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Abstract. In the report we analyze the indicator/measure of clas-
sicality of quantum states defined as the probability to find a state
with a positive Wigner function within a unitary invariant random
ensemble. The indicators of classicality of three ensembles associated
with the Hilbert–Schmidt, Bures and Bogoliubov–Kubo–Mori met-
rics on the space of quantum states of 3-level system are computed.
Their dependence on a moduli parameter of the Wigner function is
studied for all strata of a qutrit state space stratified in accordance
with the unitary group action.

§1. Introduction

It is natural to expect that some states of a quantum system are more
“quantum” than the others. To transform this intuitive thought into a
qualitative concept, we use the conventional statistical interpretation of
quantum mechanics. The quasiprobability distribution functions will be
regarded as a source of information about the classicality/quantumness of
a state. Our consideration is based on the ideas borrowed from the geo-
metric probability theory [1] and a commonly accepted opinion that if
quasiprobability functions attain negative values, then it is a certain sign
of quantum nature (see [2–5] and [6] with references therein). This obser-
vation allows one to specify the notion of “classical states Г la Wigner”
as the states whose Wigner function is positive semidefinite everywhere
in the phase space. Based on this definition, several measures of clas-
sicality/quantumness have been constructed [7–13]. When dealing with
an ensemble of random states, the probability to find a “classical state”
among the members of an ensemble is an example of these kind of mea-
sures [14–16].

Key words and phrases: Wigner function, quasiprobability distribution, state non-
classicality, classicality indicator.
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In the present article, after the introduction of classicality indicator Q
as the geometric probability, we will compute it for a 3-level quantum sys-
tem, a qutrit. We will compare the characteristics of classicality of qutrits
from three random ensembles: the Hilbert–Schmidt and two other ensem-
bles, associated with the monotone Riemannian metrics – the Bures and
the Bogoliubov–Kubo–Mori metrics (cf. [17–19]). To make the presenta-
tion self-consistent, in the next sections necessary notions and definitions
related to these random ensembles and the Wigner function of a finite-
dimensional quantum system will prelude calculations of the corresponding
probabilities. Calculating the probabilities for different varieties of states,
we analyze the dependence of the classicality measure on the moduli pa-
rameter of a qutrit Wigner function.

§2. Unitary invariant ensembles of qudits

Let us consider a qudit – a quantum system associated with an N -
dimensional Hilbert space. The quantum state space PN of an N -level
qudit is defined as:

PN = {̺ ∈ MN (C) | ̺ = ̺†, ̺ > 0, tr (̺) = 1}. (1)

The unitary U(N) automorphism of the Hilbert space of an N -level quan-
tum system induces the adjoint SU(N) transformations of density matrices
̺ ∈ PN :

g · ̺ = g̺g†, g ∈ SU(N). (2)

For a closed system it is assumed that the probability density function of
the corresponding ensemble of N - dimensional qudits is invariant under (2):

P (̺) = P (g̺g†), ∀ g ∈ SU(N). (3)

Further in the report three ensembles of random states respecting this
unitary symmetry will be used for evaluation of the measure of classicality.
Namely, we will consider the unitary invariant ensembles associated with
the following Riemannian metrics on state space:

- the Hilbert–Schmidt metric g
HS

;
- the Bures metric gB ;
- the Bogoliubov–Kubo–Mori metric g

BKM
.

Before dealing with a specific ensemble, it is worth drawing attention to
a common property of each of these ensembles emerging due to SU(N)
invariance (3).
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Stratification and factorization of probability distribution on PN .
The invariance property (3) leads to a certain factorization of the probabil-
ity distribution functions P (̺) into two factors, one depending on SU(N)-
invariants solely, and the other being a universal function of the “angular
variables”. Moreover, the structure of this factorization is universal for all
states whose unitary orbits are characterised by the same isotropy group,
Hα ⊂ SU(N), i.e., belong to a class with the same “orbit type”1. Isotropy
groups H̺ of any point ̺ ∈ PN are determined by the algebraic degen-
eracy of the spectrum of ̺ and are in one-to-one correspondence with the
Young diagrams of all possible decompositions of N into non-negative inte-
gers. Hence, we associate the given partition of N with the stratum P[Hα],
defined as the set of all points of PN , whose stabilizer is conjugate to
subgroup Hα:

P[Hα] :=
{
x ∈ PN | Hx is conjugate to Hα

}
, (4)

where α = 1, 2, . . . , p(N).2 The union of P[Hα] results in the state space
PN :

PN =
⋃

orbit types

P[Hα], (5)

with each component of the decomposition (5) consisting of density ma-
trices with a fixed algebraic degeneracy,

P[Hα] =
⋃

ω∈Ss

Pkω(1),kω(2),...,kω(s)
. (6)

In (6) Ss is a symmetric group acting on a given partition of N into s
natural numbers k1, k2, . . . , ks. Algebraically, Pk1,k2,...,ks

being a set of
states with a fixed degeneracy is defined via the characteristic polynomial

1Subgroup Hx ⊂ SU(N) is the isotropy group (stabilizer) of point x ∈ PN and is
defined as

Hx = {g ∈ SU(N) | g · x = x}.

If the conjugacy class of H is denoted by [H], then we say that the type of the orbit is
[H], if the stabilizer Hx of some/any point x in the orbit belongs to [H].

2The partition function p(N) gives a number of possible partitions of a non-negative
integer N into natural numbers.
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of a density matrix:3

Pk1,k2,...,ks
=

{

̺ ∈PN , ki∈ Z+

∣
∣
∣ det(̺−λ)=

s∏

i=1

(ri−λ)ki ,

s∑

i=1

ki=N

}

. (7)

Geometrically, the set Pk1,k2,...,ks
with k1 = k2 = · · · = kN = 1 represents

the interior of an (N − 1)-dimensional simplex CN−1 of eigenvalues:

CN−1 :=

{

r ∈ R
N

∣
∣
∣
∣

N∑

i=1

ri=1, 1 > r1 > r2 > . . . > rN−1 > rN > 0

}

, (8)

while for all other admissible tuples k = (k1, k2, . . . , ks) each Pk1,k2,...,ks

represents the union of the faces and edges of the (N − 1)-simplex param-
eterized by the barycentric coordinates of the following kind:

r↓(̺) = {r1
k1

︷ ︸︸ ︷

(1, . . . , 1) ; r2

k2
︷ ︸︸ ︷

(1, . . . , 1) ; . . . ; rs

ks
︷ ︸︸ ︷

(1, . . . , 1)}. (9)

Now, bearing in mind the above described stratification of PN , it is easy
to show the factorization of SU(N)-invariant measures. Indeed, one can
be convinced that the Singular Value Decomposition (SVD) of the density
matrix from a stratum P[Hα] with spectrum of the form (9):

̺ = U diag (r1, r2, . . . rs)U
†, U ∈ SU(N)/Hα, (10)

reveals the following factorization of the invariant probability distribu-
tion (3):

P(̺) = P (r1, . . . , rs) dr1 ∧ · · · ∧ drN ∧ dµU(N)/H , (11)

where the first factor P (r1, . . . , rs) represents a measure on subset Pk1,k2,...,ks

of the simplex CN−1, while the second factor is the measure on coset
U(N)/H .

After a preliminary exposition of this generic property of unitary invari-
ant ensembles, we will now specify the form of the distribution P (r1, . . . , rN )
for the Hilbert–Schmidt metric and for an important class of the monotone
metrics.

3Note that in (7) the condition of summing up the degrees of degeneracy to N means
that only the maximal rank states are considered.
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The Hilbert–Schmidt ensemble of qudits. Let us consider the metric
corresponding to the distance between two infinitesimally close matrices
̺− d̺ and ̺+ d̺ calculated with respect to the Frobenius norm,

g
HS

∝ Tr (d̺⊗ d̺) . (12)

If a density matrix belongs to the interior of the simplex CN−1, i.e., the
matrix has N distinct non-zero eigenvalues (k1 = k2 = · · · = kN = 1), then
the metric (12) defines the standard Hilbert–Schmidt ensemble of random
full rank N -qudits. A straightforward computation shows that the joint
probability distribution of eigenvalues reads

PHS(r1, . . . , rN ) ∝ δ(1−
N∑

j=1

rj)

N∏

j<k

(rj − rk)
2, (13)

and unitary random factors U in SVD decomposition are distributed ac-
cording to the Haar measure on the coset U(N)/U(1)N .

Degenerate Hilbert–Schmidt qudits. If the full rank density matrix
has a spectrum of the form (9) with an arbitrary algebraic degeneracy, then
the joint probability distribution of eigenvalues is reduced to the following
expression:

PHS
k1,...,ks

(r1, . . . , rs) ∝ δ(1−
s∑

i=1

kiri)

1...s∏

i<j

(ri − rj)
2kikj . (14)

At the same time the angles in the SVD are distributed according to the
Haar measure on the coset U(N)/U(k1)× · · · × U(ks).

Monotone metrics and monotone ensembles of N-qudits. Two of
the above-mentioned metrics, the Bures and Bogoliubov–Kubo–Mori ones,
are members of a special class of unitary covariant monotone metrics.
According to [18], any monotone metric can be written as4

g
D
(X,Y ) ∝ Tr

(
XK−1

D Y
)
, (15)

where KD is an operator,

KD = R
1/2
D f(LDR

−1
D )R

1/2
D ,

4Due to the unitary covariance of the Riemannian metric, it is sufficient to describe
monotone metrics evaluated for diagonal matrices D.
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constructed out of the left and right multiplication operators LD and RD,
i.e., LDX = DX and RDX = XD for X ∈ MN (C), and operator mono-
tone function f , which is symmetric, i.e., f(t) = tf(1/t), and normalized,
f(1) = 1.

Assuming that ̺ is a full rank density matrix with a simple spectrum
and using the 1-form coordinate basis for simplex, dri, and non-coordinate
basis on SU(N) group, wij :=

(
U †dU

)

ij
, the non-degenerate monotone

metrics can be written as

gf =
1

4

N∑

i=1

dri ⊗ dri
ri

+
1

2

N∑

i<j

cf (ri, rj)(ri − rj)
2 ωij ⊗ ωij . (16)

In (16) by cf (x, y) = 1
yf(x/y) we denote the Morozova-Chentsov func-

tion corresponding to a monotone function f(t). Note that the Bures and
Bogoliubov–Kubo–Mori metrics are associated with the following choice
of monotone function:

f
B
(t) =

1 + t

2
, f

BKM
(t) =

t− 1

ln t
, (17)

and corresponding Morozova-Chentsov functions,

c
B
(x, y) =

2

x+ y
, c

BKM
(x, y) =

lnx− ln y

x− y
. (18)

Probability measures from monotone metrics. For an arbitrary mono-
tone metric evaluated for degenerate qudits, calculations of the joint prob-
ability distribution of eigenvalues give:

P f
k1,...,ks

(r1, . . . , rs) ∝
δ

(

1−
s∑

i=1

kiri

)

√
r1 · r2 · . . . · rs

s∏

i<j

c
kikj

f (ri, rj) (ri−rj)
2kikj . (19)

§3. Wigner function positivity and classicality

Here, for the reader’s convenience, before giving a definition of the in-
dicator of classicality, we present the basic settings of the Wigner function
of a mixed state of a finite-dimensional quantum system.



256 A. KHVEDELIDZE, A. TOROSYAN

Wigner function settings. The Wigner quasiprobability distribution

W
(ν)
̺ (ΩN ) of an N -level qudit is constructed via dual pairing [20, 21],

W (ν)
̺ (ΩN ) = tr [̺∆(ΩN |ν)] , (20)

of a density matrix ̺ with the Stratonovich-Weyl (SW) kernel ∆(ΩN |ν) ∈
P∗

N from the dual space:

P∗
N = {X ∈ MN (C) | X = X†, tr (X) = 1, tr

(
X2
)
= N}. (21)

For N > 3, algebraic equations (21) admit a family of solutions. As a
result, the generic Wigner function depends on N − 2 real parameters
ν = (ν1, ν2, . . . , νN−2), (see details in [21]). The structure of phase space
ΩN depends on the isotropy group of the SW kernel. For any given isotropy
group H ∈ U(N) of the form

H = U(k1)× U(k2)× · · · × U(ks+1),

we identify the phase-space ΩN with the complex flag manifold,

ΩN → F
N
d1,d2,...,ds

= U(N)/H,

where (d1, d2, . . . , ds) is a sequence of positive integers with a sum N , such
that k1 = d1 and ki+1 = di+1 − di with ds+1 = N. After presenting neces-
sary notions, we are ready to introduce the definition of the classicality of
states.

Classical states and classicality indicator. The “classical states” form

the subset P
(+)
N ⊂ PN of states whose Wigner function is non-negative

everywhere over the phase space:

P
(+)
N = {̺ ∈ PN | W̺(z) > 0, ∀z ∈ ΩN}, (22)

and similarly, the “classical states on a fixed stratum” PHα
are defined as:

P
(+)
Hα

= P
(+)
N ∩PHα

. (23)

Based on (22), we define the geometric probability of finding a classical
state in an ensemble as

QN =
Volume(Classical States)

Volume(All States)
. (24)

Here it is assumed that the Riemannian volume is calculated with respect
to the measure dictated by the probability distribution function of an
ensemble. Probability (24) shall be considered as the global indicator of
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classicality. Moreover, for classical states (22) on the fixed stratum PHα

we define the Q-indicator of classicality of the stratum:

QN [Hα] =
Volume(Classical States on P[Hα])

Volume(All States on P[Hα])
. (25)

According to (6), stratum P[Hα] consists from subsets of matrices with a
certain degeneracy type. Hence, owing to the unitary covariance of proba-
bility distribution functions (3), the Q-indicator depends only on the joint
probability distribution of eigenvalues of the density matrix and can be
rewritten as:

QN [Hα] =

∑

ω∈Ss

∫

C∗
N−1(Hα)

P f
kω(1),...,kω(s)(r1, . . . , rs) dr1 ∧ · · · ∧ drs

∑

ω∈Ss

∫

CN−1(Hα)

P f
kω(1),...,kω(s)(r1, . . . , rs) dr1 ∧ · · · ∧ drs

. (26)

In (26) the integral in the denominator represents the volume of the orbit
space of stratum P[Hα]. The subset CN−1(Hα) is a union of faces of the
simplex CN−1 determined by the isotropy group [Hα]. The integration
in the nominator of (26) is over the image of P+

[Hα] under the canonical

quotient map:

C∗
N−1(Hα) =

{

p(x) | x ∈ P
(+)
Hα

}

. (27)

According to [21], the subset (27) can be identified with a certain cone
in RN−1. Having denoted by r = {r1, r2, . . . , rN} the eigenvalues of the
density matrix ̺ and by π = {π1, π2, . . . , πN} the eigenvalues of the SW
kernel, both arranged in decreasing order, we obtain that C∗

N−1(Hα) is the
following dual cone:

C∗
N−1(Hα)=

{
π ∈ spec (∆(ΩN )) | (r↓,π↑) > 0, ∀ r ∈ CN−1(Hα)

}
, (28)

where (r↓,π↑) = r1πN + r2πN−1 + · · ·+ rNπ1.

§4. Examples

In this section results of the calculations of classicality indicators for
the random ensembles described in Section 2 will be given for qubit and
qutrit cases.
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4.1. N = 2, Qubit. For a single qubit the expansion coefficients of the
density matrix over the Pauli σ-matrices are given by components of the
3-dimensional Bloch vector ξ = (ξ1, ξ2, ξ3):

̺ =
1

2
(I + (ξ,σ)) . (29)

Expressing the eigenvalues of (29) in terms of the length r ∈ (0, 1] of the
Bloch vector

r1 =
1 + r

2
, r2 =

1− r

2
, (30)

and taking into account that the Wigner function of a qubit is uniquely
constructed with the aid of the SW kernel, whose spectrum is:

π1 =
1 +

√
3

2
, π2 =

1−
√
3

2
, (31)

we conclude that the Wigner function of a qubit is positive definite in-
side the Bloch ball of radius 1/

√
3. Since all states, except the maximally

mixed state r1 = r2 = 1/2, have the torus T 2 ∈ SU(2) as their isotropy
group, there is only one indicator Q[T 2] for all possible ensembles of qubits.
Hence, for any random ensemble of qubits, characterized by a probability
distribution P (r), the expression of the classicality indicator is reduced to
the following ratio:

Q[T 2] =

1√
3∫

0

P (r)dr

1∫

0

P (r)dr

. (32)

Hilbert–Schmidt ensemble. Noting that for the Hilbert–Schmidt en-
semble the probability distribution function is PHS(r) ∝ r2, the calculation
of (32) gives:

QHS
[T 2] =

1

3
√
3
≈ 0.19245. (33)

Bures ensemble. Using the probability distribution function of the Bures

ensemble PB(r) ∝ r2√
1−r2

, we find the classicality indicator:

QB
[T 2] =

2

π

(

arcsin
1√
3
−

√
2

3

)

≈ 0.0917211. (34)
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Bogoliubov–Kubo–Mori ensemble. Analogously, calculations with the

Bogoliubov–Kubo–Mori measure PBKM(r) ∝ r(ln 1+r
2 −ln 1−r

2 )√
1−r2

result in the

classicality indicator:

QBKM
[T 2] =

2

π

(

arcsin
1√
3
−
√

2

3
arcoth

√
3

)

≈ 0.0495506. (35)

4.2. N = 3, Qutrit. Qutrit state space P3 admits the following orbit
type decomposition:

P3 = P[T 3]

⋃

P[S(U(2)×U(1))]

⋃

P[SU(3)]. (36)

Three strata in (36) are labeled by the isotropy group or directly by the
degeneracy of the density matrices. For full rank states, putting eigenval-
ues of ̺ in decreasing order, 1 > r1 > r2 > r3 > 0, the components of
decomposition (36) are described as follows (see geometrical illustration in
Fig. 1):

(1) the regular stratum P[T 3] of maximal dimension 6 consists of ma-
trices with a simple spectrum, 1 > r1 6= r2 6= r3 > 0. The corre-
sponding orbit space is the face F123 of the ordered 2-simplex, the
interior of △AOB,

(2) the degenerate 4-dimensional stratum P[S(U(2)×U(1))] with density
matrices whose degeneracy is k = (2, 1) and k = (1, 2), i.e., 1 >
r1 6= r2 = r3 > 0 and 1 > r1 = r2 6= r3 > 0. The corresponding
orbit space represents the union of edges F1|23 and F12|3 of the
2-simplex, two sides of △AOB,

(3) the 0-dimensional stratum P[SU(3)] of the maximally mixed state
with the triple degeneracy k = (3), r1 = r2 = r3 = 1/3.

Taking into account the decreasing order of the eigenvalues, 1 > r1 >

r2 > r3 > 0, the spectrum of qutrit admits the following parameterization:

r1 =
1

3
− 2r√

3
cos

(
ϕ+ 2π

3

)

, (37)

r2 =
1

3
− 2r√

3
cos

(
ϕ+ 4π

3

)

, (38)

r3 =
1

3
− 2r√

3
cos
(ϕ

3

)

, (39)

with r ∈ [0, 1/
√
3] and the angle ϕ ∈ [0, π]. If r and ϕ are treated as

the polar coordinates on a plane, (r cosϕ, r sinϕ) , then geometrically the
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Figure 1. The ordered 2-simplex of qutrit eigenvalues is
represented by △AOB, and the hatched region, △COD,
corresponds to the classical states. Edges AO/{A} and
BO/{B} are locus of degenerate states F12|3 and F1|23,
while their parts CO/{O} and DO/{O} represent the de-
generate classical states F+

12|3 and F+
1|23.

formulae (37)-(39) can be interpreted as a map between the ordered sim-
plex C2 and the domain of the upper half-plane outlined by the Maclaurin
trisectrix:

r(ϕ, 1/
√
3) =

1

2
√
3 cos(ϕ/3)

. (40)

More precisely, under transformations (37)-(39), the ordered simplex of
eigenvalues C2 maps to the domain (see Fig. 2)

F123 =:

{

r > 0, ϕ ∈ [0, π]

∣
∣
∣
∣
cos
(ϕ

3

)

6
1

2
√
3r

}

. (41)

Wigner function of a qutrit. The master equations (21) for eigenvalues
of the Stratonovich-Weyl kernel of a qutrit,

π1 + π2 + π3 = 1, π2
1 + π2

2 + π2
3 = 3, (42)

define a one-parametric family of the Wigner functions. Due to the permu-
tation symmetry of (42), the corresponding moduli space is a unit circle
factorised by the symmetric group S3. Let µ3 and µ8 be Cartesian coordi-
nates of this arc with a polar angle from the interval ζ ∈ [0, π

3 ],

µ3 = sin ζ, µ8 = cos ζ, (43)
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3

2

1

3

1

2 3



1



Figure 2. The image of the ordered simplex C2 on the
plane x = r cosϕ, y = r sinϕ under the mapping (37)–
(39).

then, providing the decreasing order of the SW kernel eigenvalues, π1 >

π2 > π3, one can represent the whole class of solutions to (42) as:

π1 =
1

3
+

2√
3
µ3 +

2

3
µ8, π2 =

1

3
− 2√

3
µ3 +

2

3
µ8, π3 =

1

3
− 4

3
µ8. (44)

Classical states of qutrit. The image of classical states from the regular
stratum P[T 3] to the unitary orbit space is the interior F+

123 of a cone which
is cut out from the simplex C2 by the line (see Fig. 1)

Lπ(r) : r1π3 + r2π2 + r3π1 = 0, (45)

while the orbit space of classical states from the stratum PS(U(2)×U(1))

consists of two pieces: F+
1|23 and F+

12|3, corresponding to the matrices of

degeneracy types (2, 1) and (1, 2) respectively. Using the polar form of
parameterization of the spectrum of a density matrix (37)-(39) and ex-
pressions (44) for the SW kernel eigenvalues, the cone of classical states
on a regular stratum reads:

F+
123 :

{

r > 0, ϕ ∈ (0, π)

∣
∣
∣
∣
cos
(ϕ

3
+ ζ − π

3

)

6
1

4
√
3r

}

, (46)
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while the cone of classical states on the degenerate stratum P
(+)
[S(U(2)×U(1))]

is:

F+
1|23 =

{

ϕ = 0, r ∈ (0,
1

2
√
3
)

∣
∣
∣
∣
cos
(

ζ − π

3

)

<
1

4
√
3r

}

, (47)

F+
12|3 =

{

ϕ = π, r ∈ (0,
1√
3
)

∣
∣
∣
∣
cos (ζ) <

1

4
√
3r

}

. (48)

 ℬ
-

1

3
-

1

4 3

1

2 3

x

1

y

 ℬ
- 1

3
- 1

2 3

1

6

1

2 3

x

1

y

 ℬ
- 1

3
- 1

2 3

1

4 3

1

2 3

x

1

y

ζ = 0 ζ = π/6 ζ = π/3

Figure 3. The orbit space F123 (the region enclosed by
the outer solid curve) and its subspace F+

123 (the region
enclosed by the inner solid curve) for different values of
the moduli parameter: ζ = 0, π/6, π/3.

Q3-indicator for Hilbert–Schmidt ensemble of qutrits from regu-
lar stratum. The regular stratum P[T 3] consists of density matrices with
a simple spectrum. The expression Q[T 3] comprises the integrals over the

face F123 and its subset F+
123:

QHS
[T 3] =

volHS(F
+
123)

volHS(F123)
. (49)

In (49) the expression volHS(X) denotes the Riemannian integral over a
region X taken with the measure induced on X ∈ C2 from the Hilbert–
Schmidt on P3,

volHS(X) =

∫

X

PHS
1,1,1(r1, r2, r3) dr1 ∧ dr2 ∧ dr3. (50)

Taking into account the expression (12) for the Hilbert–Schmidt measure
and the polar form of the parameterization of the qutrit orbit space (41)
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and of (46), we obtain the indicator of classicality as a function of the
moduli parameter ζ:

QHS
[T 3](ζ) =

20 cos2 (ζ − π/6) + 1

128 (4 cos2 (ζ − π/6)− 1)
5 . (51)

Q3-indicator for Hilbert–Schmidt ensemble of qutrits from de-
generate stratum. The stratum P[S(U(2)×U(1))] has two pieces, F1|23
and F12|3, associated with density matrices with degenerate eigenvalues
r1 = r2 6= r3 and r1 6= r2 = r3, respectively. Hence, the Q3-indicator for
the degenerate stratum of a qutrit reads:

QHS
[S(U(2)×U(1))] =

volHS(F
+
1|23) + volHS(F

+
12|3)

volHS(F1|23) + volHS(F12|3)
, (52)

where we keep the notation previously used for the regular stratum (50),
noticing only that the dimension of integration over the degenerate orbit
state strata has decreased by one:

volHS(F1|23) =

∫

F1|23

PHS
2,1 (r1, r2) dr1 ∧ dr2. (53)

The evaluation of all integrals in (52) gives:

QHS
[S(U(2)×U(1))](ζ) =

1

1056

(

csc5
(

ζ +
π

6

)

+ sec5(ζ)
)

. (54)

The functional dependence of the indicator QHS
3 for the regular (51) and

degenerate (54) strata is depicted in Fig. 4a. Apart from this, in Fig. 4b
we present the ratio

RHS(ζ) =
QHS

[S(U(2)×U(1))](ζ)

QHS
[T 3](ζ)

(55)

as a certain measure of the relation between the symmetry of a state and
its classicality.

Q3-indicator for Bures ensemble of qutrits from regular stra-
tum. Using the generic expressions for the joint probability distributions
of eigenvalues for monotone metrics (19) and the technique developed
above, we compute the Q3-indicators for the Bures and Bogoliubov–Kubo–
Mori ensembles of qutrits. The results of our calculations are presented in
Fig. 5a.
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Figure 4. (A) Q3-indicators of a Hilbert–Schmidt qutrit
as functions of ζ for the regular (solid curve) and degener-
ate (dashed curve) strata. The absolute minimum of both
indicators is attained at ζ = π/6. (B) The ratio of degen-
erate to regular Q3-indicators.
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Figure 5. (A) The plot of Q3 for the Bures (bold curves)
and BKM (thin curves) ensembles of qutrits from the reg-
ular (solid curves) and degenerate (dashed curves) strata.
(B) The ratio R of degenerate to regular Q3−indicators
for the Bures (bold curve) and the BKM (thin curve) en-
sembles.

§5. Summary

Bearing in mind the results of the calculations of Q3, we will summarize
with a few comments. The indicator of classicality Q3, being a functional
of the ensemble probability distribution function, at the same time de-
pends on two characteristics of the SW kernel: its isotropy group Hα and
the moduli parameter ζ. Our studies of the Q3-indicator reveal several
interesting peculiarities concerning their interrelations:
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• There is a certain coherence between the classification of states
according to their classicality and their symmetry properties. In
particular, it turns out that the states with a “larger” symmetry
are more classical, cf. Fig. 4 and Fig. 5. This observation demands
further study and we plan to formalize it in forthcoming publica-
tions;

• The character of the dependence of Q3 on the type of the ensemble
is monotone, i.e., the values of Q3 for all strata are ordered in
correspondence with the order of the ensembles, see Fig. 6;

• The Q3(ζ)-indicator of the Hilbert–Schmidt ensemble is a symmet-
ric function with respect to the global minimum point, ζ = π/6,
see Fig. 4a;

• For monotone metrics the symmetry possessed by the Hilbert–
Schmidt ensemble is broken. Data specifying the range of violation
is given in Table 1.
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Figure 6. Pairwise ratios of Q3-indicators of different en-
sembles for the regular (A) and for the degenerate (B)
stratum.

Global Q3-indicator vs. moduli parameter

Ensemble minQ3(ζ) ζmin Q3(0)−Q3(π/3)
Hilbert–
Schmidt

0.0006751 π/6 ≈ 0.523599 0

BKM 0.0000121609 0.527798 0.0000216102
Bures 0.0000891011 0.525096 0.0000472609

Table 1. Data on symmetry properties of Q3-indicators.
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