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Abstract. The problem of bounded elementary generation is now
completely settled for all Chevalley groups of rank > 2 over arbitrary
Dedekind rings R of arithmetic type with the fraction field K, with
uniform bounds. Namely, for every reduced irreducible root system
Φ of rank > 2 there exists a uniform bound L = L(Φ) such that the
simply connected Chevalley groups G(Φ, R) have elementary width
6 L for all Dedekind rings of arithmetic type, [18]. It is natural to
ask, whether similar result holds for the relative elementary groups
E(Φ, R, I), where I E R. Mating the usual rewriting argument, al-
ready invoked in this context by Tavgen [28], with the universal
localisation by Stepanov [25], we can give a very short proof that
this is indeed the case. In other words, the width of E(Φ, R, I) in ele-
mentary conjugates zα(ξ, ζ) = x−α(ζ)xα(ξ)x−α(−ζ), where α ∈ Φ,
ξ ∈ I, ζ ∈ R, is indeed bounded by some constant M = M(Φ, R, I).
However, the resulting bounds M are not uniform, they depend on
the pair (R, I).

In the present paper we discuss the problem of bounded generation of
the relative elementary subgroups E(Φ, R, I) of Chevalley groups G(Φ, R),
where rk(Φ) > 2, whereas I E R is an ideal of a Dedekind ring R of
arithmetic type. We prove that these groups are boundedly generated in
terms of elementary conjugates.

§1. Absolute bounded elementary generation

Let X be a symmetric generating set of a group G, G = 〈X〉, X = X−1.
The length lX(g) of an element g ∈ G with respect to X is the length l
of a shortest expression of g as a product g = x1 . . . xl, where xi ∈ X. The
width wX(G) of G with respect to X is now defined as the supremum of
lengths lX(g) over all g ∈ G. In other words, wX(G) is the diameter of the
Cayley graph of G with respect to X. If wX(G) is finite, we say that G is
boundedly generated by X.

Key words and phrases: general linear group, congruence subgroups, elementary
subgroups, standard commutator formulae.
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8 N. A. VAVILOV

Ultimately, we are interested in Chevalley groups G = G(Φ, R) and
their elementary subgroups E(Φ, R), over various classes of rings, mostly
over Dedekind rings of arithmetic type (we refer to [24, 19, 36, 37], for
notation and further references pertaining to Chevalley groups, and to [3]
for the number theory background).

Recall that a Dedekind ring of arithmetic type R = OK,S is essentially a
[principal] localisation OK

[
1
s

]
of the ring of integers OK in a global fieldK,

which is a finite extension of the rational numbers F = Q in characteristic
0, or of the field of rational functions F = Fp(t) over the prime field Fp
in characteristic p > 0. The degree d = |K : F | is called the degree of
K. In characteristic 0 we call such rings number rings and in positive
characteristic – function rings.

One of the outstanding classical problems is to estimate the width
wΩ

(
E(Φ, R)

)
of the [absolute] elementary subgroup

E(Φ, R) =
〈
xα(ξ), α ∈ Φ, ξ ∈ R

〉
with respect to the elementary generators

Ω =
{
xα(ξ) | α ∈ Φ, ξ ∈ R

}
.

Usually, we will refer to this width as the elementary width of the
Chevalley group itself, and denote it by wE(G). [In the cases we con-
sider here, for the simply connected groups over arithmetic rings one has
Gsc(Φ, R) = Esc(Φ, R), see [3, 19], so that no confusion can possibly arise.]

Denote by EL(Φ, R) the subset (not necessarily a subgroup!) of E(Φ, R)
consisting of products of 6 L elementary generators. Then the elementary
width wE(G) is the smallest such L that E(Φ, R) = EL(Φ, R), any such
L for which this equality holds, is an upper bound for wE(G).

That the following result may hold was first suggested by Cooke and
Weinberger back in 1974, see [7]. As a result of about half a century effort
by many authors, including [“but not limited to”1] D. Carter, G. Keller,
E. Paige, O. Tavgen, D. Morris, A. Rapinchuk, B. Nica, A. Trost, B. Kun-
yavskii, E. Plotkin, A. Morgan, B. Sury, and the author, [5, 6, 28, 29, 21,
22, 20, 16, 32, 33, 17], we now have the following definitive answer, see
[15, 18] and references there.

Theorem A. Let Φ be a reduced irreducible root system of rank l > 2.
Then there exists a constant L = L(Φ), depending on Φ alone, such that

1“The President can recognise many countries on the map, including Canada and
Mexico”.
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for any Dedekind ring of arithmetic type R, any element in Gsc(Φ, R) is a
product of at most L elementary root unipotents,

Gsc(Φ, R) = EL(Φ, R).

Let us make a few observations concerning this result. What is truly
remarkable here, is that the upper bounds for the elementary width in this
theorem are:
• unconditional – the first partial proofs 50 years ago [7], and many

partial proofs thereafter depended on very strong arithmetic assumptions
such as [strong forms of] GRH = Generalised Riemann Hypothesis.
• uniform, in the sense that they do not depend on a specific R. Again

many partial proofs proposed over the last 40 years provided bounds that
depended on some arithmetic invariants of K, such as its discriminant, or,
at least, its degree.
• In the function case, these bounds are explicit. Like, for instance,

one has SL(3, R) = E44(n,R) or Sp(4, R) = Ep90(4, R), see [18], and one
could produce similar bounds for all types.
• In the number case, there are excellent explicit bounds when the

multiplicative group R∗ is infinite, from [20, 14, 16] one can derive that
SL(3, R) = E14(n,R) or Sp(4, R) = Ep17(4, R), etc.
• However, for the remaining case of the rings of integers in the imag-

inary quadratic fields, the only proof known today is a pure model the-
oretic existence proof, which cannot afford any specific value of L.

§2. Relative bounded elementary generation

Now, once we have this result, it is natural to try to generalise it to the
finite index subgroups of G(Φ, R). Let us recall the notation necessary to
state it more precisely.
• Let I ER be a non-zero ideal of R. It determines the [ring] reduction

homomorphism ρI : R −→ R/I. Since G(Φ, ) is a functor from rings to
groups, this homomorphism induces the [group] reduction homomorphism
ρI : G(Φ, R) −→ G(Φ, R/I). The kernel of the reduction homomorphism
ρI modulo I is called the principal congruence subgroup of level I
and is denoted by G(Φ, R, I). It is clear that R here is a pure decoration,
G(Φ, R, I) does not depend on R in which I is an ideal, and could be
denoted by G(Φ, I).
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However, with the elementary subgroup, and its generators it is not that
immediate. There are several natural candidates for the appellation of the
elementary subgroup of level I, here are two most2 obvious ones:

• Let, as above, I E R be a non-zero ideal of R. Then the true [ =
unrelative] elementary subgroup E(Φ, I) of level I is generated by all
elementary root unipotents of level I:

E(Φ, I) =
〈
xα(ξ), α ∈ Φ, ξ ∈ I

〉
with the obvious elementary generators

Ω(I) =
{
xα(ξ) | α ∈ Φ, ξ ∈ I

}
.

This group does not depend on the choice of R, but it has very little chance
to be normal in the absolute elementary group E(Φ, R).

• The relative elementary subgroup E(Φ, I) of level I is defined as
the normal closure of E(Φ, I) in E(Φ, R):

E(Φ, R, I) = E(Φ, I)E(Φ,R).

This group is usually strictly larger than E(Φ, I). In fact, it only coincides
with E(Φ, I) for idempotent ideals I = I2, and there are very few such
ideals in integral domains.

• In other words, E(Φ, R, I) is generated by elementary generators Ω(I)
as a normal subgroup of E(Φ, R). This means that as an obvious generating
set for E(Φ, R, I) one can take

Ξ(R, I) =
{
xα(ξ)h | α ∈ Φ, ξ ∈ I, h ∈ E(Φ, R)

}
and many early authors do exactly this. However, from our prospective in
general Ξ(R, I) is too large, to be considered a genuine analogue of the
elementary generators Ω of E(n,R).

2The larger ones coincide with E(Φ, R, I) in our context.
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• For α ∈ Φ, ξ ∈ I and ζ ∈ R define the elementary conjugate3

zα(ξ, ζ) as
zα(ξ, ζ) = x−α(ζ)xα(ξ)x−α(−ζ).

Next, we set

Θ(R, I) =
{
zα(ξ, ζ) | α ∈ Φ, ξ ∈ I, ζ ∈ R

}
.

Clearly, Ω(I) 6 Θ(R, I) 6 Ξ(R, I). A classical result, first stated in this
form by Leonid Vaserstein [35], but see also [24, 31], asserts that for rank
> 2 the relative elementary group E(Φ, R, I) is generated by Θ(R, I) as a
group.

Now it is natural to ask whether the width of E(Φ, I) with respect to
Ω(I), and the width of E(Φ, R, I) with respect to Θ(R, I) or Ξ(R, I) are
bounded. As above, to state our results precisely, we introduce the follow-
ing notation. For a natural number L we denote by EL(Φ, I) the subset
of E(Φ, I) consisting of all products of 6 L elements of Ω(I). Similarly,
EL(Φ, R, I) denotes the subset of E(Φ, R, I) consisting of all products
of 6 L elements of Θ(R, I). Finally, ẼL(Φ, R, I) denotes the subset of
E(Φ, R, I) consisting of all products of 6 L elements of Ξ(R, I).

In the number case some results in this direction were proven for
E(n,R, I) in terms of Ξ(R, I) by Carter and Keller [6], and for Cheval-
ley groups E(Φ, R, I) in terms of Ξ(R, I) and E(Φ, I) in terms of Ω(I)
by Tavgen [28, 30]. Recently, Sinchuk, Smolensky [23] and Gvozdevsky
[8] made first steps towards replacing Ξ(R, I) by Θ(R, I) and obtaining
bounds uniform with respect to I.

Here we observe that the usual Schreier’s rewriting procedure, first ap-
plied in this context by Tavgen, see [28], and especially [30], allows to
derive from Theorem A the following result in this direction valid for all
Chevalley groups, and all Dedekind rings of arithmetic type. The proof
will be given in the last section.

3We use this name in our “yoga of conjugation” and “yoga of commutators” pa-
pers [10, 9, 11, 12, 13], by analogy with the elementary commutators yα(ξ, ζ) =

[xα(ξ), x−α(ζ)]. Here it is in conflict with the colloquial name for the elements of
Ξ(R, I) which are also oftentimes called “elementary conjugates” by other authors. Oth-
erwise, zα(ξ, ζ) are called “Tits–Vaserstein generators”. “Stein–Tits–Vaserstein genera-
tors” would be even more appropriate historically, but far too long for such a basic
notion. As a compromise we could propose the name STV-generators, by analogy
with “ESD-transvections”.
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Theorem B. Let Φ be a reduced irreducible root system of rank l > 2, R be
a Dedekind ring of arithmetic type, and IER be an ideal of R. Then there
exists a constant M = M(Φ, R, I) such that any element in Esc(Φ, R, I) is
a product of at most M elementary conjugates,

Esc(Φ, R, I) = EM (Φ, R, I).

This result seems to be conclusive, but it is not the ultimate ambition
of the project we are currently working on. Namely:
• The bounds in this result are not uniform, and at that not just with

respect to R, but even with respect to I. [The latter dependence can be
easily lifted by model theoretic methods, the former one much less so.]
• The bounds in this result are not explicit. [We believe though the

non-uniform bounds can be made explicit even with this naive approach
by somewhat more work.]

§3. Width in elementary conjugates

What is pleasing, though, bounded relative generation with respect to a
larger set of generators, Ξ(R, I), is not much4 different from the bounded
generation with respect to the elementary conjugates Θ(R, I). In other
words, up to a constant that can be explicitly calculated – which we do
not attempt here! – bounded generation in arbitrary elementary conjugates
xα(ξ)h, h ∈ E(Φ, I), is tantamount to the bounded generation in the
elementary conjugates proper.

Here, I evade any work by invoking an overriding result by Alexei
Stepanov [25] on the commutator width for arbitrary commutative rings.
This result is based on his powerful universal localisation method and
is an absolute overkill. Actually, in our setting, for Dedekind rings, any of
the previous generation results on the elementary width of commutators
would do, valid for finite-dimensional rings [27, 9], that can be proven via
more familiar methods such as localisation-completion [1, 10], or rel-
ative localisation [11, 12], see [9, 13] for the context and many further
references.

The following result is a special case of [25, Theorem 9.1].

Lemma 1. Let Φ be a reduced irreducible root system of rank l > 2. Then
there exists a bound P = P (Φ) such that for an arbitrary commutative ring

4I am even tempted to say not any different, only that there are scores of pesky
technical details to take care of, before you can produce sharp bounds in all cases.
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R and any ideal I ER, any g ∈ G(Φ, R) and any h ∈ E(Φ, R, I) one has

[g, h] ∈ EP (Φ, R, I).

This is, of course, terribly much more, than we need here. In this result
g is not a product of elementaries at all (in our context it is a bounded such
product), while h is a product of elementary conjugates, but its length is
not specified (in our context this length is 1).

In [25] the constant P is not specified, but if you backtrace the proof,
it can be expressed in terms of partitions of 1 in the affine algebra Z[G] of
the Demazure–Chevalley group scheme G(Φ, ), etc. Eventually, P can be
bounded by some power of the order of the Weyl group W (Φ), etc. (but,
to the best of my knowledge, no such explicit estimates are published).

Since hg = g−1hg = [g−1, h]h−1, we get the following corollary, where
the constant Q should be much smaller than the constant P described
above.

Lemma 2. Let Φ be a reduced irreducible root system of rank l > 2, R
be an arbitrary commutative ring, and I ER be an ideal of R. Then there
exists a bound Q = Q(Φ) such that

xα(ξ)g ∈ EQ(Φ, R, I), for all α ∈ Φ, ξ ∈ I, g ∈ G(Φ, R),

which implies, in particular, that for any M one has

ẼM (Φ, R, I) ⊆ EMQ(Φ, R, I).

Remark 1. Actually, here we are only interested in the elementary con-
jugates xα(ξ)h, where h ∈ E(Φ, R). Assuming E(Φ, R) is boundedly ele-
mentarily generated with bound L, we could in principle give an explicit
bound Q = Q(Φ, L) by tracing the proof of the [Stein]–Tits–Vaserstein
theorem [24, 31, 35]. Detailed proofs of this theorem in various situations
were performed in many places, including [31, 38, 35, 2, 38, 13].

Since in our case the elementary width of the absolute elementary group
E(Φ, R) is bounded by L, one could estimate Q by induction. Amazingly,
none of the above displays explicit width bounds in the general case. The
only exception known to me is the foundational paper5 by Tony Bak [1],
where he specifies the [worst case] bound Q = 14L for SL(n,R), n > 3.
Later some estimates for other groups were indicated in a similar situation
in [27].

5At that time, I wondered, why would someone be interested in providing such
details: “The stone the builders rejected has become the corner stone”.
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Remark 2. Alternatively, I could refer to our papers with Zuhong Zhang,
see [39, 40] and references there, where we study the generators of the
groups

[E(Φ, I), E(Φ, J)] = [E(Φ, R, I), E(Φ, R, J)],

for two ideals I, JER, with explicit bounds in terms of elementary commu-
tators. Plugging inside J = R we get bounds for Q in Lemma 2. However,
we cannot directly quote these results here, since in those papers we im-
posed some (minor) additional restrictions on R, such as the absence of
the factor field F2 of two elements for Φ = C2 and G2, etc., and it would
be silly to tender any such proviso in Theorem B.
Remark 3. Finally, polynomial expressions of the conjugates xα(ξ)g, g ∈
G(Φ, R), form the gist of the decomposition of unipotents developed
by Alexei Stepanov and myself, see [26], etc. However, the details of proofs
are published not in all cases, and in the relative case the bounds M(Φ)
are only explicitly calculated for SL(n,R), see [4]. In our joint paper with
Kaisar Tulenbaev [34] we follow this trail and get sensible explicit bounds
in Theorem B in this case.

§4. Proof of Theorem B: rewriting argument

The following argument closely follows the proof of [28, Proposition 7].

Proof. If I = 0 there is nothing to prove. Thus, in the sequel we may
assume that I 6= 0, so that I has finite index in R and we can choose a
complete residue system Y = Y (I) modulo I. By the very definition Y is
finite, |Y | = |R/I|. [If we are interested in getting explicit bounds, some-
what more caution in the choice of Y is advised, but for a nonconstructive
proof any Y will do.] Thus, every ξ ∈ R can be uniquely written in the
form ξ = η + ζ, for some η ∈ I and ζ ∈ Y .
• Take an arbitrary element g ∈ E(Φ, R, I). By Theorem A it can be

expressed as
g = xβ1

(ξ1) . . . xβL
(ξL),

for appropriate roots β1, . . . , βL ∈ Φ, and appropriate parameters ξ1,
. . . , ξL ∈ R. We can now express each ξi in the above form as ξi = ηi + ζi,
for unique ηi ∈ I and ζi ∈ Y . This means that

g = xβ1
(η1 + ζ1) . . . xβL

(ηL + ζL) = xβ1
(η1)xβ1

(ζ1) . . . xβL
(ηL)xβL

(ζL),

where xβi
(ηi) ∈ E(Φ, R, I). For brevity, we denote yi = xβi

(ηi) and zi =
xβi

(ζi).
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Now, we can apply the usual Abel trick and rewrite g in the form

g = y1

(
z1y2z

−1
1

)(
z1z2y3z

−1
2 z−1

1

)(
z1z2z3y4z

−1
3 z−1

2 z−1
1

)
· . . .

·
(
z1 . . . zL−1yLz

−1
L−1 . . . z

−1
1

)
· z1 . . . zL.

• Clearly, each of the first L factors belongs to Ξ(R, I). By Lemma 2 the
length of each such factor is 6 Q so that the total length of their product
is 6 LQ.
• Thus, we can now concentrate on the last factor z = z1 . . . zL. By the

very definition z ∈ Z, where

Z =
{
xβ1(ζ1) . . . xβL

(ζL) | ζ1, . . . , ζL ∈ Y
}
⊆ EL(Φ, R).

Since there are exactly |Y | = |R/I| options for ζi, i = 1, . . . , L, it follows
that Z is finite, viz. |Z| = |R/I|L.

On the other hand, by assumption both g and the first L factors on the
right hand side all belong to E(Φ, R, I), so that one has z ∈ E(Φ, R, I) as
well.

Now setting

H = max
(
lΘ(R,I)(z)

)
, where z ∈ Z ∩ E(Φ, R, I),

we see that the last factor in the above expression of g belongs to EH(Φ, R,I).
• Combining this with the above, we can conclude that

g ∈ ELQ+H(Φ, R, I),

as claimed. This finishes the proof of Theorem B. �

Remark 4. Obviously, H in the above construction depends on the size
of R/I and maybe on the specific choice of Y . Pavel Gvozdevsky gives
essentially the same proof for SL(n,R, I) in [8, Proposition 5.1] and com-
ments that “this proof does not allow to obtain any explicit estimate”.
We believe this might be an exaggeration. First of all, the requirement
that z ∈ E(Φ, R, I) imposes very very strong restrictions on the subfactors
z1, . . . , zL. Only a tiny fraction of the products xβ1

(ζ1) . . . xβL
(ζL) actually

fall into E(Φ, R, I). We expect that for a smart choice of Y it might be
possible to backtrace the exact structure of z and to obtain a bound on
H that is explicitly expressed in terms of |R/I| and L alone. Surely that
would involve a lot of combinatorial fiddling with the Chevalley commu-
tator formula and the like.
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In [34] we plan to come up with explicit realistic bounds for the ele-
mentary width of SL(n,R, I) based on [26, 4], and also, using the ideas
of [6, 21] lift the dependence on I in the number case (we could not get
rid of the dependence on the degree of K, though). Eventually, with some
diligence one should be able to produce such similar bounds also for other
groups.

In July–September 2019 we started to specifically discuss bounded gen-
eration in the arithmetic case with Boris Kunyavskii and Eugene Plotkin.
I thank them for our sparkling cooperation over the last four years, which
eventually lead to [17, 18] and, with crucial contributions by Andrei Lavre-
nov, to [15], with a lot of further items currently underway. I am extremely
grateful to Alexei Stepanov for his savvy advice on the proof of Theorem
B which lead to a much shorter existence proof than the one I originally
had in mind. Finally, I thank Kaisar Tulenbaev, conversations with whom
during the “Algebraic Groups: White Nights Season III” lead to the present
paper.
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