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Abstract. Let G be a 3-connected graph. A set W ⊂ V (G) is
contractible if G(W ) is connected and G−W is a 2-connected graph.
In 1994, McCuaig and Ota formulated the conjecture that, for any
k ∈ N, there exists m ∈ N such that any 3-connected graph G

with v(G) > m has a k-vertex contractible set. In this paper we
prove that, for any k > 5, the assertion of the conjecture holds if
δ(G) >

[
2k+1

3

]
+ 2.

§1. Basic definitions

We consider undirected graphs without loops and multiple edges and
use standard notation. We use notation v(G) for the number of vertices of
G and δ(G) for the minimum degree of G.

Definition 1. Let R ⊂ V (G).
1) We denote by G − R the graph obtained from G upon deleting all

vertices of the set R and all edges incident to vertices of R.
2) We denote by G(R) the induced subgraph of the graph G on the

set R.
3) We say that R is connected if G(R) is connected.
4) We say that R is a k-vertex set if |R| = k.
5) We say that R is contractible if G(R) is connected and G − R is

2-connected.
6) We say that R is k-contractible if R is a k-vertex contractible set.
7) Let R1 ⊂ V (G), R∩R1 = ∅. We denote by EG(R,R1) the set of such

edges e ∈ E(G) that e = xy, x ∈ R, y ∈ R1. Let eG(R,R1) = |EG(R,R1)|.
We say that R1 is adjacent to R if eG(R,R1) > 1.
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§2. Introduction

Consider a 2-connected graph G on n vertices and let n1 and n2 be
positive integers with n1 + n2 = n. It is a well-known fact that V (G) can
be partitioned into 2 connected sets V1 and V2 such that |V1| = n1 and
|V2| = n2.

In 1994, McCuaig and Ota [7] formulated the following conjecture for
3-connected graphs. This conjecture was mentioned in Mader’s survey on
connectivity [6].

Conjecture. Let k ∈ N. Then there exists an integer n such that every
3-connected graph G on at least n vertices has a k-contractible set.

It follows from the Mader’s paper [5] that the answer to the analogous
problem is negative for n-connected graphs with n > 4. More precisely,
for any k > 2 there exists an arbitrarily large n-connected graph G such
that G does not contain a connected set W such that |W | = k and G−W
is n − 1-connected. So, the question remains open only for 3-connected
graphs.

Statement of the conjecture is clear for k = 1. The conjecture is proved
for k = 2 in [8], for k = 3 in [7], for k = 4 in [4] and for k = 5 in [9]. The
author claims that the conjecture is proved for k = 6 in [1].

The following theorem of [2] establishes existence of large contractible
sets in 3-connected graphs.

Theorem 1. Let m > 5 be an integer and let G be a 3-connected graph
with v(G) > 2m + 1. Then G has a contractible set W such that m 6
|W | 6 2m− 4.

We need to formulate clearly the main result of [4].

Theorem 2. Let G be a 3-connected graph such that v(G) > 7, let G be
not isomorphic to K3,4. Then G has a 4-contractible set.

Our main result is the following.

Theorem 3. Let G be a 3-connected graph, let k > 5 be a natural number
and let v(G) > k+3, δ(G) >

[
2k+1

3

]
+2. Then there exists a k-contractible

set in the graph G.

§3. Necessary tools

We formulate several definitions and facts on the structure of n-connec-
ted graphs and after that, with the help of them, we prove Theorem 3.
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Definition 2. A contractible set W ⊂ V (G) of a 3-connected graph G is
maximal if there exists no vertex x ∈ V (G) \W such that the set W ∪{x}
is contractible.

Definition 3. Let G be a n-connected graph.
1) Let R ⊂ V (G). R is a cutset if G−R is disconnected.
2) We denote by Rn(G) the set of all n-vertex cutsets of G.
3) Let R ⊂ V (G) be a cutset. We say that R splits a set X ⊂ V (G)

if a set X \ R is not contained in one connected component of the graph
G−R.

4) Two cutsets S, T ∈ Rn(G) are independent if S does not split T and
T does not split S. Otherwise, these cutsets are dependent.

Definition 4. Let S ⊂ Rn(G).
1) A set A ⊂ V (G) is a part of decomposition of G by S if no cutset of

S splits A and A is a maximal up to inclusion set with this property. By
Part(G;S), we denote the set of all parts of decomposition of G by S.

2) Let A ∈ Part(G;S). A vertex of A is inner if it does not belong to
any cutset of S. The set of all inner vertices of the part A is called the
interior of A, which is denoted by Int(A).

The boundary of A is the set Bound(A) = A \ Int(A).
Definition 5. Let G be a 2-connected graph.

1) A cutset S ∈ R2(G) is single if S is is independent with all other
cutsets of R2(G). We denote by O(G) the set of all single cutsets of the
graph G.

2) We will write Part(G) instead of Part(G;O(G)). Parts of this decom-
position will be called simply parts of G.

Definition 6. The block tree BT(G) of a 2-connected graph G is a bipar-
tite graph with bipartition (O(G), Part(G)), where a single cutset S and
a part A are adjacent if and only if S ⊂ A.

We need the following property of BT(G).

Lemma 1. [3, Lemma 1] Let G be a 2-connected graph. Then BT(G) is a
tree. Every leaf of BT(G) corresponds to a part of Part(G).

Definition 7. Let G be a 2-connected graph and let A ∈ Part(G). A part
A is pendant if it corresponds to a leaf of BT(G).

Definition 8. Let G be a 2-connected graph.
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1) We denote by G′ the graph obtained from G upon adding all edges
of type ab where {a, b} ∈ O(G).

2) A part A ∈ Part(G) is called a cycle if the graph G′(A) is a cycle. If
A is a cycle then |A| is the length of A.

Lemma 2. [2, Lemma 13] Let G be a 3-connected graph. Let W ⊂ V (G)
be a maximal contractible set such that the graph H = G −W is not a
simple cycle. Then the following statements hold.

1) Let A ∈ Part(H) be a cycle. Then each inner vertex of A is adjacent
to W .

2) There are at least two pendant parts in Part(H) and all these parts
are cycles of length at least 4.

3) Let A ∈ Part(H) be a pendant part. Then H−Int(A) is 2-connected.

The following lemma is an obvious corollary of Lemma 2. The original
version of this Lemma was proved in [4], Lemma 3.

Lemma 3. Let G be a 3-connected graph. Let W ⊂ V (G) be a maximal
contractible set such that the graph H = G−W is not a simple cycle. Let
A1, A2 be two pendant parts of G − W , W1 = Int(A1),W2 = Int(A2).
Then the following statements hold.

1) G(W1) and G(W2) are simple paths.
2) |W1| > 2, |W2| > 2.
3) W1 ∩W2 = ∅.
4) All vertices in W1 ∪W2 have degree 2 in G−W .
5) Both G−W −W1 and G−W −W2 are 2-connected.
6) NG(W1) ∩W2 = ∅, NG(W2) ∩W1 = ∅.

§4. Proof of Theorem 3

Lemma 4. Let G be a 3-connected graph such that v(G) > k + 3 and G
has a (k−1)-contractible set W for some integer k > 2. Suppose that there
are 4 distinct vertices v1, v2, v3, v4 ∈ V (G − W ) such that the following
statements hold.

1) v1v2 ∈ E(G) and dG−W (vi) = 2 for any i ∈ {1, 2, 3, 4}.
2) For any vertex x ∈W such that xv3, xv4 ∈ E(G), the graph

G− (W \ {x})− {v1, v2}
is 2-connected.

3) |NG(v3) ∩NG(v4) ∩W | > |W \NG({v1, v2})|.
Then G has a k-contractible set.
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Proof. It follows from dG−W (vi) = 2 for any i ∈ {1, 2, 3, 4} and δ(G) > 3
that eG(vi,W ) > 1 for any i ∈ {1, 2, 3, 4}. By the condition 3 of Lemma 4,
|NG(v3)∩NG(v4)∩W | > 0. Let x ∈W be a common neighbour of v3 and
v4. Clearly, there are |NG(v3) ∩NG(v4) ∩W | candidates on x.

b

b
b

b

x

b

b

b

r

r r

r

W \ {x}
r

r

v1

v2v4

b

v3

Figure 1. Proof of Lemma 4.

Consider {v1, v2} ∪ (W \ {x}) (see figure 1). Clearly,

|{v1, v2} ∪ (W \ {x})| = k.

By the condition of Lemma 4, G − ({v1, v2} ∪ (W \ {x})) is 2-connected.
Therefore, the only chance of the set {v1, v2} ∪ (W \ {x}) to be non-
contractible is when it is not connected. Then, since v1v2 ∈ E(G) (the
condition of Lemma 4), there is a component in the graph G(W \ {x})
such that all the vertices of this component are not adjacent to {v1, v2}.

Consequently, we need to take x such that there does not exist a con-
nected component of non-adjacent to {v1, v2} vertices in G(W \{x}) (let us
call such vertices in G(W ) forbidden). Clearly, there are |W \NG({v1, v2})|
forbidden vertices. Recall that there are |NG(v3)∩NG(v4)∩W | candidates
on x. Then, by the condition 3 of Lemma 4, there are more candidates on
x than forbidden vertices.

For every forbidden vertex we take the shortest path from this forbid-
den vertex to the set of non-forbidden vertices in W (if it is not the only
path, we take one of them). For every such path we take a neighbour of
the forbidden endpoint (the second vertex of the path), let P be the union
of these vertices. Clearly, |P | is at most the number of forbidden vertices.
Recall that there are more candidates on x than forbidden vertices. Conse-
quently, there exists x /∈ P such that xv3 ∈ E(G), xv4 ∈ E(G), we fix this
x. Note that this x is suitable. Indeed, assume the converse. Then there is a
connected component in G(W \ {x}) consisting only of forbidden vertices.
Since G(W ) is connected, x has at least one neighbour in this component.
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For this neighbour x should be the second vertex of the aforementioned
path, and hence x ∈ P , a contradiction. �

We prove this Theorem by induction on k. For the sake of convenience,
we take the induction step as a separate statement.

Lemma 5. Let k be an integer and let c be a non-negative integer such
that k > 3c + 5. Let G be a 3-connected graph such that G has a (k − 1)-
contractible set and v(G) > k + 3, δ(G) > k − c. Then there is a k-
contractible set in the graph G.

Proof. Let W be a (k − 1)-contractible set in G. Assuming the converse,
W is maximal.

Case 1. G−W is a simple cycle.

We enumerate vertices of the cycle G −W in the order of passing the
cycle: r1, r2, ..., rm, wherem > 4. Our purpose is applying Lemma 4, where
v1 = ri+1, v2 = ri+2, v3 = ri, v4 = ri+3 for any i.

Clearly, the condition 1 of Lemma 4 holds.
Let us verify the condition 2 of Lemma 4. Assume that ri and ri+3

have a common neighbour x in W (see figure 2). Then G− {ri+1, ri+2} −
(W \ {x}) is 2-connected because this graph has a Hamiltonian cycle
rixri+3ri+4....ri−1.

Hence, it remains to verify the condition 3 of Lemma 4. It follows from
the fact that G−W is a simple cycle and δ(G) > k − c that eG(ri,W ) >
k − c − 2, eG(ri+1,W ) > k − c − 2, eG(ri+3,W ) > k − c − 2. Then it
follows from |W | = k− 1 and 2(k− c− 2)− (k− 1) > c+1 that |NG(ri)∩
NG(ri+3) ∩ W | > c + 2. It follows from eG(ri+1,W ) > k − c − 2 that
|W \NG({ri+1, ri+2})| 6 c+ 1. Consequently, |NG(ri)∩NG(ri+3)∩W | >
|W \NG({ri+1, ri+2})|. Hence, the condition 3 of Lemma 4 holds.

Thus, Lemma 4 can be applied. By Lemma 4, G has a k-contractible
set.

Case 2. G−W is not a simple cycle.

By Lemma 2, G−W has at least 2 pendant parts and each of them is
a cycle of length at least 4. Therefore, they both have at least 2 internal
vertices.
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Figure 2. G−W is a simple cycle.

Case 2.1. There exists a pendant part A of G−W such that |A| > 5 (in
particular, |Int(A)| > 3).

Let Bound(A) = {r, s} and Int(A) = {w1, ..., wl}, these vertices are
enumerated in the order of passing the path such that the path is rw1...wls.
Let u be an internal vertex of the pendant part different from A. By
Lemma 3.4, dG−W (wi) = 2 for any i ∈ {1, 2, 3} and dG−W (u) = 2.
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Figure 3. G−W is not a simple cycle, there exists a pen-
dant part A of G−W such that |A| > 5.

Our goal is applying Lemma 4, where v1 = w1, v2 = w2, v3 = w3,
v4 = u. Clearly, the condition 1 of Lemma 4 holds.

Let us verify the condition 2 of Lemma 4. Assume that w3 and u have a
common neighbour x ∈W (see figure 3). Then G− ({w1, w2}∪ (W \ {x}))
is 2-connected. Indeed, this is true because G−W − Int(A) is 2-connected
(Lemma 2.3) and there is a path swl....w3xu.

Hence, it remains to verify the condition 3 of Lemma 4. Recall that
δ(G) > k − c, dG−W (wi) = 2 for any i ∈ {1, 2, 3} and dG−W (u) = 2.
Therefore, eG(wi,W ) > k − c − 2 for any i ∈ {1, 2, 3} and eG(u,W ) >
k−c−2. Then it follows from |W | = k−1 and 2(k−c−2)−(k−1) > c+1
that |NG(w3)∩NG(u)∩W | > c+2. It follows from eG(w1,W ) > k− c− 2
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that |W \NG({w1, w2})| 6 c+ 1. Consequently, |NG(w3)∩NG(u)∩W | >
|W \NG({w1, w2})|. Hence, the condition 3 of Lemma 4 holds.

Therefore, Lemma 4 can be applied. By Lemma 4,G has a k-contractible
set.

Case 2.2. Each of the pendant parts of G−W consists of 4 vertices.

Remark 1. In this case, we need k > 2c+ 4 only instead of k > 3c+ 5.

Let Nv = NG(v) ∩W for any vertex v ∈ G−W .
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Figure 4. G−W is not a simple cycle, each of the pendant
parts of G−W consists of 4 vertices.

Let A,B be two pendant parts of G−W , Int(A) = {u1, u2}, Int(B) =
{w1, w2}. By Lemma 3.4, dG−W (u1) = 2, dG−W (u2) = 2, dG−W (w1) = 2,
dG−W (w2) = 2. Then it follows from δ(G) > k − c that eG(u1,W ) >
k−c−2, eG(u2,W ) > k−c−2, eG(w1,W ) > k−c−2, eG(w2,W ) > k−c−2.

Case 2.2.1. |Nw1∩Nw2 |> |W\(Nu1∪Nu2)| or |Nu1∩Nu2 |> |W \(Nw1∪Nw2)|.

Without loss of generality, |Nw1
∩Nw2

| > |W \(Nu1
∪Nu2

)|. Our purpose
is applying Lemma 4, where v1 = u1, v2 = u2, v3 = w1, v4 = w2. Clearly,
the condition 3 of Lemma 4 holds. Recall that dG−W (u1) = 2, dG−W (u2) =
2, dG−W (w1) = 2, dG−W (w2) = 2. Hence, the condition 1 of Lemma 4
holds.

Hence, it remains to verify the condition 2 of Lemma 4. Note that if
w1 and w2 have a common neighbour x (see figure 4) then G−{u1, u2}−
(W \ {x}) is 2-connected. Indeed, by Lemma 2.3, G − {u1, u2} − W is
2-connected and xw1, xw2 ∈ E(G).

Consequently, Lemma 4 can be applied. By Lemma 4, G has a k-con-
tractible set.
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Case 2.2.2. |Nw1
∩Nw2

|6 |W\(Nu1
∪Nu2

)| and |Nu1
∩Nu2

|6 |W \(Nw1
∪Nw2

)|.

Denote

f1 = |Nu1
∩Nu2

|, f2 = |Nu1
\Nu2

|, f3 = |Nu2
\Nu1

|,
e1 = |Nw1

∩Nw2
|, e2 = |Nw1

\Nw2
|, e3 = |Nw2

\Nw1
|.

It follows from the observation before the case 2.2.1 that, for any
v ∈ {u1, u2, w1, w2}, |Nv| > k − c− 2. Therefore,

f1+f2 > k−c−2, f1+f3 > k−c−2, e1+e2 > k−c−2, e1+e3 > k−c−2.

Adding all these inequalities, we obtain that

2f1 + f2 + f3 + 2e1 + e2 + e3 > 4(k − c− 2).

By the condition of the case, |Nw1
∩Nw2

| 6 |W \(Nu1
∪Nu2

)|. Therefore,
e1 6 |W \ (Nu1 ∪ Nu2)|. Clearly, Nu1 ∪ Nu2 ⊂ W (by the definition of
Nv for any v ∈ V (G − W )). Then it follows from |W | = k − 1 that
e1 6 k−1−|Nu1

∪Nu2
|. Hence, e1 6 k−1−f1−f2−f3. Therefore, we derived

from |Nw1
∩Nw2

| 6 |W \(Nu1
∪Nu2

)| that e1+f1+f2+f3 6 k−1. Similarly,
if follows from |Nu1

∩Nu2
| 6 |W \(Nw1

∪Nw2
)| that f1+e1+e2+e3 6 k−1.

Adding these inequalities, we get that

2f1 + 2e1 + e2 + e3 + f2 + f3 6 2k − 2.

Hence, 2k − 2 > 4(k − c− 2)⇒ 2c+ 3 > k, contrary to k > 2c+ 4. �

Proof of Theorem 3.

We prove this Theorem by induction. A case k = 4 serves as a base case
of the induction. We do not require the restriction on the δ(G) in the base
case. By Theorem 2, any 3-connected graph on at least 8 vertices contains
a 4-contractible set. Hence, there is no problem with the restriction on the
vertices number in the induction step from k = 4 to k = 5.

Induction step.

By the induction hypothesis, there is a (k − 1)-contractible set in the
graph G. Let c =

[
k−5
3

]
. Then we have k > 3c + 5, δ(G) > k − c.

Therefore, by applying Lemma 5, we get that there is a k-contractible set
in the graph G. �
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