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Abstract. The scalar product of the state-vectors of the exactly
solvable five-vertex model with the fixed boundary conditions is con-
sidered. Various relations including those in terms of complete sym-
metric polynomials are derived. The limiting forms of the obtained
answers may be interpreted in terms of random walks on a square
grid.

§1. Introduction

The vertex models with fixed boundary conditions of two-dimensional
statistical mechanics play an important role in contemporary studies of
integrable systems [1–8]. There are intriguing connections of these models
with the problems of enumerative combinatorics [9–12], the symmetric
functions [13], and the limit shapes phenomena [14–17].

The five-vertex model is a particular case of the six-vertex model [18],
in which one of the vertices is frozen out. The study of the model has been
relevant for many years [19,20].

The Quantum Inverse Scattering Method (QISM) [21,22] allows to ex-
press the scalar product of the state-vectors of the five-vertex model in the
determinantal form [5] and reveals its close connection with Grothendieck
polynomials [23,24].

In the present paper we study the limiting forms of the scalar product
of the state-vectors. The determinantal representation of the scalar prod-
uct is obtained under off-shell parameterization and the special limits are
considered.

§2. Spin description of five-vertex model

Consider the five-vertex model on a lattice consisting of 2N−1 columns
withM square cells in each. The five-vertex model describes the statistical
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physics of configurations of arrows on edges connecting neighbouring sites
of the lattice. There are two “incoming” and two “outgoing” arrows at each
site. Every admissible arrow configuration at a site constitutes a vertex
characterized by a statistical weight wp, p = 2, 3, . . . , 6 (Fig. 1). Provided
that the edges with arrows directed “upwards” or “rightwards” are replaced
by thick segments (and the other edges by thin segments), one gets an
alternative description of arrow configurations in terms of nests of lattice
paths. Since each edge of the lattice admits only two states (either a thick
line or a thin line), there is a one-to-one correspondence between admissible
configurations of arrows on the lattice and nests of lattice paths.

Figure 1. Five allowed vertices represented by arrows or lines.

Allowed arrow configurations depend on the imposed boundary condi-
tions which specify the direction of the arrows on the lattice boundary.
The fixed boundary condition implies that the boundary arrows on the top
and bottom of N vertical lines (counting from the left) are pointing ‘in-
wards’, and the arrows on the top and bottom of N last ones are pointing
‘outwards’. All arrows on the left and right boundaries of the lattice are
pointing to the left.

To enumerate admissible configurations of arrows it is more convenient
to use description in terms of nests of lattice paths. Each path connects one
ofN bottom left sites with a top right one, and it always is directed towards
the east or the north. The paths are self-avoiding since they cannot touch
one another. The length of any path is N +M , and N paths constitute a
nest of lattice paths (a typical nest is shown in Fig. 2).

The spin description implies that a local space isomorphic to C2 is
associated with each vertical and horizontal edge of the lattice so that spin
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Figure 2. Admissible nest of lattice paths with the fixed
boundary conditions.

“up” and “down” states constitute a basis in this space:
(

1
0

)
and

(
0
1

)
,

respectively. The spin “up”/ “down” state on lth vertical edge is denoted by

arrows directed “upwards” or “downwards”:
(

1
0

)
l

≡ | ↑〉l and
(

0
1

)
l

≡

| ↓〉l. The spin “up”/ “down” state on ith horizontal edge corresponds to

the horizontal arrow pointing to the left or to the right:
(

1
0

)
i

≡ | ←〉i

or
(

0
1

)
i

≡ | →〉i. The auxiliary space V is the tensor product of all

the local spaces associated with the vertical lines, V = (C2)⊗2N , and the
quantum space H is the tensor product of all local spaces associated with
the horizontal lines: H = (C2)⊗(M+1).

The Quantum Inverse Scattering Method [21,22] prescribes the so-called
L-operator on V ⊗ H, which acts non-trivially on a particular site of the
lattice, while it acts as identity operator on remaining ones. The L-operator
in question is of the form [5]:

L(n|u; γ) = uěěn + ê(γu1n − u−1ěn) + σ+σ−n + σ−σ+
n

=

(
uěn σ−n
σ+
n γu1n − u−1ěn

)
, (1)
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where u, γ ∈ C are the parameters, σz,± are the Pauli matrices, and

ě =
1

2
(1 + σz) , ê =

1

2
(1− σz)

are projectors onto spin “up” and “down” states, respectively. The matrix
with subindex n acts nontrivially only in nth space:

sn = 1⊗ · · · ⊗ 1⊗ s︸︷︷︸
n

⊗1⊗ · · · ⊗ 1 ,

where 0 6 n 6M . When γ = 0, L-operator (1) becomes L-operator of the
four-vertex model [4, 7, 12].

The entries of L-operator (1) can be represented graphically as dots with
adjacent arrows (Fig. 3). The entry L11(n|u) corresponds to the vertex (i)

Figure 3. Vertex representation of the matrix elements of
L-operator.

(Fig. 3), where the dot denotes the operator uěn, which acts on the local
spin state. The only non-zero expectation of this operator n〈← |uěn| ←〉n
determines the vertex with weight w4 = u (Fig. 1). The entry L22(n|u)
corresponds to the vertex (ii), where the dot means the operator γu1n −
u−1ěn. Its expectation n〈← |γu1n − u−1ěn| ←〉n is represented by the
vertex with weight w2 = γu − u−1 (Fig. 1), while the expectation n〈→
|γu1n − u−1ěn| →〉n corresponds to the vertex with a weight w3 = γu.
The entries L12(n|u) = σ−n and L21(n|u) = σ+

n correspond to the vertices
(iii) and (iv), and their respective expectations n〈→ |σ−n | ←〉n and n〈←
|σ+

n | →〉n determine vertices with weights w5 = w6 = 1 (Fig. 1).
The monodromy matrix T (u; γ) is the product of L-operators (1):

T (u; γ) = L(M |u; γ)L(M − 1|u; γ) · · ·L(0|u; γ) =

(
A(u; γ) B(u; γ)
C(u; γ) D(u; γ)

)
.

(2)
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The operator-valued matrices (1) and (2) are associated with the R-mat-
rix [4]:

R(u, v) =


f(v, u) 0 0 0

0 g(v, u) 1 0
0 0 g(v, u) 0
0 0 0 f(v, u)

 , (3)

where

f(v, u) =
u2

u2 − v2
, g(v, u) =

uv

u2 − v2
.

The commutation relations of the matrix elements of the monodromy ma-
trix (2) are defined by R-matrix (3). The most important relations are:

C(u)B(v) = g(u, v)
(
A(u)D(v)−A(v)D(u)

)
,

A(u)B(v) = f(u, v)B(v)A(u) + g(v, u)B(u)A(v) ,

D(u)B(v) = f(v, u)B(v)D(u) + g(u, v)B(u)D(v) ,[
B(u), B(v)

]
=
[
C(u), C(v)

]
= 0 .

(4)

The entries of the monodromy matrix (2) are expressed as sums over
all admissible configurations of arrows with different boundary conditions
on a chain of M + 1 sites (Fig. 4). Namely, the operator B(u) corresponds
to the boundary conditions, when arrows on the top and bottom of the
chain are pointing “outwards”. Operator C(u) corresponds to the boundary
conditions, when arrows on the top and bottom of the chain are pointing
“inwards”. Operators A(u) and D(u) correspond to the boundary condi-
tions, when arrows on the top and bottom of the chain are pointing up
and down, respectively.

Figure 4. Graphical representation of the entries of the
monodromy matrix
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§3. The scalar product as determinant
and its limiting form

3.1. Scalar product as determinant. Let us consider the scalar prod-
uct of N -particle state-vectors,

W (v,u) ≡ 〈⇐ |
N∏
i=1

C(vi)

N∏
j=1

B(uj)| ⇐〉 , (5)

where v ≡ (v1, v2, . . . , vN ) and u ≡ (u1, u2, . . . , uN ) are the sets of N
independent off-shell parameters. The reference state is defined in (5),

| ⇐〉 =

M⊗
i=0

| ←〉i =

M⊗
i=0

(
1
0

)
i

,

so that the state-vector

|ΨN (u)〉 =

N∏
j=1

B(uj)| ⇐〉 (6)

is symmetric in uj , 1 6 j 6 N , since the operators B(·) are mutually com-
muting. The state-vector (6) is expressible as the sum over all admissible
lattice paths associated with the product of B(u) operators in, so-called,
B-grid (Fig. 5). The state-vector

Figure 5. Typical nest of paths contributing into state-
vector B(u1)B(u2)B(u3)| ⇐〉.
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〈ΨN (v)| = 〈⇐ |
N∏
i=1

C(vi) (7)

is conjugated and may be expressed as the sum of all admissible lat-
tice paths in C-grid. A typical nest contributing into the scalar product
〈ΨN (v)|ΨN (u)〉 (5) in the case of the fixed boundary condition is shown
in (Fig. 2) at N = 3.

The scalar product (5) is evaluated for arbitrary N and M by means of
the commutation relations (4). For the integrable models associated with
the R-matrix (3), it acquires the determinantal form [5]:

W (v,u) =

N∏
i=1

(viui)
−M

∏
16k<j6N

g(vj , vk)
∏

16m<l6N

g(um, ul)

× det H̃(v,u)=

N∏
i=1

(viui)
−M

N∏
k=1

(
vk
uk

)N−1
det H̃(v,u)

∆N (v2)∆N (u−2)
,

(8)

where ∆N (x2) is the Vandermonde determinant,

∆N (x2) =
∏

16m<k6N

(x2k − x2m) , (9)

and the matrix H̃(v,u) ≡
(
H̃km(v,u)

)
16k,m6N

is given by the entries

H̃km(v,u) =
AN,M (vm, uk)−AN,M (uk, vm)

uk
vm
−
( uk
vm

)−1 .

Here, the following notation is introduced:

AN,M (vm, uk) ≡ αM+1(vm)δM+1(uk)
( uk
vm

)N−1
, (10)

whereas αM+1(u) and δM+1(u) are the eigenvalues of A(u; γ) and D(u; γ),
Eq.(2):

A(u; γ) | ⇐〉 = αM+1(u) | ⇐〉 ≡ uM+1| ⇐〉 ,

D(u; γ) | ⇐〉 = δM+1(u) | ⇐〉 ≡
(
γu− 1

u

)M+1

| ⇐〉 .
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For the four-vertex model γ = 0, the scalar product (8) is simplified [4]:

W (v,u)=

(−1)MN
N∏

k=1

(uk
vk

)M−2N+2

∆N (v2)∆N (u−2)
N∏

k=1

(vkuk)M

× det

1−
(vm
uk

)2(M−N+2)

1−
(vm
uk

)2

16k,m6N

.

We introduce rescaled notations

V = (V1, V2, . . . , VN ), U = (U1, U2, . . . , UN ),

where
Uk ≡ γu2k, Vm ≡ γv2m , (11)

and express (8) in the form symmetric in V, U:

W (V,U) =
(−1)

N
2 (N−1)γNM

N∏
k=1

(VkUk)M−N+1

× det H̃(V,U)

∆N (V)∆N (U)
. (12)

The matrix H̃(V,U) (12) is defined by the entries(
H̃(Vm, Uk)

)
16k,m6N

=
(Uk − 1)AV B

m − (Vk − 1)AUB
m

Uk − Vm
, (13)

where
A ≡M + 1, B ≡M −N + 2 ,

and A > B at N > 1, whereas A = B at N = 1.
The polynomial entry H̃(V,U) (13) acquires the form suitable for study-

ing the limiting behavior of W (V,U) (12):

H̃(V,U) =

A−B∑
i=1

( ∑
p+q=A−B−i

(−1)qCq
AU

p
)
UBV B+i−1

−
B−1∑
i=0

( i∑
j=0

(−1)A+j−iCA+j−i
A UB−j−1

)
V i

(14)
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Extracting UBV A−1 from (14), one re-expresses (12):

W (V,U) = (−1)
N
2 (N−1)γNM

(
N∏

k=1

V A−B
k Uk

)
det H̃(V,U)

∆N (V)∆N (U)
, (15)

where the matrix H̃(V,U) is given by the entries

(
H̃(Vm, Uk)

)
16k,m6N

=

A−B∑
i=1

( ∑
p+q=A−B−i

(−1)qCq
AU

p
)
V B−A+i

−
B−1∑
i=0

( i∑
j=0

(−1)A+j−iCA+j−i
A U−j−1

)
V −A+i+1 ,

(16)

and A−B = N − 1.

3.2. The asymptotical behavior. Let us study the asymptotical be-
havior ofW (V,U) (5), (15) in the special limiting case, when the elements
of V and U, as off-shell parameters, go to infinity.

In the expression (13) we will go to an infinite limit of elements V
subsequently as follows: first, V1 → ∞, whereas V2, V3 . . ., VN are fixed.
As a next step, V2 → ∞ at V3, V4 . . ., VN fixed, and so on. Eventually,
the limiting behavior of det H̃(V,U) (15) and thus of det H̃(V,U) (12) is
characterized by the relation:

lim
VN→∞

V N−1
N · · · lim

V2→∞
V 1
2 lim

V1→∞
V 0
1

× det H̃(V,U) ≡ det H̃(U) , (17)

where H̃(V,U) is given by (16). At each step, the multiplications of the
determinant by V 0

1 , V 1
2 , . . . , V

N−1
N are with respect to the first, second,

. . . , N th row, respectively. In turn, the resulting matrix H̃(U) is expressed
as 

∑
p+q=0

(−1)qCq
AU

p
1 . . .

∑
p+q=0

(−1)qCq
AU

p
N∑

p+q=1
(−1)qCq

AU
p
1 . . .

∑
p+q=1

(−1)qCq
AU

p
N

· · · · · · · · ·∑
p+q=N−2

(−1)qCq
AU

p
1 . . .

∑
p+q=N−2

(−1)qCq
AU

p
N

B−1∑
j=0

(−1)A+1−jCA−j
A U−B+j

1 . . .
B−1∑
j=0

(−1)A+1−jCA−j
A U−B+j

N


,
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where the entries in the first row are unities,
∑

p+q=0
(−1)qCq

AU
p
m = 1, 1 6

m 6 N .
Using the limiting relation

lim
VN→∞

· · · lim
V2→∞

lim
V1→∞

N∏
k=1

V A−B+1−k
k

∆N (V)
= (−1)

N
2 (N−1) ,

we obtain from (15) and (16):

W (V∞,U) =

γNM
N∏

k=1

Uk

∆N (U)
det H̃(U) , (18)

where V∞ is a formal notation indicating a result of the limit prescribed.
The properties of determinant enable to transform det H̃(U) into

detH(U) ≡ det


1 1 . . . 1
U1 U2 . . . UN

· · · · · · · · · · · ·
UN−2
1 UN−2

2 . . . UN−2
N

−g(U1) −g(U2) . . . −g(UN )

 , (19)

where

g(Ui) =

B−1∑
j=0

(−1)A−jCA−j
A U−B+j

i . (20)

The determinant (19) is transformed further:

detH(U) = (−1)N
N∑
i=1

(−1)i−1g(Ui)∆N−1(Ûi) , (21)

where ∆N−1(Ûi) ≡ ∆N−1(U1, U2, . . . , Ûi, . . . , UN ), while Ûi implies that
Ui is omitted.
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The following properties are valid:

lim
Ui→∞

lim
Ui−1→∞

· · · lim
U1→∞

∆N−1(Ûi)

∆N (U)

N∏
k=1

Uk = 0 , 1 6 i 6 N − 2 , (22)

lim
UN−1→∞

lim
UN−2→∞

· · · lim
U1→∞

∆N−1(ÛN−1)

∆N (U)

N∏
k=1

Uk = (−1)N−1UN , (23)

lim
UN−1→∞

lim
UN−2→∞

· · · lim
U1→∞

∆N−1(ÛN )

∆N (U)

N∏
k=1

Uk = (−1)N−1UN . (24)

The order of calculation of limits in formulas (22), (23), and (24) is defined
in (17).

The asymptotical relation at large U reads:

g(U) = CN
M+1(−1)NU−1 + o(U−1) , (25)

where CN
M+1 ≡

(
M + 1
N

)
is the binomial coefficient.

From (18) with respect to (25) one obtains :

W (V∞,U∞) = γNMCN
M+1 . (26)

When the parameters of the scalar product (5), (15) tend to infinity, the
obtained answer (26) enables interpretation as the sum over the sets of
lattice paths of the special type. Really, from the definitions (1) and (2)
one obtains the following representation [5]:

lim
u→∞

u−MB(u) =

M∑
k=0

γkěM . . . ěk+1σ
−
M ,

lim
v→∞

v−MC(v) =

M∑
k=0

γM−kσ+
k ěk−1 . . . ě0.

(27)

It means that each lattice path of the nest has only one turn (w5-vertex)
in the B-grid and the only one turn (w6-vertex) in the C-grid. The number
of the allowed nests of lattice paths is equal to the number of possible ways
to cross the border between the B and C grids (the dashed line (Fig. 6))
and is equal to CN

M+1.
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Figure 6. A nest of lattice paths in the limit (V∞,U∞).

3.3. The scalar product and complete symmetric polynomials.
Let us remind that complete symmetric polynomial of degree k in n vari-
ables x1, x2, . . . , xn is defined as [13]:

hk(x1, x2 . . . , xn) =
∑

16i16i26...6ik6n

xi1 , xi2 . . . , xik .

In this section we will present the following

Statement 1. The limiting form of W (V∞,U) (18) is expressed in terms
of complete symmetric polynomials hi, 1 6 i 6 N :

W (V∞,U) = −γNM
M−N+1∑

i=0

CN+i
M+1(−1)i hi

( 1

U

)
. (28)

The representation (28) agrees with the asymptotics (26), since only i = 0
contributes.

The representation (28) results from (18) considered together with the
following statement.
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Statement 2. The determinant (19) is expressed by means of complete
symmetric plynomials,

detH(U) =
∆N (U)
N∏

k=1

Uk

M−N+2∑
i=1

CN+i−1
M+1 (−1)i hi−1

( 1

U

)
. (29)

Indeed, we obtain from (19) and (20):

detH(U) =

M−N+1∑
i=0

CN+i
M+1(−1)N+i

× det


1 1 . . . 1
U1 U2 . . . UN

· · · · · · · · · · · ·
UN−2
1 UN−2

2 . . . UN−2
N

U
−(i+1)
1 U

−(i+1)
2 . . . U

−(i+1)
N

 . (30)

At the next step, we will re-express Eq. (30):

detH(U) =

M−N+2∑
i=1

(−1)iCN+i−1
M+1

(
N∏

k=1

Uk)i
∆N (i|U) . (31)

Here, ∆N (i|U) is the determinant of the form:

∆N (i|U) ≡ det


1 1 . . . 1
U i
1 U i

2 . . . U i
N

U i+1
1 U i+1

2 . . . U i+1
N

· · · · · · · · · · · ·
U i+N−2
1 U i+N−2

2 . . . U i+N−2
N

 , (32)

so that ∆N (1|U) is the Vandermonde determinant ∆N (U) (9). In its turn,
the determinant (32) is expressed in terms of complete symmetric polyno-
mials [13]:

∆N (i|U)

∆N (U)
≡ Sλ(U) =

( N∏
k=1

Uk

)i−1
hi−1

( 1

U

)
, (33)

where Sλ(U) is a Schur polynomial [13] indexed by partition

λ =
(

(i− 1)(N−1), 0
)
.

Using (33) in (31) one immediately arrives at (29).
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§4. Conclusion

The non-Hermitian Hamiltonian of the totally asymmetric zero-range
process (TAZRP) commutes with the transfer matrix of the five-vertex
model [25, 26]. The approach developed makes it hopeful to proceed with
similar representations in terms of complete symmetric polynomials and
limiting relations for the correlation functions both of the five-vertex, and
TAZRP models.
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