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Abstract. We discuss determinant formulas for the partition func-
tion of the six-vertex model with domain wall boundary conditions,
which are parametrized by an arbitrary basis of polynomials. In this
note we show that our recent result on this problem admits a one-
parameter extension.

§1. Introduction

The six-vertex model with domain wall boundary conditions was intro-
duced by Korepin in [1] where he established a list of conditions which
uniquely fix the partition function as function of external spectral param-
eters. In [2] Izergin showed that these conditions can be solved in terms of
a determinant. The method was exposed in detail in [3].

Subsequently, alternative determinant representations were found. In
[4, 5], Kostov showed that in the rational case a determinant formula
with a different structure is valid. A generalization of this formula to the
trigonometric case was given by Foda and Wheeler in [6], who also showed
that these representations are equivalent to the original result of Izergin–
Korepin.

In a recent paper [7] Minin and the present authors showed that the orig-
inal approach of Korepin and Izergin can be slightly modified by replacing
the Korepin’s recursion relation with a system of algebraic equations with
respect to one (out of two) sets of spectral parameters. This makes possible
to construct determinant representations for the model on an N ×N lat-
tice that depend on an arbitrary basis of polynomials of degree N −1. The
basis can be defined in terms of the remaining set of spectral parameters.
For example, choosing the basis of Lagrange interpolation polynomials one
obtains the original Izergin’s determinant. The monomial basis leads to the
Kostov and Foda–Wheeler representations.

Key words and phrases: Bethe ansatz, vertex models, domain wall boundary condi-
tions, determinant representations.
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In the present paper we show that the whole construction involves poly-
nomials of degree N rather than N − 1 that provides a one-parameter
extension of our previous result.

We organize our paper as follows. In Sec. 2 we recall definition of the six-
vertex model with domain wall boundary conditions. In Sec. 3 we list the
properties of the partition function involving the set of algebraic equation
which fix the partition function in unique way. In Sec. 4 we state our
main result (see Thm. 1) which provides a determinant formula involving
polynomials of degree N . In Sec. 5 we discuss particular cases of this
formula.

§2. Izergin–Korepin partition function

We consider the six-vertex model on an N ×N square lattice obtained
by intersection of N vertical and N horizontal lines. Each vertical and hor-
izontal line carries a spectral parameter: parameters λj , j = 1, . . . , N , are
assigned to the vertical lines (enumerated from right to left) and param-
eters νk, k = 1, . . . , N , are assigned to the horizontal lines (enumerated
from top to bottom). Furthermore, with each vertical and horizontal line
a vector space C2 is associated, with basis vectors

|↑〉 ≡
(

1
0

)
, |↓〉 ≡

(
0
1

)
.

We denote by H the total vector space of the N horizontal lines (H =
(C2)⊗N ) and by V the same for the N vertical ones (V = (C2)⊗N ). The
vectors |⇑H〉, |⇑V〉 = |↑〉⊗N and |⇓H〉, |⇓V〉 = |↓〉⊗N play an important role
in the model; the subscripts indicate to which space, H or V, these vectors
correspond.

Next we introduce an L-operator – a matrix of the Boltzmann weights.
The operator Ljk(λj , νk) correspond to the vertex obtained by intersection
of the jth horizontal and kth vertical lines; it acts non-trivially only in the
two vector spaces associated to these lines and identically in the remaining
C2 vector spaces. It has the form

Ljk(λj , νk) = a(λj , νk)
1 + σzj τ

z
k

2
+ b(λj , νk)

1− σzj τzk
2

+ c(λj , νk)(σ+
j τ
−
k + σ−j τ

+
k ),
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where

a(λj , νk) = sin γ(λj − νk + 1),

b(λj , νk) = sin γ(λj − νk),

c(λj , νk) = sin γ,

(2.1)

and σ±,zj (respectively, τ±,zk ) stand for operators acting as the Pauli spin
matrices in the jth copy of C in H (kth copy of C in V).

The partition function of the six-vertex model with domain wall bound-
ary conditions can be defined as

ZN ({λ}, {ν}) = 〈⇓H⇑V|

 N∏
j,k=1

Ljk(λj , νk)

 |⇑H⇓V〉. (2.2)

Here, {λ} and {ν} stand for the ordered sets {λ} ≡ λ1, . . . , λN and {ν} ≡
ν1, . . . , νN . The vectors are defined as |⇑H⇓V〉 ≡ |⇑H〉 ⊗ |⇓V〉 and 〈⇓H⇑V
| ≡ |⇓H⇑V〉T where T denotes the matrix transposition. The product in
(2.2) is doubly ordered from right to left as each of the indices increases
(recall that we label the lines from right to left and from top to bottom).

The celebrated determinant formula due to Izergin [2] expresses the
partition function (2.2) via the determinant of an N ×N matrix:

ZN ({λ}, {ν}) = (−1)
N(N−1)

2

N∏
j,k=1

a(λj , νk)b(λj , νk)

vN ({λ}) vN ({ν})

× det

[
c(λj , νk)

a(λj , νk)b(λj , νk)

]
j,k=1,...,N

. (2.3)

Here, vN ({λ}) and vN ({ν}) denote the Vandermonde factors,

vN ({λ}) =
∏

16j<k6N

sin γ(λk − λj).

The rational case corresponds to γ → 0 limit under an overall rescaling of
the weights.

As we show below, representation (2.3) is a particular case of some
determinant formula involving polynomials of degree N .
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§3. Defining properties of the partition function

An important role in our construction is played by a polynomial depen-
dence of the partition function on the inhomogeneity parameters. In the
trigonometric case it can be introduced by the “change of variables”

xj = q2λj , yk = q2νk , q = eiγ , (3.1)

so that the Boltzmann weights (2.1) become

a(λj , νk) =
qxj − ykq−1

2i (xjyk)1/2
,

b(λj , νk) =
xj − yk

2i (xjyk)1/2
,

c(λj , νk) =
q − q−1

2i
.

It can be shown (see discussion in [7, Sec. 5]) that the partition function
of the six-vertex model with DWBC has the form

ZN ({λ}; {ν}) =
Z̃N ({x}; {y})

(2i)N2
N∏
j=1

(xjyj)(N−1)/2
, (3.2)

where Z̃N ({x}; {y}) is a polynomial in the variables {x} ≡ x1, . . . , xN and
{y} ≡ y1, . . . , yN .

The partition function ZN ({λ}; {ν}) has the following properties, which
can be established due to the Quantum Inverse Scatting method [8, 9]; for
details and the proof, see [7, Secs. 2 and 5].

Proposition 1. The partition function Z̃N ({x}; {y}) as a function of the
variables x1, . . . , xN has the following properties:

(1) It is a symmetric polynomial in x1, . . . , xN ;
(2) The degree in each of the variables x1, . . . , xN equals N − 1;
(3) For each pair of variables, say x1, x2, one has

Z̃N (yj , q
−2yj , x3, . . . , xN ; {y}) = 0, j = 1, . . . , N ; (3.3)

(4) As {x} = {y}, the following holds:

Z̃N ({y}; {y}) = (q − q−1)N
N∏

j,k=1
j 6=k

(qyj − q−1yk). (3.4)
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The system of equations (3.3), (3.4) has a unique solution.

Proposition 2. Let PN ({x}) be a polynomial in the variables x1, . . . , xN ,
depending on the parameters {y} = y1, . . . , yN , that has the following prop-
erties:

(1) It is a symmetric polynomial in x1, . . . , xN ;
(2) The degree in each of the variables x1, . . . , xN equals N − 1;
(3) For each pair of variables, say x1, x2, one has

PN (yj , q
−2yj , x3, . . . , xN ) = 0, j = 1, . . . , N ;

(4) As {x} = {y}, the following holds:

PN ({y}) = (q − q−1)N
N∏

j,k=1
j 6=k

(qyj − q−1yk).

Then, PN ({x}) = Z̃N ({x}; {y}).

The proof can be found in [7], see Proposition 5.

§4. Determinant representation

We begin with defining the polynomials that will enter the determinant
representation for the partition function.

Consider linearly independent polynomials of degree N ,

pk(x) =

N∑
i=0

pk,ix
i, k = 1, . . . , N,

such that

pk,N = αpk,0, k = 1, . . . , N, (4.1)

where α is some parameter. To emphasize the dependence on α, we will
write pk(x;α) instead of pk(x).

If α = 0, then the polynomials pk(x; 0) are of degree N − 1. We also
consider the case of α = ∞ assuming that pk(x;∞) = x p̃k(x), where the
polynomials p̃k(x) are also of degree N − 1.

The following simple result is useful below.
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Lemma 1. If α 6=∞, then

det[pk(xj ;α)]j,k=1,...,N = det[pk,j−1]j,k=1,...,N

×

1 + (−1)N−1α

N∏
j=1

xj

 ∏
16j<k6N

(xk − xj). (4.2)

If α =∞, then

det[pk(xj ;α)]j,k=1,...,N = det[pk,j ]j,k=1,...,N

×
N∏
j=1

xj
∏

16j<k6N

(xk − xj). (4.3)

Proof. Using (4.1), we can write

pk(x;α) =

N∑
i=1

pk,i−1
(
xi−1 + αδi,1x

N
)
.

Therefore,

det[pk(xj ;α)]j,k=1,...,N = det [pk,i−1]k,i=1,...,N

× det
[
xi−1j + αδi,1x

N
j

]
i,j=1,...,N

.

For the second factor we get

det
[
xi−1j + αδi,1x

N
j

]
i,j=1,...,N

= det
[
xi−1j

]
i,j=1,...,N

+ α(−1)N−1 det
[
xij
]
i,j=1,...,N

=

1 + (−1)N−1α

N∏
j=1

xj

 ∏
16j<k6N

(xk − xj),

and formula (4.2) follows.
Formula (4.3) is straightforward from pk(x;∞) = xp̃k(x). �

Now we are ready to present our main formula.
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Theorem 1. If α 6= ∞, then the partition function Z̃N ({x}; {y}) can be
written in the form

Z̃N ({x}; {y}) =

1 + (−1)N−1α
N∏
j=1

xj

1 + (−1)N−1α
N∏
k=1

yk

×
det
[
pk(xj ;α)Φ(xj)− pk(q2xj ;α)Φ(q−2xj)

]
j,k=1,...,N(

N∏
j=1

xj

)
det[pk(xj ;α)]j,k=1,...,N

, (4.4)

where the function Φ(x) is

Φ(x) =

N∏
k=1

(
qx− q−1yk

)
(4.5)

and pk(x;α), k = 1, . . . , N , are linearly independent polynomials in x of
degree N such that their highest and lowest coefficients satisfy the condition
(4.1). If α =∞, then

Z̃N ({x}; {y})=
det
[
pk(xj ;∞)Φ(xj)− pk(q2xj ;∞)Φ(q−2xj)

]
j,k=1,...,N(

N∏
j=1

yj

)
det[pk(xj ;∞)]j,k=1,...,N

.

Proof. The proof is given by verifying that the expression in the right-
hand side of (4.4) obeys properties (1)–(4) stated in Proposition 1. �

§5. Particular cases

We first consider two special cases where the polynomials pk(x;α) turn
into polynomials of degree N − 1. The first one is α = 0 and (4.4) readily
gives

Z̃N ({x}; {y})=
det
[
pk(xj ; 0)Φ(xj)− pk(q2xj ; 0)Φ(q−2xj)

]
j,k=1,...,N(

N∏
j=1

xj

)
det[pk(xj ; 0)]j,k=1,...,N

.

(5.1)
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The second case is α = ∞ in which pk(x;∞) = x p̃k(x) where p̃k(x) are
polynomials of degree N − 1. Then,

Z̃N ({x}; {y}) =
det
[
p̃k(xj)Φ(xj)− q2p̃k(q2xj)Φ(q−2xj)

]
j,k=1,...,N(

N∏
k=1

yk

)
det[p̃k(xj)]j,k=1,...,N

.

(5.2)
Representations (5.1) and (5.2) have been given in [7], see formulas (5.10)
and (5.9) therein, respectively. Note the functions ã(x) and d̃(x) of [7]
are related to the function Φ(x) used here as ã(x) = Φ(x) and d̃(x) =
qNΦ(q−2x).

Next we discuss possible explicit expressions for the polynomials which
lead to the original determinant formula (2.3). To this end, it is useful to
recall that as it has been shown in [7], both (5.1) and (5.2) turn into the
required form when the involved polynomials of degree N − 1 are chosen
as Lagrange interpolating polynomials,

pk(x, 0) = p̃k(x) =

N∏
j=1
j 6=k

(x− yj), k = 1, . . . , N. (5.3)

For an arbitrary α the following polynomials play a similar role:

pk(x;α) =
1

Ck(α)

1 + (−1)N−1α

 N∏
j=1
j 6=k

yj

x


N∏
j=1
j 6=k

(x− yj). (5.4)

Here, Ck(α) is a normalization constant which can be chosen to have a
suitable α → ∞ limit for the polynomials. For example, to reproduce
(5.3),

Ck(α) = 1 + (−1)N−1α

N∏
j=1
j 6=k

yj .

Below we also discuss two other choices of polynomials pk(x;α) which are
not Lagrange interpolation polynomials but which also lead to (2.3).

Let us now show that the determinant representation in (4.4) with
the polynomials pk(x;α) defined in (5.4) reproduces formula (2.3). We
first consider the determinant in the denominator in (4.4). The result is
given by (4.2) where we have to compute a value of the factor given by
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det[pk,j−1]j,k=1,...,N . To minimize calculations, we use fact that this factor
is independent of the variables x1, . . . , xN and hence it can found, e.g.,
by evaluating both sides of (4.2) at {x} = {y}. Setting xj = yj , for the
polynomials (5.4) one gets

pk(yj ;α) = δjk

1 + (−1)N−1α
N∏
j=1

yj

Ck(α)

N∏
j=1
j 6=k

(yk − yj).

Hence, the left-hand side of (4.2) at {x} = {y} reads

det[pk(yj ;α)]j,k=1,...,N =

(
1 + (−1)N−1α

N∏
j=1

yj

)N
N∏
k=1

Ck(α)

N∏
j,k=1
j 6=k

(yk − yj).

Evaluating the right-hand side of (4.2) at {x} = {y}, we find that relation
(4.2) holds provided

det[pk,j−1]j,k=1,...,N =

(
1 + (−1)N−1α

N∏
j=1

yj

)N−1
N∏
k=1

Ck(α)

∏
16j<k6N

(yj − yk).

Consider now the determinant in the numerator of (4.4). Using the function
Φ(x), see (4.5), we can rewrite (5.4) as follows:

pk(x;α) =
1

Ck(α)

(
1− αq

NΦ(0)

yk
x

)
qNΦ(q−2x)

x− yk
.

Using this formula, for the entries of the matrix standing in the determi-
nant, we find

pk(xj ;α)Φ(xj)− pk(q2xj ;α)Φ(q−2xj) =
qNΦ(xj)Φ(q−2xj)

Ck(α)

×
{

1

xj − yk
− 1

q2xj − yk
− αq

NΦ(0)

yk

(
xj

xj − yk
− q2xj
q2xj − yk

)}
=
qNΦ(xj)Φ(q−2xj)

Ck(α)

(
1− αqNΦ(0)

) (q2 − 1)xj
(xj − yk)(q2xj − yk)

.
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As a result, plugging all the ingredients into (4.4), we obtain

Z̃N ({x}; {y}) =

qN
2
N∏
j=1

Φ(xj)Φ(q−2xj)∏
16j<k6N

(xk − xj)(yj − yk)

× det

[
(q2 − 1)

(xj − yk)(q2xj − yk)

]
j,k=1,...,N

. (5.5)

Formula (2.3) now readily follows from (5.5), via change of variables (3.1)
and relation (3.2).

Let us now discuss other cases of the polynomials pk(x;α) which lead to
(2.3). We find that for an arbitrary α there exist at least two more possible
choices. The first choice is given by the polynomials

pk(x;α) =

N∏
j=1
j 6=k

(x− yj) + (−1)N−1α

 N∏
j=1
j 6=k

yj

xN , (5.6)

and the second choice is given by the polynomials

pk(x;α) = x

N∏
j=1
j 6=k

(x− yj) +
(−1)N−1

α

N∏
j=1
j 6=k

yj . (5.7)

Calculations that yield (2.3) are essentially the same for both cases. We
will sketch the calculations for the polynomials (5.6).

We start with rewriting (5.6) in terms of the function Φ(x) defined
in (4.5),

pk(x;α) = qN
Φ(q−2x)

x− yk
− αqN Φ(0)

yk
xN .

The entries of the matrix standing the determinant in the numerator in
(4.4) then read

pk(xj ;α)Φ(xj)− pk(q2xj ;α)Φ(q−2xj) = qNΦ(xj)Φ(q−2xj)

×

{
1

xj − yk
− 1

q2xj − yk
− αΦ(0)

yk

[
xNj

Φ(q−2xj)
−
q2NxNj
Φ(xj)

]}
. (5.8)

Clearly, the factor qNΦ(xj)Φ(q−2xj) can be moved out of the determinant,
so we need to focus on the expression standing in the braces. For the first
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two terms we have

1

xj − yk
− 1

q2xj − yk
=

(q2 − 1)xj
(xj − yk)(q2xj − yk)

, (5.9)

which is fact what we need to reproduce (2.3), via (3.2) and under change
of the variables (3.1). To treat the term proportional to α, consider the
identity

N∏
l=1

1

x− yl
=

N∑
l=1

 N∏
i=1
i 6=l

1

yl − yi

 1

x− yl
.

Making here the change x 7→ x−1, yl 7→ y−1l , we get

Φ(0)xN

Φ(q−2x)
=

N∑
l=1

 N∏
i=1
i 6=l

yiyl
yi − yl

 xyl
yl − x

. (5.10)

We also have
Φ(0)q2NxN

Φ(x)
=

Φ(0)xN

Φ(q−2x)

∣∣∣∣
x 7→q2x

,

and hence

Φ(0)xN

Φ(q−2x)
− Φ(0)q2NxN

Φ(x)
=

N∑
l=1

 N∏
i=1
i6=l

yiyl
yi − yl

 (1− q2)y2l x

(yl − x)(yl − q2x)
. (5.11)

Comparing (5.11) with (5.9), and denoting the expression in (5.9) by ϕjk,
we conclude that the determinant of the expression standing in the braces
in (5.8) reads

det

ϕjk + α

N∑
l=1

ϕjl

 N∏
i=1
i6=l

yiyl
yi − yl

 y2l
yk


j,k=1,...,N

=

1 + α

N∑
l=1

 N∏
i=1
i 6=l

yiyl
yi − yl

 yl

det [ϕjk]j,k=1,...,N . (5.12)
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Taking the limit x→∞ in (5.10) yields

N∑
l=1

 N∏
i=1
i6=l

yiyl
yi − yl

 yl = −qNΦ(0) = (−1)N−1
N∏
k=1

yk.

Plugging this in (5.12), in view of (4.4) and (3.2), we thus arrive at (2.3)
with our choice of the polynomials (5.6).

Note that the polynomials (5.6) and (5.7) admit the limits α → 0 and
α → ∞, respectively. The limiting polynomials in both cases are the La-
grange interpolating polynomials (5.3).
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