3anucKu HayYHBIX
cemuuapos [IOMMU
Tom 518, 2022 r.

N. A. Karol

RESTRICTION ON MINIMUM DEGREE IN THE
CONTRACTIBLE SETS PROBLEM

ABSTRACT. Let G be a 3-connected graph. A set W C V(G) is
contractible if G(W) is connected and G—W is a 2-connected graph.
In 1994, McCuaig and Ota formulated the conjecture that, for any
k € N, there exists m € N such that any 3-connected graph G
with v(G) > m has a k-vertex contractible set. In this paper we
prove that, for any k > 5, the assertion of the conjecture holds if

5(G) > [%] +o.

§1. BASIC DEFINITIONS

We consider undirected graphs without loops and multiple edges and
use standard notation. We use notation v(G) for the number of vertices of
G and 0(G) for the minimum degree of G.

Definition 1. Let R C V(G).

1) We denote by G — R the graph obtained from G upon deleting all
vertices of the set R and all edges incident to vertices of R.

2) We denote by G(R) the induced subgraph of the graph G on the
set R.

3) We say that R is connected if G(R) is connected.

4) We say that R is a k-vertex set if |R| = k.

5) We say that R is contractible if G(R) is connected and G — R is
2-connected.

6) We say that R is k-contractible if R is a k-vertex contractible set.

7) Let Ry C V(G), RNRy = @. We denote by Eg(R, R1) the set of such
edges e € E(G) that e = zy, z € R, y € R;. Let e¢(R, R1) = |E¢(R, Ry)|.
We say that Ry is adjacent to R if eq(R, Ry) > 1.
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§2. INTRODUCTION

Consider a 2-connected graph G on n vertices and let n; and ns be
positive integers with n; + ng = n. It is a well-known fact that V(G) can
be partitioned into 2 connected sets Vi and V5 such that |Vi]| = ny and
|Va| = na.

In 1994, McCuaig and Ota [7] formulated the following conjecture for
3-connected graphs. This conjecture was mentioned in Mader’s survey on
connectivity [6].

Conjecture. Let k € N. Then there exists an integer n such that every
3-connected graph G on at least n vertices has a k-contractible set.

It follows from the Mader’s paper [5] that the answer to the analogous
problem is negative for n-connected graphs with n > 4. More precisely,
for any k£ > 2 there exists an arbitrarily large n-connected graph G such
that G does not contain a connected set W such that |W| =k and G—W
is n — l-connected. So, the question remains open only for 3-connected
graphs.

Statement of the conjecture is clear for k = 1. The conjecture is proved
for k=2 in [8], for k =3 1in [7], for k = 4 in [4] and for k = 5 in [9]. The
author claims that the conjecture is proved for k£ = 6 in [1].

The following theorem of [2] establishes existence of large contractible
sets in 3-connected graphs.

Theorem 1. Let m > 5 be an integer and let G be a 3-connected graph
with v(G) = 2m + 1. Then G has a contractible set W such that m <
[W| < 2m —4.

We need to formulate clearly the main result of [4].

Theorem 2. Let G be a 3-connected graph such that v(G) > 7, let G be
not isomorphic to Kz 4. Then G has a 4-contractible set.

Our main result is the following.

Theorem 3. Let G be a 3-connected graph, let k > 5 be a natural number
and let v(G) > k+3, 8(G) > [25] +2. Then there exists a k-contractible
set in the graph G.

§3. NECESSARY TOOLS

We formulate several definitions and facts on the structure of n-connec-
ted graphs and after that, with the help of them, we prove Theorem 3.
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Definition 2. A contractible set W C V(G) of a 3-connected graph G is
mazimal if there exists no vertex x € V(G) \ W such that the set WU {z}
is contractible.

Definition 3. Let G be a n-connected graph.

1) Let R C V(G). R is a cutset if G — R is disconnected.

2) We denote by R, (G) the set of all n-vertex cutsets of G.

3) Let R C V(G) be a cutset. We say that R splits a set X C V(G)
if a set X \ R is not contained in one connected component of the graph
G - R.

4) Two cutsets S, T € R, (G) are independent if S does not split 7' and
T does not split S. Otherwise, these cutsets are dependent.

Definition 4. Let & C R, (G).

1) A set A C V(G) is a part of decomposition of G by & if no cutset of
G splits A and A is a maximal up to inclusion set with this property. By
Part(G; &), we denote the set of all parts of decomposition of G by &.

2) Let A € Part(G;S). A vertex of A is inner if it does not belong to
any cutset of &. The set of all inner vertices of the part A is called the
interior of A, which is denoted by Int(A).

The boundary of A is the set Bound(A4) = A\ Int(A).

Definition 5. Let G be a 2-connected graph.

1) A cutset S € Ra2(G) is single if S is is independent with all other
cutsets of R2(G). We denote by O(G) the set of all single cutsets of the
graph G.

2) We will write Part(G) instead of Part(G; O(G)). Parts of this decom-
position will be called simply parts of G.

Definition 6. The block tree BT(G) of a 2-connected graph G is a bipar-
tite graph with bipartition (O(G), Part(G)), where a single cutset S and
a part A are adjacent if and only if S C A.

We need the following property of BT(G).

Lemma 1. [3, Lemma 1] Let G be a 2-connected graph. Then BT(G) is a
tree. Every leaf of BT(G) corresponds to a part of Part(G).

Definition 7. Let G be a 2-connected graph and let A € Part(G). A part
A is pendant if it corresponds to a leaf of BT(G).

Definition 8. Let G be a 2-connected graph.
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1) We denote by G’ the graph obtained from G upon adding all edges
of type ab where {a,b} € O(G).

2) A part A € Part(G) is called a cycle if the graph G'(A) is a cycle. If
A is a cycle then |A| is the length of A.

Lemma 2. [2, Lemma 13] Let G be a 3-connected graph. Let W C V(QG)
be a mazximal contractible set such that the graph H = G — W 1is not a
simple cycle. Then the following statements hold.

1) Let A € Part(H) be a cycle. Then each inner vertex of A is adjacent
to W.

2) There are at least two pendant parts in Part(H) and all these parts
are cycles of length at least 4.

3) Let A € Part(H) be a pendant part. Then H—Int(A) is 2-connected.

The following lemma is an obvious corollary of Lemma 2. The original
version of this Lemma was proved in [4], Lemma 3.

Lemma 3. Let G be a 3-connected graph. Let W C V(G) be a mazimal
contractible set such that the graph H = G — W is not a simple cycle. Let
Ay, Ay be two pendant parts of G — W, Wy = Int(Ay), We = Int(As).
Then the following statements hold.

1) G(W1) and G(Ws) are simple paths.

)
3) WinWy, =0a.

4) All vertices in W1 U Wy have degree 2 in G — W.

5) Both G — W —W; and G — W — Wy are 2-connected.
6) Ng(Wl) NWy = ®7NG(W2) NW, =a.

§4. PROOF OF THEOREM 3

Lemma 4. Let G be a 3-connected graph such that v(G) > k + 3 and G
has a (k—1)-contractible set W for some integer k > 2. Suppose that there

are 4 distinct vertices vy, va,vs,v4 € V(G — W) such that the following
statements hold.

1) vivg € E(G) and dg_w(v;) =2 for any i € {1,2,3,4}.
2) For any vertex x € W such that zvs, zvy € E(G), the graph
G — W\ {z}) = {v1, 02}
1s 2-connected.

3) |Ng(1)3) N Ng(’l)4) n W‘ > |W \ Ng({’l}l,vg})|.
Then G has a k-contractible set.
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Proof. It follows from dg_w (v;) = 2 for any i € {1,2,3,4} and §(G) > 3
that eq(v;, W) > 1 for any 7 € {1,2,3,4}. By the condition 3 of Lemma 4,
|INa(vs) N Ng(va) NW| > 0. Let x € W be a common neighbour of v and
vg. Clearly, there are |[Ng(vs) N Ng(vs) N W| candidates on z.

WA {z}

Figure 1. Proof of Lemma 4.

Consider {v1,v2} U (W \ {z}) (see figure 1). Clearly,
{vr, v} U W\ {z})| = k.

By the condition of Lemma 4, G — ({vy,v2} U (W \ {z})) is 2-connected.
Therefore, the only chance of the set {vi,v2} U (W \ {z}) to be non-
contractible is when it is not connected. Then, since v1v2 € E(G) (the
condition of Lemma 4), there is a component in the graph G(W \ {z})
such that all the vertices of this component are not adjacent to {vy,v2}.

Consequently, we need to take x such that there does not exist a con-
nected component of non-adjacent to {vy,ve} vertices in G(W\{z}) (let us
call such vertices in G(W) forbidden). Clearly, there are |W\ Ng({v1, v2})|
forbidden vertices. Recall that there are |[Ng(vs) N Ng(vs) N W] candidates
on z. Then, by the condition 3 of Lemma 4, there are more candidates on
x than forbidden vertices.

For every forbidden vertex we take the shortest path from this forbid-
den vertex to the set of non-forbidden vertices in W (if it is not the only
path, we take one of them). For every such path we take a neighbour of
the forbidden endpoint (the second vertex of the path), let P be the union
of these vertices. Clearly, |P| is at most the number of forbidden vertices.
Recall that there are more candidates on « than forbidden vertices. Conse-
quently, there exists x ¢ P such that zvs € E(G), zvs € E(G), we fix this
x. Note that this x is suitable. Indeed, assume the converse. Then there is a
connected component in G(W \ {z}) consisting only of forbidden vertices.
Since G(W) is connected, x has at least one neighbour in this component.
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For this neighbour = should be the second vertex of the aforementioned
path, and hence x € P, a contradiction. O

We prove this Theorem by induction on k. For the sake of convenience,
we take the induction step as a separate statement.

Lemma 5. Let k be an integer and let ¢ be a non-negative integer such
that k > 3c + 5. Let G be a 3-connected graph such that G has a (k —1)-
contractible set and v(G) =2 k+ 3, 0(G) = k — ¢. Then there is a k-
contractible set in the graph G.

Proof. Let W be a (k — 1)-contractible set in G. Assuming the converse,
W is maximal.

Case 1. G — W is a simple cycle.

We enumerate vertices of the cycle G — W in the order of passing the
cycle: 1,79, ..., Ty, where m > 4. Our purpose is applying Lemma 4, where
V1 = Ti41, V2 = Tj42, V3 = T4, V4 = T;43 for any 1.

Clearly, the condition 1 of Lemma 4 holds.

Let us verify the condition 2 of Lemma 4. Assume that r; and r;;3
have a common neighbour z in W (see figure 2). Then G — {r; 1,712} —
(W \ {z}) is 2-connected because this graph has a Hamiltonian cycle
TiXTri4+3Ti+4....T5—1-

Hence, it remains to verify the condition 3 of Lemma 4. It follows from
the fact that G — W is a simple cycle and §(G) > k — ¢ that eg(r;, W) >
k—c—2, eq(rizi,W) 2 k—c—2, eq(rit+s, W) =2 k — ¢ — 2. Then it
follows from |W| =k —1and 2(k—c—2)— (k—1) > ¢+ 1 that |[Ng(r;) N
Ng(rivs) NW| = ¢+ 2. It follows from eg(ri+1, W) = k — ¢ — 2 that
WA\ Ne({rit+1,ri+2})| < ¢+ 1. Consequently, [Ng(r;) N Ng(rit3) NW| >
[W\ Ng({7i+1,7i+2})|- Hence, the condition 3 of Lemma 4 holds.

Thus, Lemma 4 can be applied. By Lemma 4, G has a k-contractible
set.

Case 2. G — W is not a simple cycle.

By Lemma 2, G — W has at least 2 pendant parts and each of them is
a cycle of length at least 4. Therefore, they both have at least 2 internal
vertices.
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WA {x}

r; T'i+3

Figure 2. G — W is a simple cycle.

Case 2.1. There exists a pendant part A of G — W such that |4| > 5 (in
particular, |Int(A)| > 3).

Let Bound(A) = {r,s} and Int(A) = {ws,...,w;}, these vertices are
enumerated in the order of passing the path such that the path is rwy...w;s.
Let w be an internal vertex of the pendant part different from A. By
Lemma 3.4, dg_w(w;) = 2 for any i € {1,2,3} and dg_w(u) = 2.

Figure 3. G — W is not a simple cycle, there exists a pen-
dant part A of G — W such that |A4| > 5.

Our goal is applying Lemma 4, where v; = wy, vo = ws, v3 = w3,
vg = u. Clearly, the condition 1 of Lemma 4 holds.

Let us verify the condition 2 of Lemma 4. Assume that ws and u have a
common neighbour x € W (see figure 3). Then G — ({w1, w2} U (W \ {z}))
is 2-connected. Indeed, this is true because G — W — Int(A) is 2-connected
(Lemma 2.3) and there is a path swy....wszu.

Hence, it remains to verify the condition 3 of Lemma 4. Recall that
0(G) 2 k — ¢, dg—w(w;) = 2 for any i € {1,2,3} and dg_w(u) = 2.
Therefore, eq(w;, W) = k — ¢ — 2 for any i € {1,2,3} and eq(u, W) >
k—c—2. Then it follows from |[W|=k—1and 2(k—c—2)—(k—1) > c+1
that |Ng(ws) N Ng(u) "W = ¢+ 2. It follows from eg (w1, W) 2 k—c—2
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that |W \ Ng({w1,w2})| < ¢+ 1. Consequently, |[Ng(ws3) N Ng(u) NW| >
W\ Ng({w1,wz2})|. Hence, the condition 3 of Lemma 4 holds.

Therefore, Lemma 4 can be applied. By Lemma 4, G has a k-contractible
set.

Case 2.2. Each of the pendant parts of G — W consists of 4 vertices.

Remark 1. In this case, we need k > 2c¢ + 4 only instead of k > 3c + 5.

Let N, = Ng(v) N W for any vertex v € G — W.

Figure 4. G—W is not a simple cycle, each of the pendant
parts of G — W consists of 4 vertices.

Let A, B be two pendant parts of G — W, Int(A) = {uy,us}, Int(B) =
{wi,ws}. By Lemma 3.4, dg—w(u1) = 2, dg—w(u2) = 2, dg—w(w1) = 2,
dg_w(ws) = 2. Then it follows from §(G) > k — ¢ that eg(u, W) >
k—c—2,eq(u2, W) = k—c—2,eq(w1, W) = k—c—2, eg(wa, W) = k—c—2.

Case 2.2.1. | Ny, Wy, | > [W\(Ny,,UN,,, )| or | Ny, NNy, | > [W (N, UNy, )|

Without loss of generality, | Ny, NNy, | > |[W\ (Ny, UN,,)|. Our purpose
is applying Lemma 4, where vy = w1, vo = us, v3 = wy, v4 = wa. Clearly,
the condition 3 of Lemma 4 holds. Recall that dg_w (u1) = 2, dg—w (u2) =
2, dg_—w(w1) = 2, dg—w(w2) = 2. Hence, the condition 1 of Lemma 4
holds.

Hence, it remains to verify the condition 2 of Lemma 4. Note that if
wy and wy have a common neighbour = (see figure 4) then G — {uy, us} —
(W \ {x}) is 2-connected. Indeed, by Lemma 2.3, G — {uj,us} — W is
2-connected and zw;, zws € E(G).

Consequently, Lemma 4 can be applied. By Lemma 4, G has a k-con-
tractible set.
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Case 2.2.2. | Ny, o, | < [W\(Nu, Ny, )| and | Ny,NNo, | < W\ (N, UNw, ).

Denote

f1:|Nu1mNu2‘7 f2:|Nu1\Nu2" f3:|Nuz\Nu1"
el:|Nwlan2|’ 62:|Nw1\Nw2|7 63:|Nw2\Nw1|'

It follows from the observation before the case 2.2.1 that, for any
v € {uy, uz, wy,wa}, |[Ny| = k — ¢ — 2. Therefore,

f1+f2 > k*C*Q, f1+f3 > k*C*2,61+62 > k*C*2, e1t+es > k—c—2.
Adding all these inequalities, we obtain that
2fi+ fa+ fa+2e1 +ea+ez =>4k —c—2).

By the condition of the case, | Ny, NNy, | < [W\(Ny, UN,,)|. Therefore,
er < |[W\ (Ny, UN,,)|. Clearly, N,,, UN,, C W (by the definition of
N, for any v € V(G — W)). Then it follows from |W| = k — 1 that
e1 < k—1—|Ny,UN,,|. Hence, e; < k—1—f1— fo— f3. Therefore, we derived
from | Ny, NNy, | < W\ (Ny, UN,, )| that e; + f1+ fo+ f3 < k—1. Similarly,
if follows from | Ny, NNy, | < |W\ (N, UNy, )| that fi+e1+ez+es < k—1.
Adding these inequalities, we get that

2f1+2e; +ex+ez+ fot+ fz <2k—2.
Hence, 2k — 2 > 4(k — ¢ —2) = 2¢+ 3 > k, contrary to k > 2c+4. O

Proof of Theorem 3.

We prove this Theorem by induction. A case k = 4 serves as a base case
of the induction. We do not require the restriction on the 6(G) in the base
case. By Theorem 2, any 3-connected graph on at least 8 vertices contains
a 4-contractible set. Hence, there is no problem with the restriction on the
vertices number in the induction step from k =4 to k = 5.

Induction step.

By the induction hypothesis, there is a (k — 1)-contractible set in the

graph G. Let ¢ = [%} Then we have £ > 3¢+ 5, 6(G) > k —c.

Therefore, by applying Lemma 5, we get that there is a k-contractible set
in the graph G. (]
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