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Abstract. In the paper, we derive and discuss integral iden-
tities that hold for the difference between the exact solution
of initial-boundary value problems generated by the reaction–
convection–diffusion equation and any arbitrary function from
admissible (energy) class. One side of the identity forms a nat-
ural measure of the distance between the exact solution and
its approximation, while the other one is either directly com-
putable or natural measure serves as a source of fully com-
putable error bounds. A posteriori error identities and error
estimates are derived in the most general form without using
special features of a function compared with the exact solution.
Therefore, they are valid for a wide spectrum of approxima-
tions constructed different numerical methods and can be also
used for the evaluation of modelling errors.

§1. Introduction

Many mathematical models of evolutionary processes are based on the
equation

ut −∆u+ a · ∇u+ ρ2u = f (1.1)

and its modifications (such as the Smoluchowski and Fokker–Planck equa-
tions). Usually u has the meaning of a concentration function, f is the
source term, the term ρ2u accounts local reactions, and a is the velocity
field that u is moving with. The equation (1.1) describes effects gener-
ated by flow of mass or energy and has some features similar to equations
used in the theory of viscous fluids. Two important special cases are the
reaction-diffusion (a = 0) and convection-diffusion (ρ = 0) problems.

Key words and phrases: parabolic equations, deviations from exact solution, error
identities a posteriori estimates of the functional type.
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Mathematical properties of initial boundary value problems based
on (1.1) are well studied (e.g., see the monographs [5,6] ). Numerous pub-
lications are devoted to qualitative analysis that includes existence and
uniqueness of generalized solutions, regularity and local properties of solu-
tions. However, with rare exceptions, exact solutions are unknown so that
in the overwhelming majority of cases we are forced to consider a certain
approximation v instead of the exact solution u. This fact generates two
fundamental questions:
How to find a suitable v and how to verify that it is indeed close to u?
In the context of initial boundary values problems bases on the equa-

tion (1.1), the first question has been deeply studied by many authors
(e.g.,see [10,21]). Consideration of the second question depends heavily on
what one means by “verification”. A large number of works is devoted to
error control methods where verification is understood in an asymptotic
sense within the framework of a priori rate convergence estimates (e.g.,
see [1, 21]). A posteriori error estimation methods suggest a principally
different approach. In this case, the accuracy of a particular numerical
solution is analyzed. Typically, a posteriori estimates are derived for a
concrete numerical method. They essentially use special properties of ap-
proximations (e.g., Galerkin orthogonality in the explicit residual method
or the so called “saturation” in the hierarchically based methods) and/or
extra regularity of exact solutions.

This paper, as well as a number of previous publications (e.g., see
[14–17,20]), follows a different concept, whose key point consists of study-
ing deviations from exact solutions of differential equations in the most
general form without using special properties of approximations associ-
ated with a particular numerical method. The purpose of this analysis is
to obtain error identities and estimates that hold for any function from
the admissible (energy) class. For elliptic boundary value problems and
elliptic variational inequalities the corresponding results can be found
in [13,14,18,20] and other papers cited therein. For evolutionary parabolic
problems, first results of this kind were obtained in [15] and applications
to various numerical approximations are studied in [4, 7–9]. The present
work is concerned with the Cauchy problem based on (1.1). It should be
considered as a continuation of the paper [17].
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§2. Statement of the problem and basic notation

Let Ω be a bounded domain in Rd, d > 1 with Lipshitz boundary Γ. We
consider the Cauchy problem generated by the equation (1.1)

ut − divp∗ + a · ∇u+ ρ2u = f in QT : Ω× (0, T ), (2.1)
u(x, t) = 0 on ST := Γ× (0, T ), (2.2)
u(x, 0) = φ(x) x ∈ Ω, (2.3)
p∗ = A∇u in QT . (2.4)

It is assumed that the reaction and convection parameters satisfy the fol-
lowing conditions:

a ∈ L∞(Ω,Rd), diva ∈ L∞(Ω), (2.5)
ρ ∈ L∞(Ω), 0 6 ρ 6 ρ⊕, (2.6)

− 1

2
diva + ρ2 := σ2

a > 0. (2.7)

A is a symmetric matrix with bounded entries that do not depend on t. A
satisfies the condition

c21|ξ|2 6 Aξ · ξ 6 c22|ξ|2 ∀ξ ∈ Rd, c1 > 0. (2.8)

Throughout the paper we use standard notation for Lebesgue and Sobolev
spaces (Lp(Ω) and W l

p(Ω), respectively). A space is marked above by ◦
if the respective functions vanish on ST , L2 norms of the functions in Ω
and QT are denoted by ‖ · ‖Ω and ‖ · ‖QT

, respectively. Also, we define the
norms

‖∇w‖2A :=

∫
Ω

A∇w · ∇w dx, ‖y∗‖2A−1 :=

∫
Ω

A−1y∗ · y∗ dx,

‖∇w‖2A,QT
:=

T∫
0

‖∇w‖2A dt, ‖y∗‖2A−1,QT
:=

T∫
0

‖y∗‖2A−1 dt.

Here, and later on the symbol := means “equals by definition”.
By {| g |}ω we denote the mean value of g in ω ⊂ Ω and use the notation[[

g(t)
]]T

0
:= g(T )− g(0).

In particular, if v(x, t) is a function that has square summable traces for

any t then
[[
‖v‖Ω

]]T
0

= ‖v(x, T )‖Ω − ‖v(x, 0)‖Ω. Derivatives of v with
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respect to xi and t are denoted by v,i and vt, respectively. Spatial gradient
and divergence are denoted by ∇ and div, respectively.

We use standard notation for the Bochner spaces. For a separable Ba-
nach space X endowed with the norm ‖·‖X , the space L2(0, T ;X) contains

functions with the norm ‖v‖2L2(0,T ;X) :=
T∫
0

‖∇v‖2X dt <∞. In particular,

W 1,0
2 (QT ) := L2(0, T ;W 1

2 (Ω)),
◦
W

1,0
2 (QT ) := L2(0, T ;

◦
W

1
2(Ω)),

and
◦
W

1,1
2 (QT )

:=
{
w ∈

◦
W

1,0
2 (QT ), ‖w‖1,1,QT

:=

∫
QT

(w2 + w2
t+ | ∇w |2) dx dt < +∞

}
.

For the latter space we also use the abridged notation V0 and by V0 +φ
denote the subspace of V0 that contains the functions satisfying the con-
dition v(x, 0) = φ(x).

Also, we use functional spaces associated with vector valued functions
(fluxes). They are Y ∗(QT ) := L2(QT ,Rd), the space

Y ∗div(QT ) := {y∗ ∈ Y ∗(QT ) | divy∗ ∈ L2(QT )}

supplied with the norm ‖y∗‖div,QT
:=
(
‖y∗‖2QT

+ ‖divy∗‖2QT

)1/2, and the
product space

H(QT ) := V0 × Y ∗div(QT ).

We assume that

f ∈ L2(QT ), φ ∈
◦
W

1
2(Ω), (2.9)

and define the generalized solution of (2.1)–(2.4) as the function u ∈ V0 +φ
satisfying the integral identity∫
QT

(
A∇u · ∇w + (a · ∇u)w + ρ2uw

)
dx dt−

∫
QT

uwt dx dt

+

∫
Ω

(u(x, T )w(x, T )− u(x, 0)w(x, 0)) dx

=

∫
QT

fw dx dt ∀w ∈ V0. (2.10)
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In view of (2.1), the corresponding flux belongs to Y ∗div, so that

(u, p∗) ∈ H0(QT ).

Certainly, (2.10) defines a generalized solution for a much wider set of
data including those cases where A, a, and ρ in (2.5), (2.6), (2.7), and (2.8)
are bounded functions of t and the function φ in (2.9) is lesser regular. This
paper is aimed to present the principle scheme of deriving a posteriori error
identities. Therefore, for the sake of simplicity we exclude these extensions
and only note that the derivation method discussed below remains valid
for time dependent data provided that ut ∈ L2(QT ) (the exception is Sec-
tion 4.2, where it is essentially used that ρ and A do not depend on t).

§3. The main error identity

In this section, we deduce the main error identity for the functions

e := v − u and e∗ := y∗ − p∗,

which are the deviations from u and p∗generated by the function v(x, t)∈V0

and the vector valued function y∗(x, t) ∈ Y ∗div(QT ). If these functions have
been obtained in a numerical experiment, then e and e∗ present approxima-
tion errors. In other cases, v and y∗ may represent solutions of some close
mathematical model. Then, the identity can be used to analyze modeling
errors.

Computable functions

Rf (v, y∗) := f − vt + divy∗ − a · ∇v − ρ2v and RA(v, y∗) := A∇v − y∗

can be considered as residuals of the main relations (2.1) and (2.4). Re-
calling (2.1) and (2.4), we see that Rf (u, p∗) = RA(u, p∗) = 0. Also, we
introduce the quantity

µ1(e, e∗) :=
(
‖∇e‖2A,QT

+ ‖e∗‖2A−1,QT
+ 2‖σae‖2QT

)1/2

,

which is a measure that controls deviations from u and p∗. This measure
satisfies the conditions natural for numerical methods that generate ap-
proximations converging in the corresponding energy spaces. It is easy to
see that µ1(vk − u, y∗k − p∗) tends to zero for sequences of approximations
{vk} and y∗k} such that

vk → u in
◦
W

1,0
2 (QT ) and y∗k → p∗ in Y ∗(QT ). (3.1)
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Theorem 1. For any (v, y∗) ∈ H(QT ), it holds

µ2
1(e, e∗) +

[[
‖e‖2Ω

]]T
0

= ‖RA(v, y∗)‖2A−1,QT
− 2

∫
QT

Rf (v, y∗)e dx dt. (3.2)

Proof. We rewrite (2.10) in the form∫
QT

(A∇(u−v)·∇w+(a·∇(u−v))w+ρ2(u−v)w) dx dt+

∫
QT

(ut−vt)w dxdt

=

∫
QT

(
fw −A∇v · ∇w − (a · ∇v)w − ρ2vw − vtw

)
dx dt (3.3)

and set w = u− v. Now the identity reads

‖∇e‖2A,QT
+

∫
QT

(a · ∇e)e dx dt+ ‖ρe‖2QT
+

1

2

[[
‖e‖2Ω

]]T
0

=

∫
QT

(A∇v · ∇e+ (a · ∇v)e+ ρ2ve+ vte− fe) dx dt.

Using the relations

2

∫
Ω

(a · ∇e)e dx =

∫
Ω

a · ∇(e2) dx = −
∫
Ω

(diva)e2 dx, (3.4)

∫
Ω

div(y∗ e) dx = 0, (3.5)

we modify it as follows:

‖∇e‖2A,QT
+ ‖σae‖2QT

+
1

2

[[
‖e‖2Ω

]]T
0

=

∫
QT

(A∇v · ∇e+ ρ2ve+ (a · ∇v)e+ vte− fe) dx dt

=

∫
QT

(A∇v − y∗) · ∇e dx dt−
∫
QT

Rf (v, y∗)e dx dt. (3.6)
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Notice that
1

2
‖e∗‖2A−1,QT

=
1

2
‖y∗−A∇u‖2A−1,QT

=
1

2
‖y∗−A∇v +A∇e‖2A−1,QT

=
1

2
‖∇e‖2A,QT

+

∫
QT

∇e · (y∗ −A∇v) dx dt+
1

2
‖y∗−A∇v‖2A−1,QT

.
(3.7)

Summation of (3.6) and (3.7) yields (3.2). �

It is worth adding several comments to the identity (3.2).
1. By setting v = 0 and y∗ = 0, we use (2.4) and represent the left hand

side of (3.2) in the form

‖∇u‖2A,QT
+ 2‖σau‖2QT

+ ‖p∗‖2A−1,QT
+
[[
‖u‖2Ω

]]T
0

= 2‖∇u‖2A,QT
+ 2

∫
QT

(ρ2 − 1

2
diva)u2 dx dt+

[[
‖u‖2Ω

]]T
0

= 2‖∇u‖2A,QT
+ 2

∫
QT

(ρ2u2 + (a · ∇u)u) dx dt+
[[
‖u‖2Ω

]]T
0
.

Since in this case the right hand side of (3.2) is equal to 2
∫
QT

fu dx dt, we

divide both parts of the identity by 2 and arrive at that the well known
energy balance relation written in terms of the exact solution u (e.g., see
§3 of Ch. 3 in [6]). Hence the balance relation is a particular form of
the identity (3.2). The latter identity establishes a more general form of
balance. It shows that for any pair of functions (v, y∗) ∈ H(QT ) a properly
selected measure of deviations e and e∗ is equal to a certain combination
of space–time integrals formed by the residual functions Rf (v, y∗) and
RA(v, y∗).

2. The identity (3.2) holds for any (v, y∗) ∈ H(QT ). Let the functions v
and y∗ belong to a narrower set H0(QT ) ⊂ H(QT ) that contains v and y∗
such that∫
QT

(y∗ · ∇w− fw + (a · ∇v)w + ρ2w + vtw) dx dt = 0 ∀w ∈ V0. (3.8)

Then the last integral in (3.2) vanishes and we arrive at the identity

µ2
1(e, e∗) +

[[
‖e‖2Ω

]]T
0

= ‖RA(v, y∗)‖2A−1,QT
∀ (v, y∗) ∈ H0(QT ) (3.9)
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with fully computable right hand side. Notice that (3.8) amounts a differ-
ential condition divy∗ + f − a · ∇v − ρ2v − vt = 0 imposed on v and y∗ so
that these functions cannot be independent and should always be properly
coordinated. Hence this simplified (hypercircle type) error identity may be
inconvenient from the practical point of view.

3. Take infimum of both parts of (3.2) with respect to y∗ ∈ Y ∗div. We
find that

‖∇e‖2A,QT
+ 2‖σae‖2QT

+
[[
‖e‖2Ω

]]T
0

= inf
y∗∈Y ∗

div

{∥∥RA(v, y∗)
∥∥2

A−1,QT
− 2

∫
QT

Rf (v, y∗)e dx dt

}
. (3.10)

Taking infimum with respect to v ∈ V0 + φ we see that the left hand side
is reduced to ‖e∗‖2A−1,QT

. Hence (3.2) yields

‖e∗‖2A−1,QT
= inf
v∈V0+φ

{∥∥RA(v, y∗)
∥∥2

A−1,QT
− 2

∫
QT

Rf (v, y∗)e dx dt

}
. (3.11)

The identities (3.11) and (3.10) show that the parts of µ1 associated
with e and e∗ can be evaluated separately.

4. The identity (3.2) opens a way to compare exact solutions of (2.1)–
(2.4) generated by different data. For elliptic boundary value problems
this question is studied in detail in [20], where a posteriori error identities
are used to evaluate errors generated by data simplification or dimension
reduction. The identity (3.2) (and other identities derived below) can be
used for similar analysis in the context of parabolic problems.

For example, assume that the functions ũ and p̃∗ solve the problem
(2.1), (2.2), and (2.4) with the initial condition that differs from (2.3), i.e.,

ũ(x, 0) = φ̃(x) 6= φ(x).

Then,

p̃∗ = A∇ũ and divp̃∗ + f − ũt − ρ2ũ− a · ∇ũ = 0.

In this case, RA(ũ, p̃∗) = Rf (ũ, p̃∗) = 0 and (3.2) reads

‖∇(u− ũ)‖2A,QT
+ ‖p∗ − p̃∗‖2A−1,QT

+ 2‖σa(u− ũ)‖2QT

+ ‖(ũ− u)(·, T )‖2Ω = ‖φ̃− φ‖2Ω. (3.12)
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Since the first three norms in the left hand side monotonically grow as T
grows and the right hand side does not depend on T , we conclude that
ũ(x, T ) tends to u(x, T ) as T → +∞. Hence (3.12) implies the well known
stabilization property (e.g., see [2, 3]).

Also, we can compare u and p∗ with solutions ũ and p̃∗ generated by
the diffusion matrix Ã, which differs from A. For example, Ã may be a
simplification of the original matrix A. In this case, (3.2) yields the identity,
which controls modeling errors caused by simplification.

We have p̃∗ = Ã∇ũ, Rf (ũ, p̃∗) = 0, and

‖RA(ũ, p̃∗)‖2A−1,QT
=

∫
QT

(
A∇ũ · ∇ũ+A−1p̃∗ · p∗ − 2∇ũ · p̃∗

)
dx dt

=

∫
QT

(ÃA−1Ã+A− 2Ã)∇ũ · ∇ũ dx dt =

∫
QT

D∇ũ · ∇ũ dx dt,

where
D := (A− Ã)A−1(A− Ã)

is the deflection matrix. Notice that D is a positive matrix and D ≡ 0 if
Ã = A. In view of (3.2), the error between two solutions generated by the
same initial data satisfies the relation

‖∇(u− ũ)‖2A,QT
+ ‖p∗ − p̃∗‖2A−1,QT

+ 2‖σa(u− ũ)‖2QT

+ ‖(ũ− u)(·, T )‖2Ω =

∫
QT

D∇ũ · ∇ũ dx dt. (3.13)

The identity (3.13) shows that the difference between two solutions is con-
trolled by the norm ‖∇ũ‖D. It generalises a similar identity obtained for
elliptic problems in Chapter 4 of [20].

§4. Special cases

4.1. Strictly positive reaction function.

Theorem 2. Let ρ(x) > ρ0 > 0 and ρ2
a := ρ2 − diva > 0. Then for any

(v, y∗) ∈ H(QT ) it holds the identity

µ2
2(e, e∗) +

[[
‖e‖2Ω

]]T
0

= ‖RA(v, y∗)‖2A−1,QT
+ ‖1

ρ
Rf (v, y∗)‖2QT

, (4.1)
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where

µ2(e, e∗) :=
(
‖∇e‖2A,QT

+‖e∗‖2A−1,QT
+‖ 1

ρ (dive∗−a·∇e−et)‖2QT
+‖ρae‖2QT

)1/2
.

Proof. First, we notice that∥∥ 1
ρ (divy∗+f−vt−a · ∇v−ρ2v)

∥∥2

QT
=
∥∥1

ρ
(dive∗−et−a · ∇e)−ρe

∥∥2

QT

=
∥∥ 1
ρ (dive∗−et−a∇e)

∥∥2

QT
+ ‖ρe‖2QT

−2

∫
QT

(dive∗−et−a · ∇e)e dx dt.
(4.2)

Next, we use (3.4) and the relations∫
QT

(dive∗)e dx dt = −
∫
QT

e∗ · ∇e dx dt

and ∫
QT

ete dt dx =
1

2

[[
‖e‖2Ω

]]T
0

to modify (4.2) as follows:

‖ 1
ρ (divy∗ + f − vt − a · ∇v − ρ2v)‖2QT

= ‖ 1
ρ (dive∗ − et − a · ∇e)‖2QT

+ ‖ρe‖2QT
+
[[
‖e‖2Ω

]]T
0

+ 2

∫
QT

e∗ · ∇e dx dt−
∫
QT

divae2 dx dt.

(4.3)

It is easy to see that

‖RA(v, y∗)‖2A−1,QT
= ‖∇e‖2A,QT

+ ‖e∗‖2A−1,QT
− 2

∫
QT

e∗ · ∇e dx dt. (4.4)

Summation of (4.3) and (4.4) yields the identity

‖∇e‖2QT
+ ‖e∗‖2A−1,QT

+ ‖1

ρ
(dive∗ − et − a · ∇e)‖2QT

+

∫
QT

(ρ2 − diva)|e|2 dx dt+
[[
‖e‖2Ω

]]T
0

= ‖RA(v, y∗)‖2A−1,QT
+ ‖1

ρ
(divy∗ + f − vt − a · ∇v − ρ2v)‖2QT

,
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which coincides with (4.1). �

Notice that the right hand side of (4.1) is fully computable. The left hand
side contains a collection of nonnegative terms that form an error measure
µ2(e, e∗). It differs from the measure µ1(e, e∗). The identity (4.1) allows
us to directly control the quality of approximate solutions, but it contains
integrals with weights 1/ρ. Therefore, for very small ρ the corresponding
terms strongly dominate and the identity may become uninformative.

4.2. The case a = 0. In [17], it was shown how to deduce error identities
in terms of stronger measures provided that the exact solution and its
approximations possess additional differentiability in time. Here we extend
this method to the reaction-diffusion equation.

Theorem 3. Let

u, v ∈
◦
W

1,1+
2 (QT ) := {w ∈

◦
W

1,1
2 (QT ) | w,it ∈ L2(Ω) i = 1, 2, . . . , d}.

and p∗, y∗ ∈ Y ∗+div := {y∗ ∈ Y ∗div | y∗t ∈ L2(QT ,Rd)}. Then

µ2
3(e, e∗) +

[[
‖e‖2Ω

]]T
0

+
[[ ∫

Ω

(1 + ρ2) e2 dx
]]T

0
+
[[
‖e∗‖2A−1,Ω

]]T
0

= ‖RA(v, y∗)‖2A−1,Ω +
[[
‖RA(v, y∗)‖2A−1,Ω

]]T
0
− 2R(v, y∗; e, et),

(4.5)

where

R(v, y∗; e, et) :=

∫
QT

(
(RA(v, y∗))t · ∇e+ Rf (v, y∗)(e+ et)

)
dx dt

and

µ2
3(e, e∗) := ‖∇e‖2A,QT

+ ‖e∗‖2A−1,QT
+ 2‖ρe‖2QT

+ 2‖et‖2QT
.

Proof. Set in (3.3) w = −et = ut − vt. We obtain the identity∫
QT

(A∇e ·∇et+ρ2eet+e
2
t ) dx dt =

∫
QT

(
(ρ2v+vt−f)et+A∇v ·∇et

)
dx dt. (4.6)

Since et = 0 on ST , for any y∗ ∈ Y ∗+div it holds∫
QT

(etdivy∗ + y∗ · ∇et) dx dt =

T∫
0

∫
Γ

(y∗ · n)et dx dt = 0. (4.7)
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From (4.6) and (4.7), we obtain∫
QT

(
A∇e · ∇et + ρ2eet + e2

t

)
dx dt

=

∫
QT

(A∇v − y∗) · ∇et dx dt−
∫
QT

Rf (v, y∗)et dx dt. (4.8)

Consider the first term in the right hand side of (4.8). We use the relation
p∗t = A∇ut and transform it as follows:∫

QT

(A∇v − y∗) · ∇et dx dt =

∫
QT

(A∇v − y∗) · ∇(vt − ut) dx dt

=

∫
QT

(A∇v · ∇vt +A−1y∗ · y∗t −∇vt · y∗ −∇v · y∗t ) dx dt

+

∫
QT

(A∇v − y∗) · (A−1(y∗t − p∗t ))

=

∫
QT

(
1

2
A∇v · ∇v +

1

2
A−1y∗ · y∗ −∇v · y∗)t dx dt

+

∫
QT

(A∇v −A∇u+ p∗ − y∗) · (A−1(y∗t − p∗t ))

=
1

2

[[
‖RA(v, y∗)‖2A−1,Ω

]]T
0

+

∫
QT

∇(v − u) · (y∗t − p∗t ) dx dt

−
∫
QT

A−1(y∗t − p∗t ) · (y∗ − p∗) dx dt.

(4.9)

Notice that∫
QT

∇(v − u) · (y∗t − p∗t ) dx dt

=

∫
QT

A∇et · ∇e dx dt+

∫
QT

∇e · (y∗ −A∇v)t dx dt (4.10)
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and∫
QT

A−1(y∗t−p∗t )·(y∗−p∗) dx dt =
1

2

T∫
0

d

dt
(‖e∗‖A−1,Ω)2 dt =

1

2

[[
‖e∗‖2A−1,Ω

]]T
0
.

Hence∫
QT

(A∇v − y∗) · ∇et dx dt =
1

2

[[
‖RA(v, y∗)‖2A−1,Ω

]]T
0

+

∫
QT

A∇et · ∇e dx dt−
∫
QT

(RA(v, y∗))t · ∇e dx dt−
1

2

[[
‖e∗‖2A−1,Ω

]]T
0

(4.11)

Let us consider now the second term in left hand side of (4.8). We have∫
QT

ρ2eet dx dt =

∫
Ω

ρ2

T∫
0

eet dx dt =
1

2

[[
‖ρ e dx‖2Ω

]]T
0
. (4.12)

We multiply both sides of (4.9) by two, use (4.11) and (4.12), and obtain
the identity

2‖et‖2QT
+
[[
‖ρ e dx‖2Ω

]]T
0

+
[[
‖e∗‖2A−1,Ω

]]T
0

=
[[
‖RA(v, y∗)‖2A−1,Ω

]]T
0
− 2

∫
QT

(
(RA(v, y∗))t ·∇e+ Rf (v, y∗)et

)
dx dt.

(4.13)

Summation of (3.2) and (4.13) yields the identity (4.5). �

Remark 1. It is clear that the measure µ3(e, e∗) is stronger than µ1(e, e∗)
used in (3.2). If v meets the initial condition, i.e., v(x, 0) = φ(x) and
y∗(x, 0) = A∇v(x, 0), then (4.5) has the form

µ2
3(e, e∗) +

∫
Ω

(1 + ρ2)|e(x, T )|2 dx+ ‖e∗(x, T )‖2A−1,Ω

=‖RA(v, y∗)‖2A−1,Ω+‖RA(v(x, T ), y∗(x, T ))‖2A−1,Ω−2R(v, y∗; e, et).

(4.14)

§5. Estimates of deviations from u and p∗

Right hand sides of (3.2) and (4.5) contain the unknown function e and,
therefore, cannot be directly computed. However, these identities provide
a basis for the derivation of fully computable estimates.
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5.1. First, we consider implications of the main identity (3.2). The sim-
plest way to obtain a fully computable error majorant is to apply the
Young’s inequality and estimate the last integral as follows

2

∣∣∣∣∣∣
∫
QT

Rf (v, y∗)e dx

∣∣∣∣∣∣ 6 2

T∫
0

C(Ω)

c1
‖Rf (v, y∗)‖Ω‖∇e‖A,Ω dt

6

T∫
0

β(t)‖∇e‖2A,Ω dt+

T∫
0

C2(Ω)

c21β(t)
‖Rf (v, y∗)‖2Ω dt,

(5.1)

where β is a function of t such that

β ∈ L∞[β0,1](0, T ) := {β ∈ L∞(0, T ) | 0 < β0 6 β(t) 6 1 ∀t ∈ [0, T ]}

and C(Ω) is a constant in the inequality

‖w‖Ω 6 C(Ω)‖∇w‖Ω ∀ w ∈
◦
W

1
2(Ω). (5.2)

We apply (5.1) to (3.2) and obtain the following two–sided estimates:

T∫
0

(1− β)‖∇e‖2A,Ω dt+ ‖e∗‖2QT
+ 2‖σae‖2A−1,QT

+ ‖e(·, T )‖2Ω

6M+
1 (v, y∗, β, T ) (5.3)

and

T∫
0

(1 + β)‖∇e‖2A,Ω dt+ ‖e∗‖2A−1,QT
+ 2‖σae‖2A−1,QT

+ ‖e(·, T )‖2Ω

>M−1 (v, y∗, β, T ). (5.4)

Here

M+
1 (v, y∗, β, T )

:= ‖v(·, 0)− φ‖2Ω + ‖RA(v, y∗)‖2A−1,QT
+
C2(Ω)

c21

T∫
0

1

β
‖Rf (v, y∗)‖2Ω dt



A POSTERIORI ERROR IDENTITIES FOR PARABOLIC CONVECTION219

is a fully computable majorant and

M−1 (v, y∗, β, T )

:= ‖v(·, 0)− φ‖2Ω + ‖RA(v, y∗)‖2A−1,QT
− C2(Ω)

c21

T∫
0

1

β
‖Rf (v, y∗)‖2Ω dt

is a minorant.
The estimates (5.3) and (5.4) hold for any v ∈ V0 and y∗ ∈ Y ∗div(QT ).

It is clear that M+
1 (v, y∗, β, T ) = 0 if and only if v(x, 0) = φ(x) and for

t ∈ (0, T ) it holds

y∗ = A∇v and vt − divy∗ + a · ∇v + ρ2v − f = 0.

Hence M+
1 (v, y∗, β, T ) vanishes if and only if v = u and y∗ = p∗.

SinceM+
1 (v, y∗, β, T ) is increasing monotonically with respect to T , (5.3)

implies the estimate

max
t∈[0,T ]

‖e(·, t)‖2Ω 6 M+
1 (v, y∗, 1, T ). (5.5)

Also, (5.3) implies computable upper bounds for error measures related to
e and e∗ separately. Indeed, for a given function β(t) we have

T∫
0

(1−β)‖∇e‖2A,Ω dt+2‖σae‖2QT
+‖e(·, T )‖2Ω 6 inf

y∗∈Y ∗
div

M+
1 (v, y∗, β, T ). (5.6)

Minimizing both sides of (5.3) with respect to v, we obtain an analogous
estimate for another part of the error measure:

‖e∗‖2A−1,QT
6 inf

v∈V0

M+
1 (v, y∗, 1, T ). (5.7)

5.2. There are several ways get estimates sharper than (5.3) and (5.4).
It is a large topic, which cannot be discussed in detail here so that we
briefly describe only two possible methods. They have been earlier applied
to elliptic problems (see [16,20] and the literature cited therein).
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One way is to modify the last term in (3.2) using a “correction function”
τ∗ ∈ Y ∗div as follows:∫
QT

R(y∗, v)(v − u) dx dt

=

∫
QT

(div(y∗+τ∗)+f−a·∇v−ρ2v−vt)(v−u) dx dt−
∫
QT

τ∗·∇(v−u) dx dt.

Let β and γ be functions in L∞[β0,1](0, T ) such that β(t) + γ(t) 6 1 for
t ∈ [0, T ]. Since

2

∣∣∣∣∣∣
T∫

0

∫
QT

τ∗ · ∇e dx dt

∣∣∣∣∣∣ 6
T∫

0

γ‖∇e‖2A,Ω dt +

T∫
0

1

γ
‖τ∗‖2A−1,Ω dt

we obtain the estimate

T∫
0

(1− β − γ)‖∇e‖2A,Ω dt+ 2‖σae‖2QT

+ ‖e∗‖2A−1,QT
+ ‖e(·, T )‖2Ω 6M+

1 (v, y∗, τ∗, β, γ, T ), (5.8)

where

M+
1 (v, y∗, τ∗, β, γ, T ) := ‖v(·, 0)− φ‖2Ω + ‖RA(v, y∗)‖2A−1,QT

+
1

β
C2(Ω)‖Rf (v, y∗) + divτ∗‖2QT

+

T∫
0

1

γ
‖τ∗‖2A−1,Ω dt.

The right side of (5.8) can be minimized with respect to τ∗(x, t) by choos-
ing an appropriate representation for this vector valued function. This
procedure will give an upper bound smaller than in (5.3).

Another way is based on the idea of domain decomposition (which is
often used in numerical methods for the considered class of initial bound-
ary value problems, e.g., see [11,22]). Here we use Poincare type estimates
associated with subdomains instead of the estimate (5.2). Let Ω be de-
composed into a collection of nonintersecting Lipschitz subdomains Ωm,
m = 1, 2, . . . ,M such that Ω = ∪Nk=1Ωm. Assume that the approximations
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v and y∗ are integrally balanced and satisfy the conditions∫
Ωm

Rf (v, y∗) dx dt = 0 ∀m = 1, 2, . . . ,M. (5.9)

Then ∣∣∣∣∣
∫

Ωm

Rf (v, y∗) e dx dt

∣∣∣∣∣ 6 CP (Ωm)‖Rf (v, y∗)‖Ωm‖∇e‖Ωm .

Here CP (Ωm) is a constant in the Poincare inequality

‖w‖Ωm
6 CP (Ωm)‖∇w‖Ωm

, (5.10)

which holds for any w ∈
◦
W 1

2(Ωm) provided that {|w |}Ωm
= 0. If Ωm is

a convex domain, then a simple upper bound for the constant in (5.10)
CP (Ωm) 6 1

π sup
x1,x2∈Ω

|x1 − x2| was found in [12]. Certainly, the condition

(5.9) imposes additional restrictions on v and y∗. However, these restric-
tions are much weaker than in (3.8) and for the values of M commonly
used in practice, can be satisfied fairly easily.

Instead of (5.1), we use the estimate

2

∣∣∣∣∣
∫
QT

Rf (v, y∗)e dx dt

∣∣∣∣∣ 6 2

T∫
0

N∑
i=1

CP (Ωi)

c1
‖Rf (v, y∗)‖Ω‖∇e‖A,Ωi

dt

6 2

T∫
0

SNf (v, y∗)‖∇e‖A 6
T∫

0

β(t)‖∇e‖2A,Ω dt+

T∫
0

1

β(t)
(SNf (v, y∗))2 dt,

where β ∈ L∞[β0,1] and

SNf (v, y∗) :=

(
N∑
i=1

C2
P (Ωi)

c21
‖Rf (v, y∗)‖2Ωi

)1/2

.

Then the estimates (5.3) and (5.4) hold if the majorant M+
1 (v, y∗, β, T ) is

replaced by

M̃+
1 (v, y∗, β, T ) :=‖v(·, 0)−φ‖2Ω+‖RA(v, y∗)‖2A−1,QT

+

T∫
0

1

β(t)
(SNf (v, y∗))2 dt.
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Usually CP (Ωm) is much smaller than C(Ω) and, therefore, the correspond-
ing estimates are sharper than (5.3) and (5.4).

5.3. Identity (4.1) implies a simple estimate

‖∇e‖2QT
+ ‖e∗‖2QT

+ ‖ρae‖2QT
+ ‖e(·, T )‖2Ω

6 ‖e(·, 0)‖2Ω + ‖RA(v, y∗)‖2A−1,QT
+ ‖1

ρ
Rf (v, y∗)‖2QT

. (5.11)

If ρ is not small then (4.1) and (5.11) provide direct control of errors e
and e∗ in terns of the measure µ2(e, e∗). Also (5.11) implies bounds for
the errors e and e∗ separately. Indeed, by taking infimum in both sides of
(5.11) with respect to y∗ and v we obtain the estimates

‖∇e‖2QT
+ ‖ρae‖2QT

+ ‖e(·, T )‖2Ω

6 ‖e(·, 0)‖2Ω + inf
y∗∈Y ∗

div

{
‖RA(v, y∗)‖2A−1,QT

+ ‖1

ρ
Rf (v, y∗)‖2QT

}
and

‖e∗‖2QT
6 inf
v∈V0

{
‖v(x, 0)− φ(x)‖2Ω+ ‖RA(v, y∗)‖2A−1,QT

+‖1

ρ
Rf (v, y∗)‖2QT

}
.

However, for small ρ the identity (4.1) and the estimate (5.11) is not con-
venient because these relations contain terms with large weights. This fact
can significantly reduce their practical value, unless the function Rf (v, y∗)
is not small enough.

We can deduce another majorant, which is applicable for ρ 6 1 and
robust for small values of ρ. First, we notice that

1

ρ
(dive∗−et−a · ∇e) =

1

ρ
(divy∗−vt−divp∗+ut−a · ∇(v−u))

=
1

ρ

(
divy∗ − vt − a · ∇v + f − ρ2u

)
=

1

ρ
Rf (v, y∗) + ρe.

(5.12)

Using (5.12), the identity (4.1) can be represented in the form

‖∇e‖2A,QT
+ ‖e∗‖2A−1,QT

+

∫
QT

2σ2
a|e‖2 dx dt+

[[
‖e‖2Ω

]]T
0

= ‖RA(v, y∗)‖2QT
− 2

∫
QT

Rf (v, y∗)e dx dt, (5.13)
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which does not contain 1
ρ . It is easy to see that if ρ → 0 then (5.13)

transfers to the identity (3.2). The last term in (5.13) contains unknown
function e. To get a fully computable error majorant, we decompose and
estimate the last integral as follows. Let

χ ∈ L∞[0,1](0, T ) := {0 6 χ(t) 6 1 ∀t ∈ [0, T ]} .

First, we split the integral

2

∫
QT

Rf (v, y∗)e dx dt = 2

∫
QT

(1−χ)Rf (v, y∗)e dx dt+2

∫
QT

χRf (v, y∗)e dx dt (5.14)

and estimate each of the two parts separately. We have

2
∣∣∣∫
QT

(1− χ)Rf (v, y∗)e dx dt
∣∣∣ 6 2

∫
QT

|(1− χ)Rf (v, y∗)| |e| dx dt

6
∫
QT

(
(1− χ)2

λ
|Rf (v, y∗)|2 + λ|e|2

)
dx dt

6
∫
QT

(1− χ)2

λ
|Rf (v, y∗)|2 dx dt+

T∫
0

λ‖e‖2Ω dt

6
∫
QT

(1− χ)2

λ
|Rf (v, y∗)|2 +

C2(Ω)

c21

T∫
0

λ‖∇e‖2A,Ω dt

(5.15)

and

2
∣∣∣∫
QT

χRf (v, y∗)e dx dt
∣∣∣ 6 ∫

QT

(
χ2

µ
|Rf (v, y∗)|2 + µ|e|2

)
dx dt. (5.16)

where λ(t) and µ(x, t) are a positive functions such that λ(t) 6 c21
C2(Ω)

and µ(x, t) 6 2σ2
a. In view of (5.14), (5.15), and (5.16) the identity (5.13)
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implies the estimate

T∫
0

(
1− λC

2(Ω)

c21

)
‖∇e‖2A,Ω dt+ ‖e∗‖2A−1,QT

+

∫
QT

(2σ2
a − µ)|e|2 dx dt+

[[
‖e‖2Ω

]]T
0

6 ‖RA(v, y∗)‖2QT
+

∫
QT

(
(1− χ)2

λ
+
χ2

µ

)
|Rf (v, y∗)|2 dx dt.

Infimum of the last integral is attained at χ = µ
λ+µ and we obtain

T∫
0

(
1− λC

2(Ω)

c21

)
‖∇e‖2A,Ω dt

+ ‖e∗‖2A−1,QT
+

∫
QT

(2σ2
a − µ)|e|2 dx dt+ ‖e(·, T )‖2Ω (5.17)

6 ‖v(x, 0)− φ(x)‖2Ω + ‖RA(v, y∗)‖2QT
+

∫
QT

1

λ+ µ
|Rf (v, y∗)|2 dx dt,

which is applicable for arbitrary small ρ.
In particular, setting β = λC

2(Ω)
c21

and tending µ to zero, we arrive at
the estimate
T∫

0

(1− β) ‖∇e‖2A,Ω dt+ ‖e∗‖2A−1,QT
+ 2‖σae‖2QT

+ ‖e(·, T )‖2Ω (5.18)

6‖v(x, 0)− φ(x)‖2Ω+‖RA(v, y∗)‖2QT
+

∫
QT

C2(Ω)

βc21+2ρ2C2(Ω)
|Rf (v, y∗)|2 dx dt.

If ρ = 0, then (5.14) coincides with (5.3).

Remark 2. The estimates (5.17) and (5.18) can be viewed as a generali-
sation of the estimate derived in [19] for the stationary reaction–diffusion
problems with small values of the reaction function ρ.
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5.4. The identity (4.5) also yields computable bounds of the errors e and
e∗. If v and y∗ satisfy the conditions of Theorem 3, then the following
estimate holds:

T∫
0

(1−β(t)−γ(t))‖∇e‖2A dt+
T∫

0

(2−α(t))‖et‖2 dt+2‖ρe‖2QT
+‖e∗‖2A−1,QT

+
[[
‖e‖2Ω

]]T
0

+
[[
‖ρ e dx‖2Ω

]]T
0

+
[[
‖e∗‖2A−1

]]T
0
6M+

2 (v, y∗, α, β, γ). (5.19)

Here

M+
2 (v, y∗, α, β, γ) := ‖RA(v, y∗)‖2A−1,QT

+
[[
‖RA(v, y∗)‖2A−1,Ω

]]T
0

+

T∫
0

[(
1

α(t)
+
C2(Ω)

c21β(t)

)
‖Rf (v, y∗)‖2Ω +

1

γ(t)
‖(RA(v, y∗)t‖2A−1 dt

]
dt,

and α, β, and γ are arbitrary positive functions in L∞(0, T ) such that
0 < β + γ 6 1 and α 6 2.

To prove (5.19), we estimate the last integral of R(v, y∗; e, et) by the
Cauchy and Young’s inequalities:

∣∣∣∣∣∣
∫
QT

Rf (v, y∗)e dx dt

∣∣∣∣∣∣ 6
T∫

0

‖Rf (v, y∗)‖Ω‖e‖Ω dt

6

T∫
0

C(Ω)

c1
‖Rf (v, y∗)‖Ω‖∇e‖A dt

6
C2(Ω)

c21

T∫
0

1

2β(t)
‖Rf (v, y∗)‖2Ω dt+

T∫
0

β(t)

2
‖∇e‖2A dt.
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Hence

2

∣∣∣∣∣∣
∫
QT

Rf (v, y∗)(e+ et) dx dt

∣∣∣∣∣∣ 6
T∫

0

(
1

α(t)
+
C2(Ω)

c21β(t)

)
‖Rf (v, y∗)‖2Ω dt

+

T∫
0

α(t)‖et‖2Ω dt+

T∫
0

β(t)‖∇e‖2A dt. (5.20)

Also, we have∫
QT

∇e · (y∗ −A∇v)t dx dt =

∫
QT

A∇e · (A−1y∗ −∇v)t dx dt

6

T∫
0

‖∇e‖A

∫
Ω

A(A−1y∗t −∇vt) · (A−1y∗t −∇vt) dx

1/2

dt

=

T∫
0

‖∇e‖A‖y∗t −A∇vt‖A−1 dt

6

T∫
0

γ(t)‖∇e‖2A dt+

T∫
0

1

γ(t)
‖(RA(v, y∗)t‖2A−1 dt. (5.21)

By (5.20) and (5.21) we conclude that

2|R(v, y∗; e, et)|

6

T∫
0

(
1

α(t)
+
C2(Ω)

c21β(t)

)
‖Rf (v, y∗)‖2Ω dt+

T∫
0

1

γ(t)
‖(RA(v, y∗)t‖2A−1 dt

+

T∫
0

α(t)‖et‖2Ω dt+

T∫
0

(β(t) + γ(t))‖∇e‖2A dt. (5.22)

Applying (5.22) to (4.5), we obtain (5.19).

References
1. P. Ciarlet, The finite element method for elliptic problems, North-Holland, 1987.



A POSTERIORI ERROR IDENTITIES FOR PARABOLIC CONVECTION227

2. V. N. Denisov, On the behavior of solutions of parabolic equations for large value
of time. — Russ. Math. Surv. 60, No. 4 (2005), 721–790.

3. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1964.

4. K. Kumar, S. Kyas, J. Nordbotten, S. Repin, Guaranteed and computable error
bounds for approximations constructed by an iterative decoupling of the Biot prob-
lem. — Comput. Math. Appl. 91 (2021), 122–149.

5. O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear
Equations of Parabolic Type, Nauka, Moscow, 1967.

6. O. A. Ladyzhenskaya, The boundary value problems of mathematical physics,
Springer, New York, 1985.

7. U. Langer, S. Matculevich, and S. Repin, Guaranteed error bounds and local indica-
tors for adaptive solvers using stabilised space-time IgA approximations to parabolic
problems. — Comput. Math. Appl. 78, No. 8 (2019), 2641–2671.

8. S. Matculevich and S. Repin, Computable estimates of the distance to the exact
solution of the evolutionary reaction-diffusion equation. — Appl. Math. Comput.
247 (2014), 329–347.

9. S. Matculevich and S. Repin, Estimates for the difference between exact and ap-
proximate solutions of parabolic equations on the basis of Poincare inequalities for
traces of functions on the boundary. — Differ. Equ., 52, No. 10 (2016), 1355–1365.

10. K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Tay-
lor&Francis, New York, 1996.

11. A. Quarteroni and A. Vali, Domain decomposition methods for partial differen-
tial equations, Numerical Mathematics and Scientific Computation. Oxford Science
Publications. The Clarendon Press, Oxford University Press, New York, 1999.

12. L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex
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