

Поэтому

$$S^{j}(T_{0}) \xrightarrow{\nabla_{0}} S^{j}(T_{0}) = S^{j}(T_{0}^{\iota})$$

$$(8.10)$$

для $j = 0, \ldots, m_0^{\iota} - 1;$

$$S^{j}(T_{1} \cup (T_{0} + v_{0}^{\iota})) \xrightarrow{\nabla_{1}} S^{j}(T_{1}^{\iota})$$

$$(8.11)$$

для $j = 0, \ldots, m_1^{\iota} - 1;$

$$S^{j}(T_{k}) \xrightarrow{\nabla_{k}} S^{j}(T_{k}^{\iota})$$
 (8.12)

для $k \neq 0, 1$ и $j = 0, ..., m_k^{\iota} - 1.$

8.6. Выпрямление ∨-складок. Как и в (6.8), у нас снова появляется *∨-складка* – сдвоенный невыпуклый многогранник

$$T_1 \vee (T_0 + v_0^{\iota}) = T_1 \cup (T_0 + v_0^{\iota}).$$
(8.13)

Только теперь преобразование

$$T_1 \vee (T_0 + v_0^{\iota}) \xrightarrow{\vee_1} T_1^{\iota} \tag{8.14}$$

представляет собою обратную операцию выпрямления \lor -складки. При такой операции происходит поглощение всех m_1^ι параллелепипедов

$$S^{j}(T_{0} + v_{0}^{\iota}) = S^{j + m_{0}^{\iota}}(T_{0})$$
(8.15)

для $j = 0, \ldots, m_1^{\iota} - 1$ из начального разбиения \mathcal{T} . Образование \lor -складок (8.13) происходит посредством операции подтягивания параллелограммов типа T_0 .

§9. Инфляция разбиений

9.1. Геометрия подстановок параллелепипедов при инфляции. Выясним геометрический смысл инфляционных подстановок параллелепипедов (8.7)–(8.9).

Предложение 9.1. 1. Определенные в (8.7)–(8.9) инфляционные подстановки параллелепипедов

$$T_k \xrightarrow{\nabla} T_k^\iota$$

имеют следующий геометрический смысл.

0) $\nabla = \nabla_0 - moжdecmbethoe omoбражение, vol <math>T_0^i = vol T_0;$

1) $\bigtriangledown = \bigtriangledown_1^- - pacmягивающий косой сдвиг, vol <math>T_1^i > vol T_1;$

k) $\nabla = \nabla_k \ (k \neq 0, 1)$ – простой косой сдвиг, сохраняющий объем параллелепипедов, vol $T_k^{\iota} = \operatorname{vol} T_k$.

2. Отображение выпрямления \lor -складки $T_1 \lor (T_0 + v_0^\iota) \xrightarrow{\bigtriangledown} T_1^\iota$, определенное в (8.14), сохраняет объем

$$\operatorname{vol} T_1 + \operatorname{vol} T_0 = \operatorname{vol} T_1^\iota.$$

Доказательство. Эти утверждения мы получаем следуя доказательству предложения 6.1.

9.2. Подстановки и инфляция разбиений.

Теорема 9.1. Для всех допустимых (8.3) инфляций $\iota \in \Sigma^{\langle \rangle}$ существует отображение

$$\iota \to \bigtriangledown = \bigtriangledown(\iota)$$

в множество подстановок \bigtriangledown вида (8.10)–(8.12) такое, что определенное в (2.23) ядерное разбиение $\mathcal{T} = \mathcal{T}(v)$ тора $\mathbb{T}^d_{\mathcal{L}}$ для произвольной звезды v переводится

$$\mathcal{T} = \mathcal{T}(v) \xrightarrow{\bigvee} \mathcal{T}^{\iota} = \mathcal{T}(v^{\iota})$$
 (9.1)

подстановкой \bigtriangledown в инфляционное ядерное разбиение $\mathcal{T}^{\iota} = \mathcal{T}(v^{\iota})$, порождаемое инфляционной звездой v^{ι} (7.1).

Доказательство. Случай $\iota = \langle 0, 1 \rangle$. Используя явный вид, см. 8.5, весового вектора \mathbf{m}^{ι} , исходное разбиение (4.1)

$$\mathcal{T} = \operatorname{Orb}(T_0)^{m_0} \cup \operatorname{Orb}(T_1)^{m_1} \cup_{k \neq 0,1} \operatorname{Orb}(T_k)^{m_k}$$

разложим на следующие объединения орбит

$$\operatorname{Orb}(T_0)^{m_0^{\iota}} \cup_{k \neq 0,1} \operatorname{Orb}(T_k)^{m_k} \tag{9.2}$$

И

$$\operatorname{Orb}(T_1)^{m_1} \cup \operatorname{Orb}(T_0)^{m_0}_{m_0^{\iota}} = \operatorname{Orb}(T_1 \cup (T_0 + v_0^{\iota}))^{m_1^{\iota}}.$$
(9.3)

Если теперь в орбитах (9.2), (9.3) выполнить подстановки (8.10)–(8.12), то получим инфляционное ядерное разбиение $\mathcal{T}^{\iota} = \mathcal{T}(v^{\iota})$, которое в силу теоремы 8.1 и определения 2.1 состоит как раз из орбит (9.2), (9.3).

Случай произвольного $\iota \in \Sigma^{\langle \rangle}$. Вопрос сводится к рассмотренному выше $\iota = \langle 0, 1 \rangle$ аналогично (5.21).

Преобразование (9.1) из теоремы 9.1

$$\mathcal{T} \xrightarrow{\nabla} \bigtriangledown \mathcal{T} = \mathcal{T}^{\iota}$$

назвается инфляцией. Оно в некотором смысле (7.10), (7.12) обратно преобразованию дефляции (6.12). По предложению 9.1 отображения $T_k \xrightarrow{\bigtriangledown} T_k^{\sigma}$ ($k = 0, 1, \ldots, d$) или сохраняют объемы параллелепипедов, или увеличивают их объемы за счет выпрямления \lor -складок $T_1 \lor (T_0 + v_0^\iota) \xrightarrow{\bigtriangledown} T_1^\iota$ (8.14) с одновременным поглощением части параллелепипедов вида T_0 из исходного разбиения \mathcal{T} .

Рис. 9.1. (a) Исходное ядро T; (b) инфляция и подтягивание параллелограмма T_0 ; (c) ядро T^{ι} после инфляции $\iota = \langle 0, 1 \rangle$.

Рис. 9.2. Подтягивание параллелограммов типа T_0 и образование V-складок. Выпрямление V-складок и образование инфляционного разбиения $\nabla \mathcal{T} = \mathcal{T}^{\iota}$.

9.3. Инфляция двумерного ядерного разбиения. Снова рассматривается ядерное разбиение $\mathcal{T} = \mathcal{T}(v)$ размерности d = 2, изображенное на рис. 2.1.

В качестве допустимой (8.3) инфляции $\iota \in \Sigma^{\langle \rangle}$ выбрана $\iota = \langle 0, 1 \rangle$. Это возможно, так как звезда $v = \{v_0, v_1, v_2\}$ в разбиении $\mathcal{T} = \mathcal{T}(v)$ имеет лучи v_0, v_1, v_2 порядков $m_0 = 6$, $m_1 = 5$, $m_2 = 3$; и, следовательно, по определению (8.1) у инфляционной звезды $v^{\iota} = \{v_0^{\iota}, v_1^{\iota}, v_2^{\iota}\}$ будет положительный весовой вектор

$$\mathbf{m}^{\iota} = (m_0^{\iota}, m_1^{\iota}, m_2^{\iota}) = (1, 5, 3) > 0.$$
(9.4)

Для ядра $T=\mathrm{Kr}=\mathrm{Kr}(\mathcal{T})$ на рис. 9.1 показан процесс (8.14) выпрямления V-складки

$$T_1 \vee (T_0 + v_0^\iota) \xrightarrow{\nabla_1} T_1^\iota \tag{9.5}$$

при котором происходит поглощение всех $m_1^t = 5$ параллелограммов типа T_0 из начального разбиения \mathcal{T} (см. рис. 9.2). На первом шаге происходит подтягивание параллелограмма T_0 к ядерному параллелограмму $T_1 \subset T$ (см. рис. 9.1 (b)), затем выпрямление появившейся \vee -складки (см. рис. 9.1 (c)).

На рис. 9.2 (а) показан процесс подтягивания параллелограммов типа T_0 ко всем соседним параллелограммам типа T_1 и образования \lor -складок в исходном разбиении \mathcal{T} . Затем на рис. 9.2 (b) происходит выпрямление появившихся на первом этапе \lor -складок. После инфляции (9.5) в разбиении $\bigtriangledown \mathcal{T} = \mathcal{T}^{\iota}$, согласно (9.4), остается единственный $(m_0^{\iota} = 1)$ параллелограмм $T_0^{\iota} = T_0$ из ядра T^{ι} .

Список литературы

- N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane I, II. — Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series A 84 (1) (1981), 39–66.
- B. Grünbaum, G. C. Shephard, *Tilings and Patterns*. W. H. Freeman, San Francisco, 1987.
- M. Gardner, Penrose Tiles to Trapdoor Ciphers and the return of Dr. Matrix. W. H. Freeman and Co., New York, 1989.
- P. Arnoux, S. Ito, *Pisot Substitutions and Rauzy fractals.* Bulletin of the Belgian Mathematical Society 8, No. 2 (2001), 1–27.
- S. Ito, Diophantine approximations, substitutions, and fractals. In: N.P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics, vol. 1794. Springer, Berlin, Heidelberg, 2002.
- В. Г. Журавлев, А. В. Малеев, Симметрия подобия двумерного квазипериодического разбиения Рози. — Кристаллография 54 (2009), 400–409.
- S. Akiyama, J-Y. Lee, Determining quasicrystal structures on substitution tilings. — Philosophical Magazine A 91, No. 19 (2011), 2709–2717.
- В. Г. Журавлев, Дифференцирование индуцированных разбиений тора и многомерные приближения алгебраических чисел. — Зап. научн. семин. ПОМИ 445 (2016), 33–92.
- G. Rauzy, Nombres algebriques et substitutions. Bull. Soc. Math. France 110 (1982), 147–178.

- В. Г. Журавлев, Разбиения Рози и множества ограниченного остатка на торе. — Зап. научн. семин. ПОМИ 322 (2005), 83–106.
- A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry. – Acta Crystallogr. A66 (2010), 427–437.
- В. Г. Журавлев, Одномерные разбиения Фибоначчи. Изв. РАН, сер. матем. 71 (2007), No. 2, 89–122.
- В. Г. Журавлев, Универсальные ядерные разбиения. Зап. научн. семин. ПО-МИ 490 (2020), 49–93.
- 14. В. Г. Журавлев, Локальный алгоритм построения производных разбиений двумерного тора. — Зап. научн. семин. ПОМИ 479 (2019), 85–120.
- В. Г. Журавлев, Симплекс-ядерный алгоритм разложения в многомерные цепные дроби. — Современные проблемы матем., МИАН 299 (2017), 283–303.
- S. Ito, M. Ohtsuki, Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math. 17, No. 1 (1994), 33–58.
- P. Arnoux, V. Berthé, H. Ei, Sh. Ito, *Tilings, Quasicrystals, Discrete Planes, Generalized Substitutions, and Multidimensional Continued Fractions.* Maison de l'Informatique et des Mathématiques Discrètes (MIMD), Paris (2001), 59–78.
- 18. В. Г. Журавлев, Ядерные цепные дроби. Владимир, ВлГУ, 2019.
- В. Г. Журавлев, Перекладывающиеся торические развертки и множества ограниченного остатка. — Зап. научн. семин. ПОМИ **392** (2011), 95–145.
- В. Г. Журавлев, Многогранники ограниченного остатка. Математика и информатика, 1, К 75-летию со дня рождения Анатолия Алексеевича Карацубы, Совр. пробл. матем., 16, МИАН, Москва, 2012, 82–102.
- 21. Е. С. Федоров, Начала учения о фигурах, Москва, 1953.
- 22. Г. Ф. Вороной, Собрание сочинений, том 2. Киев, 1952.

Zhuravlev V. G. Inflation and deflation of the karyon tilings.

The substitution transformations of inflation and deflation are defined for the karyon tilings $\mathcal{T}(v)$ of multidimensional tori \mathbb{T}^d . Such tilings $\mathcal{T}(v)$ consist of parallelepipeds and are generated by its karyons. Stars v, sets of d + 1 vectors in the space \mathbb{R}^d , are frames of the karyons. The interest in karyon tilings is due to their connections with multidimensional continued fractions.

Владимирский государственный университет пр. Строителей, 11, 600024 Владимир, Россия *E-mail*: vzhuravlev@mail.ru

Поступило 31 мая 2023 года