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Abstract. The WL-rank of a graph Γ is defined to be the rank of
the coherent configuration of Γ. The WL-dimension of Γ is defined
to be the smallest positive integer m for which Γ is identified by
the m-dimensional Weisfeiler-Leman algorithm. We present some
families of strictly Deza dihedrants of WL-rank 4 or 5 and WL-
dimension 2. Computer calculations show that every strictly Deza
dihedrant with at most 59 vertices is circulant or belongs to one of
the above families. We also construct a new infinite family of strictly
Deza dihedrants whose WL-rank is a linear function of the number
of vertices.

§1. Introduction

A coherent configuration X on a finite set V can be thought as a special
partition of V ×V such that the diagonal of V ×V is a union of some classes
(see [4, Definition 2.1.3]). The Weisfeiler-Leman algorithm [33] computes
efficiently for a given graph1 Γ with vertex set V and edge set E the smallest
coherent configuration WL(Γ) on V such that E is a union of some classes
of WL(Γ). The coherent configuration WL(Γ) is called the WL-closure of
Γ. The study of WL(Γ) can help to obtain the results about the graph Γ.
For example, a number of results on the isomorphism problem for some
classes of graphs [12, 24, 25] were obtained by studying the corresponding
coherent configurations.

The number of classes in the coherent configuration X is called the
rank of X . The WL-rank of the graph Γ is defined to be the rank of
WL(Γ). Clearly, rkWL(Γ) 6 |V |2. Observe that rkWL(Γ) > 2 unless |V | = 1
because the diagonal of V × V is a union of some classes of any coherent
configuration on V . If Γ is vertex-transitive, then rkWL(Γ) 6 |V |.

Key words and phrases: WL-rank, WL-dimension, Deza graphs, Cayley graphs, di-
hedral group.
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1All graphs in the paper are assumed to be undirected and without loops and mul-
tiple edges.
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A k-regular graph Γ is called strongly regular if there exist nonnegative
integers λ and µ such that every two adjacent vertices have λ common
neighbors and every two distinct nonadjacent vertices have µ common
neighbors. The following generalization of strongly regular graphs going
back to [7] was suggested in [8]. A k-regular graph Γ on n vertices is called
a Deza graph if there exist nonnegative integers a and b such that any
pair of distinct vertices of Γ has either a or b common neighbors. The
numbers (n, k, b, a) are called the parameters of Γ. Clearly, if a > 0 and
b > 0, then Γ has diameter 2. A Deza graph is called a strictly Deza graph
if it is not strongly regular and has diameter 2. Deza graphs have been
actively studied during the last years. For more details on Deza graphs and
the recent progress in their studying, we refer the readers to the survey
paper [16].

The WL-rank of a strongly regular graph is at most 3. So it seems
natural to ask how large the WL-rank of a (strictly) Deza graph can be.
This question for strictly Deza circulants was studied in [3]. From the
results of that paper it follows that the WL-rank of every known strictly
Deza circulant is at most 6. A circulant can be thought as a Cayley graph
over a cyclic group. Recall that if G is a finite group and S is an identity-
free inverse-closed subset of G, then the Cayley graph Cay(G,S) is defined
to be the graph with vertex set G and edge set {(g, sg) : s ∈ S, g ∈ G}.
The automorphism group of every Cayley graph over G contains the group
Gr of all right translations of G. So every Cayley graph is vertex-transitive
and hence rkWL(Cay(G,S)) 6 |G|. In [5], it was constructed an infinite
family of Cayley graphs Cay(G,S) such that rkWL(Cay(G,S)) = |G|.

The class of Deza graphs looks very wide and the problem of the clas-
sification of all even strictly Deza graphs seems to be hopeless. One of the
possible steps towards the classification of all strictly Deza graphs is the
classification of strictly Deza graphs of small WL-rank. All strictly Deza
circulants of WL-rank 4 were classified in [3]. Some constructions of strictly
Deza graphs of WL-rank 4 were suggested in [14].

By a dihedrant, we mean a graph isomorphic to a Cayley graph over a
dihedral group. All strongly regular dihedrants were described in [22]. In
the present paper, we study strictly Deza dihedrants. In the first statement,
we describe some families of strictly Deza dihedrants of WL-rank 4. The
complete graph with n vertices is denoted by Kn. The Cartesian product
of graphs Γ1 and Γ2 is denoted by Γ1×Γ2. If A is a cyclic group of order n,
D ⊂ A is a difference set in A (see Section 2.4 for the definition), G is a
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dihedral group of order 2n containing A, and x ∈ G \ A is an element of
order 2, then put Γ(D) = Cay(G,A# ∪ xD), where A# is the set of all
nontrivial elements of A. Note that Γ(D) is a complement to the graph
from [22, Theorem 1.3(i)].

Theorem 1.1. Each of the following graphs is a strictly Deza dihedrant
of WL-rank 4 :

(1) Γ(D), where D is a cyclic difference set with parameters(
n,

2n− 1−
√

8n− 7

2
, n+ 1−

√
8n− 7

)
;

(2) K4 ×Km, where m > 2 is not divisible by 4.

Observe that K4 × Km is a strictly Deza graph for every m by [8,
Theorem 2.8(ii)]. However, if m is divisible by 4, then K4 ×Km is not a
dihedrant (see Lemma 3.4). From [3, Theorem 1.1] it follows that Γ(D)
is not a circulant and K4 ×Km is circulant if and only if m is odd. The
computer calculations [13,15] show that Theorem 1.1 describes all strictly
Deza dihedrants with small number of vertices which are not circulants.

Corollary 1.1. A graph with at most 59 vertices is a strictly Deza dihe-
drant of WL-rank 4 if and only if it is isomorphic to a strictly Deza cir-
culant of WL-rank 4 with even number of vertices or to one of the graphs
from Theorem 1.1.

We do not know whether there exist infinitely many cyclic difference
sets with parameters (n, 2n−1−

√
8n−7

2 , n + 1 −
√

8n− 7). If n 6 100 then
there exist three such difference sets with parameters (7, 3, 1), (11, 6, 3),
and (37, 28, 21) (see [2]). However, using graphs Γ(D), one can construct
infinite family of strictly Deza dihedrants of WL-rank 5 which is described
in the next statement. The lexicographic products of graphs Γ1 and Γ2 is
denoted by Γ1[Γ2].

Theorem 1.2. Each of the following graphs is a strictly Deza dihedrant
of WL-rank 5 :

(1) Km[Γ(D)], where D is a cyclic difference set with parameters(
n,

2n− 1−
√

8n− 7

2
, n+ 1−

√
8n− 7

)
and m > 2;

(2) Km[K4 ×K2], where m > 2.
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Note that the graph Km[K4×Kl] is not a strictly Deza graph whenever
l 6= 2 and m > 2 (see Lemma 4.3). The computer calculations [13, 15]
yield that Theorem 1.2 describes all strictly Deza dihedrants of WL-rank 5
with small number of vertices which are not circulants. Observe that by
the results from [3], there is a unique (up to isomorphism) strictly Deza
circulant of WL-rank 5 with even number of vertices not exceeding 59; it
has 8 vertices.

Corollary 1.2. A graph with at most 59 vertices is a strictly Deza di-
hedrant of WL-rank 5 if and only if it is isomorphic to a strictly Deza
circulant of WL-rank 5 with 8 vertices or to one of the graphs from Theo-
rem 1.2.

Recall that every known strictly Deza circulant has WL-rank at most 6.
It seems natural to ask the following question: can the WL-rank of a strictly
Deza dihedrant be arbitrary large? The next statement give a positive
answer to this question.

Theorem 1.3. Let k > 3 be an odd integer. There exists a strictly Deza
dihedrant Σ(k) with 8k vertices of WL-rank 6k.

In this paper, we study one more parameter of graphs related with the
Weisfeiler-Leman algorithm. TheWL-dimension (theWeisfeiler-Leman di-
mension) dimWL(Γ) of a graph Γ is defined to be the smallest positive
integer d for which Γ is identified by the d-dimensional Weisfeiler-Leman
algorithm [18, p. 6] (see also [17]). If dimWL(Γ) 6 d, then one can ver-
ify whether Γ and any other graph are isomorphic in time nO(d) using
the d-dimensional Weisfeiler-Leman algorithm. More details on the WL-
dimension of graphs can be found in [17,18]. In [3], it was proved that the
WL-dimension of every known Deza circulant is at most 3. The next state-
ment gives the WL-dimension of strictly Deza dihedrants which appear in
Theorems 1.1, 1.2, and 1.3. If D is a difference set in a group G, then the
order of G is denoted by v(D) (see Section 2.4).

Theorem 1.4. Each of the following graphs has WL-dimension 2 :

(1) Km[Γ(D)], where m > 1 and v(D) 6 13;

(2) Km[K4 ×K2], where m > 1;

(3) Σ(k), where k > 3 is an odd integer.
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From [2] it follows that there is a cyclic difference set D with v(D) ∈
{7, 11, 13} and there is no a cyclic difference set D with v(D) 6 13 and
v(D) /∈ {7, 11, 13}. If v(D) > 13, then dimWL(Km[Γ(D)]) > 2 (see Re-
mark 6.1).

The text of the paper is organized in the following way. The WL-closure
of a Cayley graph can be thought as an S-ring. Section 2 contains all
necessary definitions and statements on S-rings, Cayley graphs, WL-rank,
WL-dimension, and difference sets. In Sections 3, 4, 5, and 6, we prove
Theorems 1.1, 1.2, 1.3, and 1.4, respectively. In Appendix, there is a table
in which we collect properties of graphs from the paper.

The authors would like to thank D. Churikov for the help with computer
calculations.

§2. Preliminaries

In this section we provide a background of S-rings, Cayley graphs, and
difference sets. In general, we follow [3,29], where the most part of defini-
tions and statements is contained. Throughout the paper, the symmetric
group of a finite set Ω is denoted by Sym(Ω); if |Ω| = n and the set Ω is
not important, then we write Sym(n) instead of Sym(Ω).

2.1. S-rings. Let G be a finite group and ZG the integer group ring.
The identity element of G and the set of all nonidentity elements of G are
denoted by e and G#, respectively. If X ⊆ G then the element

∑
x∈X

x of

the group ring ZG is denoted by X. The explicit computation shows that
G2 = |G|G. The set {x−1 : x ∈ X} is denoted by X−1.

A subring A ⊆ ZG is called an S-ring (a Schur ring) over G if there
exists a partition S = S(A) of G such that:

(1) {e} ∈ S;
(2) if X ∈ S then X−1 ∈ S;
(3) A = SpanZ{X : X ∈ S}.

The notion of S-ring goes back to Schur [30] and Wielandt [32]. The ele-
ments of S are called the basic sets of A and the number rk(A) = |S| is
called the rank of A. The S-ring of rank 2 over G defined by the partition
{{e}, G#} is denoted by TG.

The following easy lemma can be found, e.g., in [28, Lemma 2.4].

Lemma 2.1. Let A be an S-ring over a group G. If X,Y ∈ S(A) then
XY ∈ S(A) whenever |X| = 1 or |Y | = 1.
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Lemma 2.2. [5, Lemma 2.2] Let A be an S-ring over a group G and
X ⊆ G such that 〈X〉 = G. Suppose that {x} ∈ S(A) for every x ∈ X.
Then A = ZG.

A set X ⊆ G is called an A-set if X ∈ A or, equivalently, X is a union
of some basic sets of A. The set of all A-sets is denoted by S∗(A). Clearly,
if X ∈ S∗(A) and |X| = 1, then X ∈ S(A). Let A1 and A2 be S-rings over
G. It is easy to see that A1 6 A2, i.e. A1 is a subring of A2, if and only if
every basic set of A1 is an A2-set.

One can verify (see [5, Eq. (1)]) that if X,Y ∈ S∗(A), then

X ∩ Y,X ∪ Y,X \ Y, Y \X,XY ∈ S∗(A). (1)

A subgroup H 6 G is called an A-subgroup if H ∈ S∗(A). For every
X ∈ S∗(A), the groups 〈X〉 and rad(X) = {g ∈ G : Xg = gX = X} are
A-subgroups.

Let L � U 6 G. A section U/L is called an A-section if U and L are
A-subgroups. If U/L is an A-section then the module

AU/L = SpanZ {Xπ : X ∈ S(A), X ⊆ U} ,
where π : U → U/L is the canonical epimorphism, is an S-ring over U/L.

The following lemma is known as the Wielandt principle [32, Proposi-
tion 22.1].

Lemma 2.3. Let A be an S-ring over G, ξ =
∑
g∈G

cgg ∈ A, where cg ∈ Z,

and c ∈ Z. Then {g ∈ G : cg = c} ∈ S∗(A).

Let L be a normal subgroup of G, A1 an S-ring over L, and A2 an
S-ring over G/L. Then the partition

{X : X ∈ S(A1)} ∪ {Xπ−1

: X ∈ S(A2)},
where π : G → G/L is the canonical epimorphism, defines the S-ring A
over G which is called the wreath product of A1 and A2 and denoted by
A1 o A2. Clearly, AL = A1 and AG/L = A2.

Let U/L be an A-section of G. The S-ring A is called the U/L-wreath
product or generalized wreath product of AU and AG/L if L is normal in
G and L 6 rad(X) for each basic set X outside U . In this case, we write
A = AU oU/LAG/L. If L > {e} and U < G then the U/L-wreath product is
called nontrivial. The notion of the generalized wreath product of S-rings
was introduced in [9]. The following equality can be found, e.g., in [5]:

rk(AU oU/L AG/L) = rk(AU ) + rk(AG/L)− rk(AU/L). (2)
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If U = L then the U/L-wreath product coincides with AL o AG/L.
Let H and V be A-subgroups such that G = H × V . The S-ring A is

called the tensor product of AH and AV if

S(A) = {X1 ×X2 : X1 ∈ S(AH), X2 ∈ S(AV )}.

In this case we write A = AH ⊗AV .
If X ⊆ G, then the edge set of the Cayley graph Cay(G,X) is denoted

by E(X). Let A1 and A2 be S-rings over groups G1 and G2, respectively.
A bijection f : G1 → G2 is called an isomorphism from A1 to A2 if

{E(X1)f : X1 ∈ S(A1)} = {E(X2) : X2 ∈ S(A2)},

where E(X1)f = {(xf , yf ) : (x, y) ∈ E(X1)}. If there exists an isomor-
phism from A1 to A2, then we say that A1 and A2 are isomorphic and
write A1

∼= A2.
The automorphism group Aut(A) is defined to be the group⋂

X∈S(A)

Aut(Cay(G,X)).

Since Aut(Cay(G,X)) > Gr for every X ∈ S(A), we conclude that
Aut(A) > Gr. Clearly, if rk(A) = 2, then Aut(A) = Sym(G). Due to [4,
Theorem 2.2.11], we have Aut(ZG) = Gr.

Lemma 2.4. Let A1 and A2 be S-rings and A = A1∗A2, where ∗ ∈ {⊗, o}.
Then Aut(A) = Aut(A1) ∗Aut(A2).

Proof. The statement of the lemma follows from [4, Eq. 3.2.18] whenever
∗ = ⊗ and from [4, Eq. 3.4.11] whenever ∗ = o. �

A cyclic group of order n is denoted by Cn.

Lemma 2.5. Let H < G and S0 a partition of H which defines an S-ring
A0 over H. Then the partition S0 ∪ {G \H} defines the S-ring A over G
which is isomorphic to A0 o TCm

, where m = |G : H|.

Proof. Put Y = G \H. Since H 6 rad(Y ), we have XY = Y X = |X|Y
for every X ∈ S0. From [3, Eq. (3)] it follows that

Y 2 = (G−H)2 = (|G| − 2|H|)Y + (|G| − |H|)H.

Therefore the partition S defines the S-ring A over G such that AH = A0.
Since rk(A) = rk(A0) + 1, we obtain A ∼= A0 o TCm , where m = |G : H|,
by [23, Corollary 3.3]. �
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2.2. Cayley graphs. Let S ⊆ G, e /∈ S, S = S−1, and Γ = Cay(G,S).
The WL-closure WL(Γ) of Γ can be thought as the smallest S-ring over
G such that S ∈ S∗(A) (see [3, Section 5]). It is easy to see that the WL-
rank of the complete graph is equal to 2. If A = WL(Γ), then rkWL(Γ) =
rk(A) by [3, Lemma 5.1]. From [4, Theorem 2.6.4] it follows that Aut(Γ) =
Aut(A).

Lemma 2.6. [3, Lemma 5.2] Let G be a group of order n, S ⊆ G such
that e /∈ S, S = S−1, and |S| = k, and Γ = Cay(G,S). The graph Γ is a
Deza graph with parameters (n, k, b, a) if and only if S2 = ke+ aSa + bSb,
where Sa ∪ Sb = G# and Sa ∩ Sb = ∅. Moreover, Γ is strongly regular if
and only if Sa = S or Sb = S.

Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be graphs. The Cartesian product
Γ1×Γ2 of Γ1 and Γ2 is defined to be the graph with vertex set V = V1×V2
and edge set E defined as follows:

((v1, v2), (u1, u2)) ∈ E
if and only if

v1 = u1 and (v2, u2) ∈ E2

or v2 = u2 and (v1, u1) ∈ E1.

The lexicographic product Γ1[Γ2] of Γ1 and Γ2 is defined to be the graph
with vertex set V = V1 × V2 and edge set E defined as follows:

((v1, v2), (u1, u2)) ∈ E
if and only if

(v1, u1) ∈ E1 or v1 = u1 and (v2, u2) ∈ E2.

Note that if Γ1 has one vertex, then Γ1[Γ2] ∼= Γ2.

Lemma 2.7. [3, Lemma 5.4] Let G be a group, H a normal subgroup
of G, π : G → G/H the canonical epimorphism, and G = Gπ. Suppose
that Γ1 = Cay(G,T ) and Γ2 = Cay(H,S) are Cayley graphs over G and
H, respectively. Then

Γ1[Γ2] ∼= Cay(G, (T )π
−1

∪ S).

Lemma 2.8. In the notations of Lemma 2.7, let Γ = Cay(G, (T )π
−1 ∪S).

Then WL(Γ) 6WL(Γ2) oWL(Γ1).



160 G. K. RYABOV, L. V. SHALAGINOV

Proof. Put A1 = WL(Γ1), A2 = WL(Γ2), and A = A2 o A1. By the
definition of the WL-closure, T ∈ S∗(A1). So (T )π

−1

is a union of some
basic sets of A outside H. Since S ∈ S∗(A2), we conclude that S ∈ S∗(A)

by the definition of the wreath product. Therefore (T )π
−1 ∪ S ∈ S∗(A)

and hence WL(Γ) 6 A. �

Remark 2.9. The inequality WL(Γ) 6 WL(Γ2) oWL(Γ1) in Lemma 2.8
can be strict. If Γ1 and Γ2 are complete graphs then Γ = Γ1[Γ2] is complete
and hence rk(WL(Γ)) = 2. On the other hand,

rk(WL(Γ1)) = rk(WL(Γ2)) = 2.

Eq. (2) implies that rk(WL(Γ2) oWL(Γ1)) = 3. Therefore

WL(Γ) < WL(Γ2) oWL(Γ1).

Lemma 2.10. Let Γ be a Deza graph with parameters (n, k, b, a), a 6= b,
and m a positive integer. Then Km[Γ] is a Deza graph if and only if a =
2k − n or β = 2k − n. In this case, Km[Γ] has parameters (mn, k + (m−
1)n, b+ (m− 1)n, a+ (m− 1)n).

Proof. Since Km is strongly regular, [8, Proposition 2.3] implies that
Km[Γ] is k + (m − 1)n-regular and the number of common neighbors of
two vertices of Km[Γ] belongs to the set

{a+ (m− 1)n, b+ (m− 1)n, (m− 2)n+ 2k}.

So Km[Γ] is a Deza graph if and only if∣∣{a+ (m− 1)n, b+ (m− 1)n, (m− 2)n+ 2k}
∣∣ = 2.

In view of a 6= b, the latter holds if and only if a = 2k−n or β = 2k−n. �

2.3. WL-dimension. TheWL-dimension (theWeisfeiler–Leman dimen-
sion) dimWL(Γ) of a graph Γ is defined to be the smallest positive integer d
for which Γ is identified by the d-dimensional Weisfeiler–Leman algorithm.
If dimWL(Γ) 6 d, then the isomorphism between Γ and any other graph
can be verified in time nO(d) using the Weisfeiler-Leman algorithm [33].
The WL-dimension of Deza circulant graphs was studied in [3]. For more
details on WL-dimension of graphs, we refer the readers to [17,18].

Following [3, Section 4.2], we say that an S-ring A is separable if the
Cayley scheme X corresponding to A is separable, i.e. every algebraic
isomorphism of X is induced by a combinatorial isomorphism. The exact
definitions and more information on separable S-rings and schemes can be
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found in [4, Section 2.3.4] and [29]. The following statement is a special
case of [11, Theorem 2.5].

Lemma 2.11. Let Γ be a Cayley graph and A = WL(Γ). Then

dimWL(Γ) 6 2

if and only if A is separable.

Lemma 2.12. An S-ring A over a group G is separable if one of the fol-
lowing statements holds:

(1) rk(A) = 2;

(2) |G| 6 14;

(3) A = ZU oU/L Z(G/L) for some A-section U/L of G.

Proof. If Statement 1 of the lemma holds, then A is separable by [4,
Example 2.3.31]; if Statement 2 of the lemma holds, then A is separable
by [4, p. 64]; if Statement 3 of the lemma holds, then A is separable
by [4, Theorem 3.4.23]. �

Lemma 2.13. [3, Lemma 4.1] Let A1 and A2 be S-rings. The S-ring
A1 ∗ A2, where ∗ ∈ {o,⊗}, is separable if and only if so are A1 and A2.

The following lemma immediately follows from the description of all
regular graphs of WL-dimension 1 [1, Lemma 3.1 (a)].

Lemma 2.14. If Γ is a regular graph such that dimWL(Γ) = 1, then Γ is
strongly regular, i.e. rkWL(Γ) 6 3.

2.4. Difference sets. A subset D of G is called a difference set in G if

D−1D = ke+ λG#,

where k = k(D) = |D| and λ = λ(D) is a positive integer. The numbers
(v, k, λ), where v = v(D) = |G|, are called the parameters of D. It is easy
to check that G\D is a difference set with parameters (v, v−k, v−2k+λ).
A simple counting argument implies that

λ =
k2 − k
v − 1

. (3)

If G is a cyclic group, then D is defined to be a cyclic difference set. For
the general theory of difference sets, we refer the readers to [2, 27].
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§3. Proof of Theorem 1.1

Let n > 3. A dihedral group of order 2n is denoted by D2n. Put G =
〈x, y : xn = y2 = e, xy = x−1〉 ∼= D2n, A = 〈x〉, and B = 〈y〉. Clearly, G =
AoB. These notations are valid until the end of the paper. Suppose that
D is a difference set in A with parameters (n, k, λ). Then [26, Lemma 5.1]
implies that the partition of G into sets

{e}, A#, bD, b(A \D)

defines the S-ring A = A(D). Clearly, rk(A) = 4. Put

S = A# ∪ yD and Γ = Γ(D) = Cay(G,S).

One can see that S = S−1 and Γ is (n− 1 + k)-regular.

Lemma 3.1. The graph Γ is a strictly Deza graph if and only if D has
parameters

(n,
2n− 1−

√
8n− 7

2
, n+ 1−

√
8n− 7).

Proof. The straightforward computation in the group ring ZG using the
equalities yxy = x−1, (A#)2 = (n−1)e+(n−2)A#, andD−1D = ke+λA#,
implies that

S2 = (k + n− 1)e+ (n− 2 + λ)A# + 2(k − 1)yD + 2kyA \D (4)

From Lemma 2.6 and Eq. (4) it follows that Γ is a Deza graph if and only
if |{n − 2 + λ, 2(k − 1), 2k}| = 2 and Γ is strongly regular if and only if
n − 2 + λ = 2(k − 1). Obviously, 2(k − 1) 6= 2k and every element from
{n−2 +λ, 2(k−1), 2k} is non-zero. Therefore Γ is a strictly Deza graph if
and only if n− 2 +λ = 2k. Due to Eq. (3), we have n− 2 + k2−k

n−1 = 2k and
hence k2 − k(2n− 1) + n2 − 3n+ 2 = 0. Since k 6 n and n > 3, we obtain

k =
2n− 1−

√
8n− 7

2
and λ = 2k − n+ 2 = n+ 1−

√
8n− 7.

Thus, Γ is a strictly Deza graph if and only if D has parameters

(n,
2n− 1−

√
8n− 7

2
, n+ 1−

√
8n− 7). �

The next lemma immediately follows from the definition of Γ(D), Lem-
ma 2.6, Lemma 3.1, and Eq. (4).

Lemma 3.2. If Γ is a strictly Deza graph then Γ has parameters (2n, n−
1 + k, 2k, 2(k − 1)), where k = 2n−1−

√
8n−7

2 .
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Lemma 3.3. In the above notations, WL(Γ) = A. In particular,
rkWL(Γ) = rk(A) = 4.

Proof. Put A′ = WL(Γ). Let us prove that A′ = A. Since S ∈ S∗(A)
and A′ is the smallest S-ring over G such that S ∈ S∗(A′), we conclude
that A′ 6 A. From Lemma 2.3 and Eq. (4) it follows that yD ∈ S∗(A′).
Since S, yD ∈ S∗(A′), Eq. (1) implies that A# = S \ yD ∈ S∗(A′) and
G# \ S ∈ S∗(A′). Therefore every basic set of A is an A′-set and hence
A′ > A. Thus, A′ = A. �

From [8, Theorem 2.8] it follows that K4×Km has parameters (4m,m+
2,m − 2, 2). The WL-closure of K4 × Km is isomorphic to TC4

⊗ TCm

by [4, Example 3.2.12].

Lemma 3.4. The graph K4 ×Km is a dihedrant if and only if m is not
divisible by 4.

Proof. Observe that

Aut(K4×Km)=Aut(WL(K4×Km))∼=Aut(TC4
⊗TCm

)∼=Sym(4)×Sym(m),

where the second equality holds by the remark before the lemma and
the third equality holds by Lemma 2.4. By Sabidussi’s theorem, a graph
is isomorphic to a Cayley graph over a given group if and only if the
automorphism group of the graph contains a regular subgroup isomorphic
to this group. Therefore K4 × Km is isomorphic to a Cayley graph over
G ∼= D2n, where n = 2m, if and only if Sym(4) × Sym(m) contains a
regular subgroup isomorphic to G. The latter holds if and only if there
exist subgroups L and U of G such that |L| = 4, |U | = m, |L ∩ U | = 1,
and G = LU .

Let A1 be the Sylow 2-subgroup of A and A2 the Hall 2′-subgroup of
A. Clearly, A = A1 × A2. If m is odd, then |A1| = 2 and |A2| = m. In
this case, one can take L = A1 × B and U = A2. If m = 2l, where l is
odd, then |A1| = 4 and |A2| = l. In this case, one can take L = A1 and
U = A2 oB. Thus, if m is not divisible by 4, then K4×Km is isomorphic
to a dihedrant.

Suppose that m is divisible by 4 and G = LU , where |L| = 4, |U | = m,
and |L ∩ U | = 1. Clearly, |U | is divisible by 4 in this case. So U must
contain a subgroup of A order 2. On the other hand, L also must contain
a subgroup of A order 2 because |L| = 4. We obtain a contradiction to
|L ∩ U | = 1. Thus, if m is divisible by 4 then K4 ×Km is not isomorphic
to a dihedrant. �
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Proof of Theorem 1.1. Clearly, the graph Γ(D) is a dihedrant. The
WL-rank of Γ(D) is equal to 4 by Lemma 3.3 and Γ(D) is a strictly Deza
graph whenever D has parameters (n, 2n−1−

√
8n−7

2 , n + 1 −
√

8n− 7) by
Lemma 3.1.

The graph K4 × Km is a strictly Deza graph by [8, Theorem 2.8] for
everym > 2. The WL-rank of K4×Km is equal to 4 by [4, Example 3.2.12]
and K4×Km is isomorphic to a dihedrant whenever m is not divisible by 4
by Lemmma 3.4. �

Proof of Corollary 1.1. Every circulant graph with even number of ver-
tices is isomorphic to a dihedrant by [21, Proposition 2.1]. So the “if” part
of Corollary 1.1 follows from the above result and Theorem 1.1. The “only
if” part of Corollary 1.1 follows from the computational results [13,15]. �

§4. Proof of Theorem 1.2

As in the previous section, G = 〈x, y : xn = y2 = e, xy = x−1〉 ∼= D2n.
Let A0 6 A, G0 = A0 o B, and |G : G0| = |A : A0| = m > 2. Suppose
that |A0| = l and D is a difference set of size k in A0 with parameters
(l, k, 2k − l + 2), where k = 2l−1−

√
8l−7

2 . Put

T = A#
0 ∪ yD ∪ (G \G0) and ∆ = ∆(D,m) = Cay(G,T ).

One can see that T = T−1 and ∆ is (2n − l + k − 1)-regular. The graph
Cay(G0, A

#
0 ∪yD) is isomorphic to Γ(D). So ∆ is isomorphic to Km[Γ(D)]

by Lemma 2.7.

Lemma 4.1. The graph ∆ is a strictly Deza graph with parameters
(2n, 2n− l + k − 1, n− l + 2k, n− l + 2k − 2).

Proof. The parameters of Γ(D) are equal to (2l, l− 1 +k, 2k, 2(k− 1)) by
Lemma 3.2. Observe that 2(k − 1) = 2(l − 1 + k) − 2l. Therefore ∆ is a
Deza graph with parameters (2n, 2n− l+ k− 1, n− l+ 2k, n− l+ 2k− 2)
by Lemma 2.10. All parameters of ∆ are positive because n > l. So ∆
has diameter 2. Since Γ(D) is not strongly regular, ∆ is also not strongly
regular. Therefore ∆ is a strictly Deza graph. �

Let us consider the partition of G into the following sets:

X0 = {e}, X1 = A#
0 , X2 = yD,X3 = y(A0 \D), X4 = G \G0.
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The partition {X0, X1, X2, X3} of G0 defines the S-ring A(D) over G0

by [26, Lemma 5.1]. So the partition {X0, X1, X2, X3, X4} defines the S-
ring B = B(D,m) over G such that B ∼= A(D) o TCm by Lemma 2.5.

Lemma 4.2. In the above notations, WL(∆) = B. In particular,

rkWL(∆) = rk(B) = 5.

Proof. Put B′ = WL(∆). Note that B′ 6 B by Lemma 2.8. Since T ∈
S∗(B′), we obtain G# \ T = X3 ∈ S∗(B′) by Eq. (1). The set A0 \ D
is a difference set in A0. So X3X3 = A0 and hence A#

0 = X1 ∈ S∗(B′)
by Eq. (1). The group G0 = 〈X1 ∪ X3〉 is a B′-subgroup. So G \ G0 =
X4 ∈ S∗(B′) by Eq. (1). Finally, X2 = T \ (X1 ∪X4) ∈ S∗(B′) by Eq. (1).
Therefore every basic set of B is a B′-set. Thus, B′ > B and hence B′ =
B. �

Lemma 4.3. Let m > 2 and l > 1. The graph Km[K4 ×Kl] is a strictly
Deza graph if and only if l = 2. The parameters of Km[K4×K2] are equal
to (8m, 8m− 4, 8m− 6, 8m− 8).

Proof. The parameters of K4 ×Kl are equal to (4l, l + 2, l − 2, 2) by [8,
Theorem 2.8]. Lemma 2.10 implies that Km[K4 × Kl] is a Deza graph if
and only if 4 − 2l = l − 2 or 4 − 2l = 2. The latter holds if and only if
l = 2 or l = 1. If l = 1, then Km[K4 × Kl] is complete and hence not
strictly Deza. The graph Km[K4 × K2] is a strictly Deza graph because
K4×K2 is not strongly regular. The parameters of Km[K4×K2] are equal
to (8m, 8m− 4, 8m− 6, 8m− 8) by Lemma 2.10. �

Now suppose that |A0| = 4 and x0 is a generator of A0. Clearly, n > 8
and G0

∼= D8 in this case. Put

R = R0 ∪ (G \G0) and Λ = Λ(m) = Cay(G,R),

where R0 = {x20, yx0, yx20, yx30}. One can see that R = R−1 and Λ is (2n−
4)-regular. The straightforward check shows that the graph Cay(G0, R0)
is isomorphic to K4 ×K2. Therefore Λ is isomorphic to Km[K4 ×K2] by
Lemma 2.7. Thus, Λ is a strictly Deza graph with parameters (8m, 8m −
4, 8m− 6, 8m− 8) = (2n, 2n− 4, 2n− 6, 2n− 8).

Let us consider the partition of G into the following sets:

Y0 = {e}, Y1 = {yx20}, Y2 = {y, x0, x30}, Y3 = {x20, yx0, yx30}, Y4 = G \G0.

The computation using [20] implies that the partition {Y0, Y1, Y2, Y3} of
G0 defines an S-ring C0 over G0 such that C0 = WL(Cay(G0, R0)). So
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by Lemma 2.5, the partition {Y0, Y1, Y2, Y3, Y4} of G defines the S-ring
C = C(m) over G such that C ∼= C0 o TCm .

Lemma 4.4. In the above notations, WL(Λ) = C. In particular,

rkWL(Λ) = rk(C) = 5.

Proof. Put C′ = WL(Λ). By Lemma 2.8, we have C′ 6 C. Eq. (1) implies
that G \ R = Y2 ∈ S∗(C′). This yields that G0 = 〈Y2〉 is a C′-subgroup
and hence G \ G0 = Y4 is a C′-set. The direct computation show that
Y2Y2 = Y3 ∪ {e} and hence Y3 ∈ S∗(C′) by Eq. (1). Finally, Y1 = R \ (Y2 ∪
Y3) ∈ S∗(C′) by Eq. (1). We proved that every basic set of C is a C′-set.
Thus, C′ > C and hence C′ = C. �

Theorem 1.2 follows from Lemmas 4.1, 4.2, 4.3, and 4.4.

Proof of Corollary 1.2. The “if” part follows from [21, Proposition 2.1]
and Theorem 1.2, whereas the “only if” part follows from the computational
results [13,15]. �

§5. Proof of Theorem 1.3

As in the previous two sections,

G = 〈x, y : xn = y2 = e, xy = x−1〉 ∼= D2n.

Suppose that n = 4k, where k in an odd integer. The groups 〈x2k〉 and
〈x4〉 are denoted by A0 and A1, respectively. Put U = (A0 × A1) o B.
Clearly, A0

∼= C2, A1
∼= Ck, and U ∼= D4k. Put

Z = x2A1 ∪ y(A1 \ {x2(k−1)}) ∪ {yx2k−1, yx−2, yx−1}
and

Σ = Σ(k) = Cay(G,Z).

One can see that Z = Z−1 and Σ is 2(k + 1)-regular.

Lemma 5.1. The graph Σ is a strictly Deza graph with parameters
(8k, 2(k + 1), 2(k − 1), 2).

Proof. The straightforward computation in the group ring ZG using the
equalities A1

2 = kA1, yA1 = A1y, and yxy = x−1 implies that

Z2 = 2(k + 1)e+ 2(k − 1)(A1
# + yx2A1) + 2(x+ x2 + x3)A1

+ 2y(e+ x+ x3)A1. (5)



ON WL-RANK AND WL-DIMENSION OF SOME DEZA DIHEDRANTS 167

From Lemma 2.6 and Eq. (5) it follows that Σ is a strictly Deza graph
with parameters (8k, 2(k + 1), 2(k − 1), 2). �

Let us consider the following partition of G:

{{g}, gxA0 : g ∈ U}.

Observe that g1xA0g2xA0 ⊆ U whenever g1, g2 ∈ U . So the above partition
defines the S-ring D = D(k) over G. One can see that

D = ZU oU/A0
Z(G/A0).

Lemma 5.2. In the above notations, WL(Σ) = D.

Proof. Put D′ = WL(Σ). Let us prove that D′ = D. Observe that Z ∈
S∗(D) and hence D′ 6 D. Put V = A#

1 ∪ yx2A1. From Lemma 2.3 and
Eq. (5) it follows that V ∈ S∗(D′). So

{yx−2} = Z ∩ V ∈ S(D′) (6)

by Eq. (1). Eqs. (1) and (6) imply that

yx−2Z \ Zyx−2 = {x, x2k+1} = xA0 ∈ S∗(D′). (7)

Due to Eq. (7), we conclude that A0 = rad(xA0) and A = 〈xA0〉 are
D′-subgroups. Note that

D′A0
= ZA0 (8)

because |A0| = 2. Lemma 2.2 applied to D′A/A0
and Eq. (7) yield that

D′A/A0
= Z(A/A0). (9)

Since A, V ∈ S∗(D′), we obtain A#
1 = V ∩ A ∈ S∗(D′) by Eq. (1). Every

basic set of D′A is contained in an A0-coset by Eq. (9). The group A1 is
a D′A-subgroup such that A1 ∩ A0 = {e}. So D′A1

= ZA1. Together with
Eq. (8) and Lemma 2.2 applied to A0 ×A1, this implies that

D′A0×A1
= Z(A0 ×A1). (10)

It is easy to see that x2 ∈ U . So {x2} ∈ S(D′) by Eq. (10). Therefore

{y} = {yx−2}{x2} ∈ S(D′) (11)

by Lemma 2.1 and Eq. (6). From Eqs. (10) and (11) and Lemma 2.2 applied
to U = (A0 × A1) o B it follows that D′U = ZU . Together with Eq. (9),
this yields that every basic set of D is a D′-set. Therefore D′ > D. Thus,
D′ = D and we are done. �
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Remark 5.3. The group

Aut(Σ) = Aut(D) = Aut(ZU oU/A0
Z(G/A0))

is the canonical generalized wreath product of Ur by (G/A0)r (see [10,
Section 5.3] for the definitions).

Lemma 5.4. The WL-rank of Σ is equal to 6k.

Proof. From Lemma 5.2 it follows that

WL(Σ) = D = ZU oU/A0
Z(G/A0).

Observe that |U | = |G/A0| = 4k and |U/A0| = 2k. So

rk(ZU) = rk(Z(G/A0)) = 4k

and rk(Z(U/A0)) = 2k. Therefore

rk(D) = rk(ZU) + rk(Z(G/A0))− rk(Z(U/A0)) = 6k

by Eq. (2). Thus, rkWL(Σ) = rk(D) = 6k. �

Theorem 1.3 immediately follows from Lemma 5.1 and Lemma 5.4.

Remark 5.5. Note that Σ is satisfied the condition from [31, Theorem 1
(2c)]. In particular, Σ is divisible design and integral.

§6. Proof of Theorem 1.4

In this section, we use the notations from the previous ones. Let v(D) 6
13. Computer calculations [19] imply that the S-ring A(D) = WL(Γ(D))
is separable. So the S-ring

B(D,m) = WL(Km[Γ(D)]) ∼= A(D) o TCm

is separable for every m > 1 by Statement 1 of Lemma 2.12 and Lem-
ma 2.13. Therefore dimWL(Km[Γ(D)]) 6 2 by Lemma 2.11.

The S-ring
TC4
⊗ TCm

= WL(K4 ×Km)

is separable for every m > 1 by Statement 1 of Lemma 2.12 and Lem-
ma 2.13. So dimWL(K4 ×Km) 6 2 by Lemma 2.11.

The S-ring C0 is separable by Statement 2 of Lemma 2.12. So

C(m) = WL(Km[K4 ×K2]) ∼= C0 o TCm

is separable for every m > 1 by Lemma 2.13. Together with Lemma 2.11,
this yields that dimWL(Km[K4 ×K2]) 6 2.
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The S-ring

D(k) ∼= ZD4k oD4k/C2
ZD4k

is separable for every odd k > 3 by Statement 3 of Lemma 2.12. So
dimWL(Σ(k)) 6 2 by Lemma 2.11.

Each of the graphs Km[Γ(D)], K4 × Km with m > 2, Km[K4 × K2],
Σ(k) has WL-rank at least 4. So none of the above graphs is strongly
regular. Therefore each of the above graphs has WL-dimension at least 2
by Lemma 2.14. Together with the previous paragraphs, this implies that
each of the considered graphs has WL-dimension 2.

Remark 6.1. Note that if v(D) > 13 then dimWL(Km(Γ(D)) can be
greater than 2. There exist cyclic difference sets with v(D) = 15 and
v(D) = 19 by [2]. From [19] (see also [6]) it follows that in these cases
there exists an association scheme which is algebraically isomorphic but
not isomorphic to the Cayley scheme corresponding to A(D). So A(D) is
not separable and hence dimWL(Γ(D)) > 2 by Lemma 2.11. The S-ring
A(D) o TCm

is not separable by Lemma 2.13 and hence

dimWL(Km[Γ(D)]) > 2

by Lemma 2.11. It would be interesting to find dimWL(Km[Γ(D)]) for
arbitrary D and m.

Appendix

We collect an information on the strictly Deza dihedrants which occur
in the paper in the table below. The information on WL-rank is taken
from Theorems 1.1, 1.2, and 1.3. The parameters of graphs and their WL-
closures can be found in Sections 3, 4, and 5. The information on WL-
dimension follows from Theorem 1.4. The automorphism groups of graphs
were found using equality Aut(Γ) = Aut(WL(Γ)), Lemma 2.4, and Re-
mark 5.3. The automorphism group of A(D), where v(D) ∈ {7, 11}, was
computed by [20].
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