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THE CHVÁTAL–SANKOFF PROBLEM:

UNDERSTANDING RANDOM STRING COMPARISON

THROUGH STOCHASTIC PROCESSES

Abstract. Given two equally long, uniformly random binary
strings, the expected length of their longest common subsequence
(LCS) is asymptotically proportional to the strings’ length. Finding
the proportionality coefficient γ, i.e. the limit of the normalised LCS
length for two random binary strings of length n → ∞, is a very
natural problem, first posed by Chvátal and Sankoff in 1975, and
as yet unresolved. This problem has relevance to diverse fields rang-
ing from combinatorics and algorithm analysis to coding theory and
computational biology. Using methods of statistical mechanics, as
well as some existing results on the combinatorial structure of LCS,
we link constant γ to the parameters of a certain stochastic particle
process. These parameters are determined by a specific (large) sys-
tem of polynomial equations with integer coefficients, which implies
that γ is an algebraic number. Short of finding an exact closed-form
solution for such a polynomial system, which appears to be unlikely,
our approach essentially resolves the Chvátal–Sankoff problem, al-
beit in a somewhat unexpected way with a rather negative flavour.

§1. Introduction

The longest common subsequence (LCS) for a pair of strings a, b is the
longest string that is a (not necessarily consecutive) subsequence of both a
and b. Given a pair of strings as input, the LCS problem asks for the length
of their LCS (finding the actual characters of the LCS is not required). The
LCS problem is a fundamental problem for both theoretical and applied
computer science, and for computational molecular biology; it is also a
popular programming exercise.

Key words and phrases: random strings, longest common subsequence, the Chvátal–
Sankoff problem, particle processes.
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This paper is concerned with the combinatorics of the LCS problem.
Let strings a, b be of length n, uniformly random over the binary alpha-
bet. Chvátal and Sankoff [15] (see also [48, Chapter 1]) have shown that
the expected LCS length of a, b is asymptotically proportional to n. The
Chvátal–Sankoff problem asks for the proportionality coefficient γ, i.e. the
limit of the normalised expected LCS length ELn

n as n → ∞, where the
random variable Ln is defined as the LCS length for strings of length n.

Alexander [2] has shown that 0 6 γ − ELn

n 6 O
((

logn
n

)1/2)
.

The Chvátal–Sankoff problem has relevance to diverse fields ranging
from combinatorics and algorithm analysis to coding theory (see e.g. Bukh
et al. [9]) and computational biology (see e.g. Pevzner and Waterman [37]).
For such a natural and simply posed problem, it seems to be surprisingly
elusive: neither an exact value nor any closed-form expression for γ are
known, and the existing lower and upper numerical bounds on γ are wide
apart.

Acknowledgements. I thank Gianfranco Bilardi, Chris Cox, Vassily Du-
zhin, Maria Fedorkina, Sergei Nechaev, Georgiy Shulga, Nikolai Vassiliev,
and Anatoly Vershik for fruitful discussions. I thank my colleagues and stu-
dents at the Department of Mathematics and Computer Science of St. Pe-
tersburg University for the stimulating atmosphere.

§2. Related work

LCS combinatorics. An important combinatorial feature of the LCS
problem, also relevant to its computational aspect, is the problem’s close
connection with transposition networks and the Hecke monoid (also called
the seaweed monoid or the sticky braid monoid). This connection has been
explored over decades from different angles and using greatly varying ter-
minology. In the rest of this paper, we will describe this connection in more
detail, and will use it as the first step on our path to the Chvátal–Sankoff
problem.

While the computational aspect of the LCS problem is outside the
scope of this paper, it should be mentioned that the problem’s computa-
tional complexity, along with that of the closely related edit distance and
sequence alignment problems, has been thoroughly studied and is well-
understood. Seminal work on LCS algorithms and lower bounds includes
e.g. [57, 34, 1, 7].
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Reference γ > γ < γ

Chvátal and Sankoff [15] 0.697844 0.866595 ≈ 0.8082
Deken [20] 0.7615 0.8575

Steele [47] (conjecture attr. to Arratia)
?
=2(

√
2−1)≈0.8284

Danč́ik [18]; Paterson and Danč́ik [36] 0.77391 0.83763 ≈ 0.812
Baeza-Yates et al. [4] ≈ 0.8118
Boutet de Monvel [19] ≈ 0.812282
Bundshuh [10] ≈ 0.812653
Lueker [30] 0.788071 0.826280
Bukh and Cox [8] ≈ 0.8122

this work γ algebraic; exact polynomial equations

Table 1. Bounds and estimates on γ

Random LCS on permutation strings. Apart from binary strings, a
question analogous to the Chvátal–Sankoff problem can be asked about
pairs of uniformly random permutations of the alphabet {1, . . . , n}. The
LCS problem on such permutation strings is equivalent to finding the
longest increasing subsequence (LIS) of a single permutation of length n.
The LCS (respectively, LIS) length in this case turns out to be asymp-
totically proportional to

√
n. The proportionality constant was found to

be exactly 2 in the classical works of Vershik and Kerov [56] and Logan
and Shepp [29] (see also [40]), as part of a solution for the more general
problem asking for the limit shape of a random Young diagram sampled
from the Plancherel distribution.

Bounds and estimates for γ. Chvátal and Sankoff [15] gave the first
analysis of the problem, and proved the existence of the limit γ. Properties
of the convergence of the normalised LCS length to this limit were studied
since then by numerous researchers. Table 1 lists some results on specific
lower and upper bounds, as well as experimental numerical estimates of γ.

The best currently known analytic bounds on γ are due to Lueker [30].
Despite the ingenious methods of obtaining these bounds and numerous
related results, the gap between the upper and the lower bounds remains
quite wide: in particular, not a single digit of γ after decimal point is known
exactly.

Stochastic evolution models. Due to the combinatorial properties of
the LCS problem that will be presented in the next section, the Chvátal–
Sankoff problem turns out to be closely related to the theory of stochastic
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evolution models, which is a vast and actively developing field of study.
Particularly relevant areas within this field include particle processes, ran-
dom Young diagrams, stochastic cellular automata. Asymptotic properties
of such models are studied with the help of partial differential equations
(PDEs), which describe a model’s evolution at the macroscopic level. In
the rest of this paper, we will describe these connections in more detail, and
will build upon them to obtain a solution of the Chvátal–Sankoff problem.

§3. Combinatorics of the LCS problem

LCS grid. Let strings a, b be of length m, n respectively. The LCS grid
defined by a, b is a directed graph on an (m+ 1)× (n+ 1) grid of nodes;
we visualise the nodes as being indexed top-to-bottom and left-to-right.
Every pair of horizontally or vertically adjacent nodes are connected by an
edge, directed rightwards (respectively, downwards). A pair of diagonally
adjacent nodes (i, j), (i+1, j+1), 0 6 i < m, 0 6 j < n, are connected by
an edge whenever ai = bj (the two characters match); this edge is directed
towards below-right. The LCS grid can also be viewed as an m×n grid of
cells, each formed by a quadruple of adjacent nodes and their four connect-
ing horizontal and vertical edges. The cell is called match cell, if the two
corresponding characters match (and therefore the cell contains a diagonal
edge), otherwise a mismatch cell. The LCS problem is equivalent to asking
for the length of a path in the LCS grid from the top-left node (0, 0) to the
bottom-right node (m,n), that maximises the number of diagonal edges
along the path.

Example 1. Figure 1 (left) shows the LCS grid for a pair of binary strings.
The horizontal and vertical edges are shown in light-blue, and the diagonal
edges in solid red. The left-to-right, top-to-bottom direction of the edges
is left implicit.

Sticky braids. The combinatorial structure of the LCS problem is de-
scribed algebraically by the Hecke monoid (also known as the sticky braid
monoid), which is defined similarly to the classical braid group, but with
element inversion replaced by the idempotence relation on the monoid’s
generators. Given an LCS grid, strands of the corresponding sticky braid
are formed by paths in the dual graph, i.e. the plane graph whose nodes
are the faces of the LCS grid, and the edges go across the edges of the
LCS grid. Multiplication of sticky braids in the Hecke monoid (also known
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Figure 1. LCS grid with a sticky braid (left), transposi-
tion network (centre), particle evolution model (right) for
strings a = “IOOO”, b = “OIOO” .

as Demazure multiplication) describes precisely how LCS lengths of input
strings and their substrings behave under string concatenation.

Example 2. Figure 1 (left) shows a sticky braid embedded into the LCS
grid of the previous example. The braid’s strands are shown in darker blue
and dotted red.

The connection outlined above between the LCS problem and the Hecke
monoid has been rediscovered many times in different forms. In particular,
it underlies implicitly the algorithms for various string comparison prob-
lems by Schmidt [46], Crochemore et al. [16, 17], Alves et al. [3], Hyyrö
[24], and was made explicit by Tiskin [49, 50, 53]. More recently, new algo-
rithmic applications of this connection were found by Sakai [42, 43], Tiskin
[51, 52, 54, 55], Gawrychowski et al. [22], Hermelin et al. [23], Matarazzo
et al. [35], Charalampopoulos et al. [14, 13].

Transposition networks. Another convenient tool for exposing the com-
binatorial structure of the LCS problem comes in the form of transposition
networks. These are a special case of comparison networks, which are a
classical type of computational circuits studied by Batcher [5], Knuth [26]
and many others. In a comparison network, input values travel on an ar-
ray of parallel wires; any prescribed pair of values can be sorted by a
comparator connecting their respective wires. In a transposition network,
an additional restriction is imposed that only adjacent pairs of wires can
be connected by a comparator.
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Given a pair of strings a, b of lengths m, n respectively, their LCS grid
can be overlayed by a transposition network on m+n wires, extending di-
agonally from above-left to below-right and passing through the midpoints
of the grid’s edges. These intersection points of the network’s wires and the
grid’s edges will be called sites ; we will distinguish horizontal and vertical
edge sites. A wire passes through an alternating sequence of horizontal and
vertical edge sites; the value of a given site is the value carried through
it by the wire. A cell is crossed by two wires: one connecting its left and
bottom boundary edges, the other its top and right boundary edges. The
two sites at the cell’s left and top boundary edges are its entry sites, and
the two sites at its right and bottom boundary edges are its exit sites. The
network’s comparators are specified as follows: a mismatch cell always con-
tains a comparator between the two wires that cross it, while a match cell
never contains a comparator. A cell can therefore be of one of two types :
“match” (denoted ‘ ’), containing a diagonal grid edge, and “mismatch”
(denoted ‘ ’), containing a network’s comparator; the notation indicates
the direction of the diagonal edge and of the comparator, respectively. Oc-
casionally, we identify cell type ‘ ’ with value zero, and cell type ‘ ’ with
value one.

Example 3. Figure 1 (centre) shows the LCS grid of the previous example,
overlaid with its respective transposition network.

Given an input of m+ n distinct values sorted in reverse order, the set
of values’ trajectories through such a transposition network forms a sticky
braid corresponding to the comparison of strings a, b; each particular value
traces a strand in this braid. The network’s output permutation provides
detailed information about LCS lengths between various substrings of a,
b. For our purposes, the above construction can be simplified as follows:
instead of all distinct values, let the transposition network’s input consist
of m ones, followed by n zeros; note that such an input array is still sorted
in reverse. In this context, value zero will be called a hole (denoted ‘◦’),
and value one a particle (denoted ‘•’). This is done not only to distinguish
the (binary) values in the network from (also binary) string characters
and (again binary) cell types, but also to reflect in our terminology the
important connection with particle interaction models, that we will develop
further in the remainder of this paper.

An assignment of values/types to a subset of sites/cells of a transposi-
tion network will be called a configuration. In particular, the input config-
uration formed by m particles entering the LCS grid at its left boundary,
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and n holes entering at the top boundary, will be called the step initial
condition.

Example 4. The transposition network in Figure 1 (centre) is shown
with the step initial condition input sequence at the top-left, and the cor-
responding output sequence of particles and holes at the bottom-right.

The LCS length of strings a, b is particularly easy to obtain from the
transposition network with step initial condition: it is equal to the number
of particles among the network’s n outputs exiting the grid at the bottom
(equivalently, the number of holes among its m outputs exiting the grid
at the right). This observation underlies implicitly the bit-parallel LCS
algorithms of Crochemore et al. [16] and Hyyrö [24], and was made ex-
plicitly e.g. by Majumdar and Nechaev [32] and by Krusche and Tiskin
[28]. Let a, b be of equal length m = n; in this case, the LCS grid has the
shape of a square, and the LCS length is equal to the number of particles
(equivalently, the number of holes) that have never crossed the grid’s main
diagonal.

Example 5. In the previous example, there are three particles among
the n = 4 outputs at the grid’s bottom; the LCS length for strings a, b is
also 3. In the course of the evolution of the transposition network, 4−3 = 1
particle has crossed the main diagonal from left to right; accordingly, one
hole has done so from top to bottom.

§4. Model CS

The combinatorial properties of the LCS problem allow us to reformu-
late the Chvátal–Sankoff problem in the language of stochastic particle
interaction models. By a network evolution model, we will understand the
evolution of site values from a given input configuration in an infinitely
wide transposition network, under a certain probabilistic rule that deter-
mines the type of each of the network’s cells.

Cell dependencies. Let a, b now be infinite strings, where all characters
are independent uniform binary random variables. We define model CS

(the Chvátal–Sankoff model) as a network evolution model where cell types
are determined by character matches and mismatches between strings a,
b, as described in the previous section.
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Proposition 1. In model CS , the types of any three distinct cells are
mutually independent. The types of any three distinct cells within a -
shape determine uniquely the type of the fourth cell.

Proof. The first statement is straightforward by the independence and
uniformity of character distribution in strings a, b. The second statement
is also straightforward, since the sum of the four cells’ types must be
even. �

In particular, the types of any three cells adjacent in a -shape are
mutually independent; we shall call this property -independence. Note
that -independence relies crucially the uniform distribution of string
characters, and would not hold for a non-uniform character distribution,
even if it were independent and identical.

Evolution. Let strings a, b be indexed by i, j respectively. The state of
model CS can be thought of as evolving in several different ways — verti-
cally, horizontally or diagonally, with the discrete time dimension indexed
by i, j and i+j

2 , respectively. We will focus mainly on the diagonal evolu-
tion, due to its symmetry and locality properties. The model’s state under
such evolution corresponds to an anti-diagonal doubly-infinite sequence of
particle-hole values, alternating between horizontal and vertical edge sites.
Let us index the transposition network’s wires entering the grid through its
top boundary with nonnegative integers 0, 1, 2, . . ., and the wires entering
the grid through its left boundary with negative integers −1,−2,−3, . . .;
the count in both cases starts from the top-left cell. A time step under
diagonal evolution then consists of two half-steps: the first involves com-
parators operating on pairs of adjacent sites with an odd and an even index
(in that order), the second on pairs with an even and an odd index (in that
order).

As discussed in the previous section, the behaviour of model CS reflects
the LCS combinatorics of its underlying string pair a, b.

Proposition 2. Let 0 6 k 6 2n. Consider the prefixes of infinite strings
a, b of length k, 2n − k respectively, and let l be the LCS length of these
prefixes. Under diagonal evolution of model CS from step initial condition
after n time steps, there are k− l particles at sites with indices 2n− 2k or
greater.

Proof. Well-known from the combinatorial properties of LCS; see e.g.
[32, 28]. �
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Example 6. Figure 1 (right) shows the evolution of model CS from
step initial condition on strings a, b of the previous examples. Wires with
negative (respectively, nonnegative) indices are those below (respectively,
above) the network’s main diagonal. Let n = k = 4. The LCS length of
the input strings, regarded as prefixes of length k = 2n− k = 4 of a pair
of infinite strings, is l = 3; as before, we note that after n = 4 time steps,
exactly n − l = 4 − 3 = 1 particle has crossed over the main diagonal to
wires with nonnegative indices.

Duality. The definition of model CS is symmetric with respect to the
reflection of the network about its main diagonal. A pair of configurations
will be called dual, if one of them is obtained from the other by a reflection
about an above-left to below-right axis (exchanging the directions towards
below-left and above-right), with simultaneous exchange of sites’ values
between particles and holes. In particular, the step initial condition is a
self-dual configuration.

In the remainder of this paper, we will consider model CS with step
initial condition. Our analysis will concentrate on the model’s behaviour
in a small neighbourhood of the main diagonal, where the particle and hole
densities should be asymptotically equal by symmetry. Duality will help to
simplify the exposition, since in such a setting, a pair of dual configurations
will have equal probabilities.

§5. Special notation

Configuration probabilities. We consider configurations of a network
evolution model as random events. The probability of an event will be
denoted by its graphical representation. Thus, = 1 − represents the
probability of a given vertical edge site holding a particle, as opposed to a
hole, and = 1− represents the probability of a given cell being of type
“mismatch”, as opposed to “match”.

We extend this notation to represent conditional probabilities as follows.
We juxtapose the conditioning event and the conditioned event in the same
picture; the elements of the conditioning event will be highlighted in red,
while the elements of the conditioned event will be shown in the ordinary
black. For example, the probability of a given cell being of type “mismatch”,
conditioned on the cell’s left (respectively top) entry value being a particle
(respectively, a hole), will be denoted by = / .
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Some events that we consider may be forced by other events: a forced
event, conditioned on the forcing event, occurs with certainty. We jux-
tapose the forcing event and the forced event in the same picture; the
elements of the forced event will be highlighted in blue, while the elements
of the forcing event will be shown in either black or red, as appropriate. In

the previous example, the cell’s exit values are forced: = . Showing

forced sub-events is a notational decoration that can formally be omitted;
however, it is meant to serve as an intuition aid, especially so when some
non-forced sub-event becomes forced in a chain of equalities. For example,

we have = + .

Annotated equalities. Standard annotated equality A
def
= B (“A is de-

fined as B”) will be used to introduce new notation. Additionally, we will
use some other annotations on the equality sign, as an aid to the reader.

Notation A
r
= B (“A and B are obtained from each other by reversal with

an exchange of particles and holes”) will indicate that the equality holds
by the duality property of network configurations.

Other notation. For brevity, we will denote z̄=1−z for any z, 06z61.
We will also occasionally use bracketed superscripts to denote z[•] = z[′] =
z and z[◦] = z[8] = z̄. We will use subscripts and (unbracketed) super-
scripts to express various meanings as required; to avoid confusion, we will
never use superscripts to indicate powers, not even in polynomials. Strings
in the alphabet {◦, •} will sometimes be treated as binary numbers; for
brevity, we will convert such numbers to decimal where appropriate. We
let a, b, c, d, e, g ∈ {◦, •}, E,F,G ∈ { , } for the remainder of this paper.

§6. Scaling limits

Informally, the scaling limit of a particle evolution model is the contin-
uous limit of the distribution of particle densities at the model’s sites, as
both time and space are simultaneously scaled down at appropriate rates,
so that the magnitude of both time and space units tends to zero. A general
introduction to the theory of scaling limits is given e.g. by Kriecherbauer
and Krug [27].

Scalar conservation laws. Partial differential equations (PDEs) are an
indispensable tool in studying the asymptotic behaviour of particle evolu-
tion models. Using PDEs, one can relate the global behaviour of the model,
such as its non-stationary evolution from a given initial condition, with its
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local behaviour, such as its stationary state in a small space-time region.
A classical example of such a relationship is the asymptotic behaviour of
the continuous-time totally asymmetric simple exclusion process (TASEP)
with step initial condition, which was shown to be governed by the inviscid
Burgers’ equation by Rost [41] (see also [27, 40, 21]).

In general, the scaling limit of a conservative particle model with one
spatial dimension can be associated with a scalar conservation law (see
e.g. [27]), which is a PDE of the form

∂
∂ty +

∂
∂xf(y) = 0

where y = y(t, x) is the density function of time t and the spatial dimension
x, representing the conserved quantity (typically, the mass of some fluid),
and f = f(y) is a strictly concave smooth function of density y called the
(rightward) flux. We are particularly interested in the step initial condition:

y(0, x) =

{

1 x < 0

0 x > 0

In the language of PDEs, the step initial condition is a special case of the
Riemann problem for a scalar conservation law. The discontinuity of y at
x = t = 0 is known as shock. This initial shock dissipates over time in a
rarefaction wave, governed by the equation’s solution (see e.g. [27, 44])

y(t, x) =

{

(f ′)−1(x/t) f ′(1)t 6 x 6 f ′(0)t

y(0, x) otherwise

where f ′ is the derivative of f , and superscript −1 denotes its functional
inverse.

Since the solution scales linearly with t, it is sufficient for the analysis
to consider a single time moment t > 0; a natural choice is t = 1. Let
y(x) = y(1, x). We impose further constraints 0 6 y 6 1, f(0) = f(1) =
0, which are natural for the interpretation of y as a fluid’s density. The
maximum flux f̃ is determined by f ′(y) = 0, and is therefore attained at
density ỹ = (f ′)−1(0) = y(0); we will call these peak flux and peak density,
respectively.

Recall that under the step initial condition, all the fluid’s mass is con-
centrated in the negative half-line at time t = 0. The key characteristic
of the system is the amount of mass transported across the origin to the
positive half-line by the time t = 1, which turns out to be precisely the
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peak flux:

+∞
∫

0

y(x)dx =

f ′(0)
∫

0

(f ′)−1(x)dx =

ỹ
∫

0

f ′(y)dy = f(ỹ)− f(0) = f(ỹ) = f̃ .

We will call the function 1 − f = f̄ and the value 1 − f̃ =
¯̃
f respec-

tively the flux complement function and the peak flux complement. A close
relationship between the peak flux complement and the constant γ of the
Chvátal–Sankoff problem will be exposed in the rest of this section.

Network model limit. For a network evolution model, density y in the
above equations is the limiting marginal probability of a site to contain a
particle (as opposed to a hole). The flux for a model X is determined as
the (unconditional) probability that a particle and a hole are exchanged by
a comparator within the cell. This probability, as well as its complement,
have a straightforward expression in terms of marginal site probabilities:

f
X def

= = = − = − f̄
X def

= 1− ( − ) = + (1)

For a model evolving vertically or horizontally, every cell is accounted for in
the above expession for the flux in a given time step. For a model evolving
diagonally, one half of the cells is accounted for in the first half-step of a
time step, and the other half of the cells in the second half-step.

For a model that has mirror symmetry of cell type probabilities about
the main diagonal (such as model CS and all the others considered in this
paper), and that evolves diagonally from the (skew-symmetric) step initial
condition, the site probabilities will be skew-symmetric about the main
diagonal: particle probability at a site on one side of the main diagonal
must be equal to the hole probability at the symmetrically opposite site.
By symmetry, the peak density for such a model in the scaling limit is
ỹ = 1

2 , realised in a small neighbourhood of the main diagonal.
From now on, we will consider the model’s state in an infinitesimally

small neighbourhood of the scaling limit point t = 1, x = 0 on the main
diagonal. At that point, both the model’s peak flux and peak density are
realised, so we will write simply y for ỹ and fX for f̃X . The peak density
y is composed from particle probabilities at horizontal and vertical sites,
or, symmetrically, particle and hole probabilities at just the horizontal, or
just the vertical sites: y = u + ū = + = + = + = 1

2 . The
evolution of the model in such a small neighbourhood can be considered
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to be in a stationary state; we will use this stationarity to derive the joint
distribution for site probabilities of our models.

A limit for model CS . In general, finding an explicit flux function for
a particle evolution model may be difficult, and even the convergence to a
scaling limit is not guaranteed. Fortunately, the existence of a continuous
scaling limit for model CS follows directly from Proposition 2. Indeed,
the model’s convergence at a point on the main diagonal is equivalent to
the convergence of scaled LCS length for a pair of equally long uniformly
random binary strings, i.e. to the existence of constant γ. As mentioned in
the Introduction, this was established already by Chvátal and Sankoff [15]
(see also [48, Chapter 1]). In much the same way, the model’s convergence
at any other point is equivalent to the convergence of scaled LCS length for
a pair of random binary strings with a given limiting ratio of their lengths,
which can be established by a slight modification of the same proof.

The Chvátal–Sankoff problem can now be reformulated as finding the
peak flux complement γ = f̄CS for model CS .

§7. Model B

In keeping with the traditional terminology, let us define model B (the
Bernoulli model) as the network evolution model, where a cell is assigned

type “mismatch” with a fixed probability p
def
= , called the model’s (jump)

rate, independently of any site values or types of any other cells (this
initial definition will be generalised later). Intuitively, every cell tosses an
independent biased coin p to determine its type.

Model B has been applied to the study of the Chvátal–Sankoff problem
by Boutet de Monvel [19], Majumdar and Nechaev [32], Priezzhev and
Schütz [38], Bukh and Cox [8]. It is closely related to a classical particle
model known as the totally asymmetric simple exclusion process (TASEP).
The TASEP consists of an of array of sites, each occupied by a particles
or a hole. It evolves by a particle jumping at a random time into a hole
on its right; symmetrically, the hole “jumps” to its left to the site pre-
viously occupied by the particle. Updates may occur in continuous time
(classical TASEP, which we do not consider any further) or in discrete
time (DT-TASEP). Within a time step of DT-TASEP, the update pol-
icy may be parallel (the process also known as multi-corner growth of a
Young diagram, which we do not consider any further), forward-sequential,
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backward-sequential, or sublattice-parallel. The latter three update poli-
cies essentially only differ by a change of coordinates, and correspond to
model B evolving vertically, horizontally or diagonally, respectively. An
analysis of DT-TASEP with different update policies has been given by
Rajewsky et al. [39] and by Martin and Schmidt [33]. Model B and DT-
TASEP can be considered as a special case of the six-vertex model analysed
by Borodin et al. [6], with weights assigned according to measure P(p, 0)
defined therein.

Model B and other network evolution models presented in this paper
can also be considered as special cases of stochastic cellular automata (see
e.g. [31, 11]). However, the simplifying “well-mixing” assumptions, that are
usually made in that context, do not hold for our models.

Cell type probabilities. We note that a cell’s type only affects the
model’s behaviour when its entry pair is , distinguishing the events

and . For any other entry pairs, the cell’s exit values are forced by

the entry values and are independent of the cell’s type: the corresponding

events are , , . In these cases, the cell’s type probability can be

set differently from p, without affecting the model’s behaviour. Therefore,
we can generalise the definition of model B by introducing a formal depen-
dency of a cell’s type on its entry pair, while making sure that the model’s
new definition is still invariant with respect to duality of configurations.

Definition 1. We say that a cell’s type depends exclusively on a set of
sites’ values in a given half-step, if, conditioned on this set, it is condition-
ally independent of any other site values in the same half-step.

We define 4 = 1 · 2+ 2 (one dual pair and two self-dual singletons) con-
ditional probabilities for a cell’s type, specifying its exclusive dependence
on the entry site pair:

p0
def
=

r
= p3

def
= p1

def
= p2

def
=

The subscripts correspond to the entry pair values being read as a two-
digit binary number, bottom-left to top-right: p0 = p◦◦, etc. Intuitively, a

cell now has four biased coins p0, p1, p2, p3, including a dual pair p0
r
= p3.

The cell reads its entry pair (as a binary number), and then tosses the
corresponding coin to determine its type; the combination of the cell’s
entry pair and its chosen type then determines the cell’s exit pair.

Conditional probability p2 corresponds to the rate p in the original
definition of model B, and determines solely the model’s behaviour (in
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particular, its flux). We will therefore reserve the term rate for p2, whereas

the remaining conditional probabilities p0
r
= p3, p1 will be called pseudo-

rates. These pseudo-rates do not affect the behaviour of the model, and
therefore can temporarily be left unconstrained. This leaves us the freedom
to set them later, in an attempt to fit model B to the constraints of model
CS .

Alternating sequences. Our models, including model B, will have time-
invariant distributions satisfying the following natural property.

Definition 2. An alternating sequence is a doubly-infinite sequence of
(generally dependent) particle-hole random variables (ξi), i ∈ Z, that is
invariant with respect to

• a shift by 1, mapping i 7→ i+ 1
• a reversal about 1

2 , mapping i 7→ −i+ 1

both of these with simultaneous exchange between particles and holes.

Note that both a shift and a reversal of the given type flip the parity of
indices. Definition 2 implies that an alternating sequence is also invariant
with respect to arbitrary shifts and reversals, where holes and particles are
exchanged if and only if the parity of indices is flipped.

We consider alternating sequences of site values in a given half-step of
diagonal network evolution, identifying arbitrarily the even (respectively,
odd) indices of the sequence with the horizontal (respectively, vertical)

edge sites. Annotated equality A
r
= B, when applied to such sequences, will

stand for “A and B are obtained from each other by a parity-exchanging
reversal with a simultaneous exchange between particles and holes”; this
is consistent with the previous usage of this notation to express duality of

configurations. Furthermore, annotated equality A
s
= B will have similar

meaning, but with a reversal replaced by a shift. Notation A
sr
= B will be

used when A
s
= B and A

r
= B are both applicable.

We denote the marginal site probabilities by

u
def
=

sr
= ū

def
=

sr
= (2)

Substituting (2) into (1), we obtain a simple expression for the peak flux
complement of our models.
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Proposition 3. Let X be a network evolution model in a stationary state,
where the time-invariant distribution of site values is given by an alternat-
ing sequence. Then the peak flux complement is

f̄
X = + = u+ u = 2u

In the rest of this section and the next, we designate u, p0, p1, p2 as
the main variables; our goal is to connect them by a system of polynomial
equations with integer coefficients. In principle, this could be done directly
in terms of the main variables alone; however, for convenience, we will be
introducing some auxiliary variables. Every auxiliary variable will have a
separate equation expressing it in terms of previously introduced variables;
thus, auxiliary variables will not add any degrees of freedom to the sys-
tem, and could easily be eliminated from it, at the expense of making the
equations more cumbersome.

AB sequences. We first consider the most basic special case of an alter-
nating sequence.

Definition 3. An alternating sequence (ξi), i ∈ Z, is an AB (alternating
Bernoulli) sequence, if all its elements are mutually independent.

In particular, an AB sequence of site values in a given half-step of a net-
work evolution model is a product measure with marginal site probabilities
(2).

Time invariance. Consider the evolution of model B on an AB sequence
in a stationary state. The model’s rate and the site densities of the sequence
are connected by the time-invariance equation:

uu = = = ūūp̄2 (3)

We recall a well-known result on the time-invariant distribution for the
diagonal evolution of model B (see e.g. Rajewsky et al. [39], Martin and
Schmidt [33]).

Theorem 1. An AB sequence with parameter u determined by (3) is a
time-invariant distribution for model B with a given rate p2.

Proof. It is sufficient to show that the AB property is preserved in a
single half-step of the evolution of model B. The independence between site
values a, b at the end of the half-step in a configuration a

b is obvious, since

these values are obtained in different cells; independence in a configuration

a
b is established by (3). In the equation (3), the left-hand side expresses
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the AB property in a configuration at the half-step’s end, while the right-
hand side relies on the same property at the half-step’s beginning. �

The Arratia–Steele conjecture. Since the marginal probabilities of
cell types in model CS are all equal to 1

2 , and since these types are -
independent and, more generally, three-wise independent, at some point it
was quite natural to conjecture that all cell dependence (i.e. -dependence
and, more generally, all four-wise and higher-order dependence) could
also be ignored, so that model CS would be equivalent to model B with
p = p2 = 1

2 , which we denote B(1/2). Substituting p2 = 1
2 into (3), we ob-

tain a quadratic equation that gives us the peak site marginal probability
and the peak flux complement for model B(1/2), which can be considered
as an approximation for γ:

u =
√
2− 1 = 0.414213 . . . γ ≈ f̄

B(1/2) = 2u = 2(
√
2− 1) = 0.828427 . . .

The conjecture, attributed to Arratia by Steele [47], was that the above
expression gives the exact value of γ. This conjecture was disproved by the
upper bound γ 6 0.826280 due to Lueker [30].

In the remainder of this paper, we will be making repairs to the Arratia–
Steele conjecture by weakening the claimed type of model equivalence (lo-
cal instead of global equivalence), and by replacing, in two successive steps,
model B by a network evolution model from a more general class.

§8. Local fitting of model B to model CS

The Arratia–Steele conjecture makes an unsuccessul attempt to fit model
B(1/2) to model CS . The next natural step is to replace model B(1/2)
by model B with a general rate and pseudo-rates. In doing so, we can
set a rate p2 > 1

2 for a better fit to the higher peak rate of model CS .
We need to compensate for that by lowering (at least one of) the pseudo-

rates p0
r
= p3, p1, so that the marginal cell type probability remains at 1

2 ,
and the -independence of cell types is maintained. Crucially, we do not
need to require that the models agree across the whole network: since we
are only interested in obtaining the peak flux complement, we only need
to achieve the models’ agreement in a small neighbourhood of the main
diagonal (recall that the peak flux is precisely the flux across the main
diagonal); we call this local fitting of the models. This attempt to obtain
a local fit for model B to model CS will eventually turn out to also be
unsuccessful, but somewhat less so than the Arratia–Steele conjecture: it
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will give us a better approximation for γ, and will provide a stepping stone
to a perfect local fit with a still more general model in subsequent sections.

For convenience, we introduce a pair of auxiliary variables for cell type
probabilities conditioned on a single entry site, where the sites in a given
half-step are known to form an AB sequence:

q0
def
= = + = ūp0 + up1

r
= q1̄

def
=

q1
def
= = + = ūp2 + up3

r
= q0̄

def
=

Reverse cell type probabilities. Forgetting temporarily about cell
types, the evolution of site values in model B can be “turned back in time”
by considering a natural reverse process, where site values in half-step
t are conditioned on site values (without cell types) in half-step t + 1.
Both the forward and the reverse processes on site values can be described
symmetrically as

1= = = = = = p2= = p̄2= =

Although it is not required for our results, it is remarkable, and not dif-
ficult to check via (3), that in the stationary state, it is impossible to
distinguish probabilistically whether a given configuration of site values
has been obtained by the forward or by the reverse process.

Reintroducing cell types breaks the symmetry between the forward and
the reverse processes: a cell’s type determines its operation in the forward
process only. In the reverse process, a cell’s type depends exclusively on its
pair of exit sites (here, the terminology “exit sites” is still relative to the
forward process). We denote the 4 = 1 · 2+ 2 resulting reverse conditional
probabilities by auxiliary variables

rab
def
= a

b
r
= rb̄ā

def
=

b̄
ā

which are determined by the model’s parameters via the equations

r̄0 = = = p̄0
r
= r̄3 = = = p̄3

r̄1ūū = = = uup̄1 r̄2 = = 1
(4)

Total probability. An individual cell in model CS takes its types and
equiprobably. Therefore, in a local fit of the models, the site probabili-

ties, rate and pseudo-rates of model B must satisfy the total probability
equation, where the pseudo-rates p0, p1 fulfill their purpose of balancing
out the bias in the rate p2:

ūūp2 + 2uūp0 + uup1 = + 2 + = = 1
2

(5)
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Here, we have collected an equiprobable dual pair of terms
r
= into a

single term 2 . The remaining terms are self-dual singletons. We shall use
the same shortcut subsequently without special notice; the collected mu-
tually dual terms can always be distinguished by the leading coefficient 2.

Linking the models. We now attempt to link models B and CS . Our
goal is to assign the rate and pseudo-rates for model B so that the site
values and cell types at any given half-step would be probabilistically in-
distinguishable in both models.

In model B, a cell’s type in half-step t depends exclusively on its entry
site pair. Each site of this pair is an exit site for one of a pair of diagonally
adjacent cells in half-step t − 1, and depends exclusively on those cells’
entry site pairs; we thus have an exclusive dependence of a cell’s type in
half-step t on a quadruple (two disjoint pairs) of adjacent sites in half-step
t − 1. Each site of this quadruple, in its turn, is an exit site for one of a
triple of diagonally adjacent cells in half-step t−2, and depends exclusively
on those cells’ entry site pairs; we thus have an exclusive dependence of
a cell’s type in half-step t on a sextuple (three disjoint pairs) of adjacent
sites in half-step t − 2. On the other hand, in model CS , a cell’s type in
half-step t is determined uniquely by just the types of three preceding cells,
two in half-step t−1 and one in half-step t−2, forming a -shape between
themselves, and a -shape together with the current cell. Therefore, in
order to relate models B and CS , a system of polynomial equations can be
obtained by listing exhaustively all possible configurations of the relevant
site values and cell types over three half-steps of both models’ evolution.
The use of duality and of the reverse cell type probabilities will provide
substantial shortcuts for such an exhaustive enumeration, helping us to
avoid listing dozens of configurations explicitly.

There are three linking equations: one for the rate p2, and two (con-

sidering duality) for the pseudo-rates p0
r
= p3, p1. The left-hand side of

every equation represents a single half-step configuration for a given rate
or pseudo-rate. The right-hand side enumerates exhaustively each of the
three half-step configurations of model CS that result in the configuration
in the left-hand side with nonzero probability. Due to -independence of
cell types, the first two of these steps are probabilistically indistinguish-
able from ones of model B, and their probabilities are assigned accordingly
in the equations; by using the reverse probabilities, we avoid an explicit
enumeration of the site values in the first half-step, while we do enumerate
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cell types. In the third half-step, the cell type is determined uniquely from
the -configuration of model CS ; the requirement that this half-step must
also be probabilistically indistinguishable from one of model B provides
the desired equation.

In particular, the linking equation for the rate p2 is as follows:

ūūp2 = =
(

+ 2 +
)

+ 2
(

+
)

+ (6a)

= 2uur̄2q0q̄0 + 2ūūu(r0p2q0 + r̄0p2q̄0) + ūūūūr1p2p2

The terms representing impossible events have been crossed out and
dropped from the equation; from now on, such terms will be omitted with-
out special notice.

The remaining linking equations are as follows:

uūp0 = =
(

+
)

+
(

+
)

+ + (6b)

= ūu(r̄0q̄1q0+r0q̄1q̄0)+uūu(r0p0q0+r̄0p0q̄0)+uūūūr1p0p2+ūūūr̄1q̄1p2

uup1 = = +2 + =uūūur1p0p3+2uūūr̄1p0q̄1+ūūr1q̄1q̄1 (6c)

It is important to note that the connection between the two models
expressed by equations (6) is incomplete: while the equations relate the
rate and the pseudo-rates of model B to model CS , they do not guarantee
the preservation of the AB property on the site values. In particular, the
equations’ left-hand sides express site independence within a configura-
tion of the form a

b , but none of the equations implies site independence

within a configuration of the form a
b . Thus, there is no guarantee that

our goal of probabilistic indistinguishability between the two models has
been achieved: in fact, it has not, and in general model B turns out to be
insufficient for a perfect fit. This limitation of model B will be overcome
in subsequent sections.

Solving the equations. The resulting system has four main variables u,
p0, p1, p2, involved in five main equations: one time-invariance equation (3),
one total probability equation (5), and three linking equations (6). There
are also some auxiliary variables, each of which is introduced via its own
separate equation. Thus, the system is overdetermined by one equation.
However, it is still consistent, since the total probability equation (5) is
a consequence of the -independence of cell types, which is implied by
the time-invariance and the linking equations. While the total probability
equation is formally redundant, we keep it in the system for its symmetry
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and, more importantly, as an aid to computer algebra software in solving
the system.

Since all the variables in the system represent probabilities, we are only
interested in real solutions between 0 and 1; we call such solutions admis-
sible. The system has a unique admissible solution; we denote by B(opt)
model B with the specific set of parameters provided by this solution.

The system’s admissible solution can be obtained analytically using
computer algebra software. In particular, Mathematica returns it instantly,
expressed in exact radicals (for this, function Solve needs to be used with
option Quartics -> True). As a result, we obtain the site marginal prob-
ability and an estimate for γ via the peak flux complement as

u=

√

7

3
−

√

23− 5
√
21

6
− 1=0.407025 . . . γ ≈ f̄B(opt)=2u=0.814050 . . .

and the model’s rate and pseudo-rates as

p0 = p3 = − 8
3 + 49

6 u− uu− 1
2uuu = 0.457987 . . .

p1 = 29
2 − 51u+ 75

2 uu+ 9uuu = 0.561206 . . .

p2 = − 2
3 + 34

3 u− 19uu− 4uuu = 0.528838 . . .

We have thus attempted to obtain a local fit of model B to model CS ,
expressing the various constraints of the latter by polynomial equations
with integer coefficients, and obtaining the unique admissible solution of
the resulting equation system as model B(opt). However, this fit is not
perfect, since the AB sequence property is not preserved; enforcing its
preservation by introducing additional equations would make the system
truly overdetermined and inconsistent. We conclude that not only model
B(1/2) of the Arratia–Steele conjecture, but even the more general model
B is still too rigid to provide a perfect local fit to model CS . In the next
section, we will further generalise the model’s definition, increasing its
flexibility in order to achieve this goal.

§9. Model M

We now generalise model B in order to give it more flexibility to fit
model CS . Following the same terminological pattern, we call this gener-
alisation model M (the Markov model). While in model B, a cell’s type
depends just on the cell’s entry pair, in model M it also depends on two



212 A. TISKIN

further sites, lying anti-diagonally on either side of the entry pair. In total
a cell’s type depends on an anti-diagonal quadruple of sites.

Consider model CS evolving diagonally, and let us take a single cell of
this model in half-step t. Each of this cell’s exit values becomes, in half-
step t+1, an entry value for one of a pair of cells, adjacent to the original
cell in a -shape. In their turn, this pair of cells have four exit values,
forming an adjacent anti-diagonal site quadruple. The middle two sites of
this quadruple become, in half-step t+2, the entry pair for the fourth cell,
completing the -shape; the type of this fourth cell is determined uniquely
by the types of the first three cells. Intuitively, as the model’s evolution
progresses, the distribution of site values in a given half-step stores some
information about cell types in preceding half-steps. In particular, the
adjacent site quadruple in half-step t+2 stores the information about the
types of the three cells in a -shape in half-steps t and t + 1, which is
the full information necessary to complete the -shape. Thus, intuition
suggests that the mutual dependence between a site quadruple and a cell in
a given half-step should be precisely the right one to capture the behaviour
of model CS .

Cell type probabilities. We generalise the definition of model B, re-
placing a cell’s type exclusive dependence on its entry pair by that on its
extended entry quadruple, which is made up by the cell’s entry pair and the
two sites adjacent to it antidiagonally on either side. We also make sure
that the new model’s definition is still invariant with respect to duality
of configurations. Thus, we define 16 = 6 · 2 + 4 (six dual pairs and four
self-dual singletons) conditional probabilities for a cell’s type, specifying
its exclusive dependence on the extended entry quadruple:

pabcd
def
=

a
b
c
d r
= pd̄c̄b̄ā

def
=

d̄
c̄
b̄
ā

The subscripts correspond to the extended entry quadruple values being
read as a four-digit binary number, bottom-left to top-right: p0 = p◦◦◦◦,
etc. Intuitively, a cell now has 16 biased coins p0, . . . , p15, including six
dual pairs

pi
r
= pj (i, j) ∈ {(0, 15), (1, 7), (2, 11), (4, 13), (6, 9), (8, 14)}

The cell reads its extended entry quadruple (as a binary number), and
then tosses the corresponding coin to determine its type; the combination
of the cell’s extended entry quadruple and its chosen type then determines
the cell’s exit pair.
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The model’s effective rate is now represented by a subset of 4 = 1 ·2+2
conditional probabilities, that will be called partial rates :

p5 = p4 =
r
= p13 = p12 =

There are three degrees of freedom among the partial rates, giving us a
three-dimensional variety of realisations of model M . Similarly to model
B, the remaining conditional probabilities pi, i ∈ {0, . . . , 15}\{5, 4, 13, 12},
will be called pseudo-rates; they do not affect the behaviour of the model,
and are temporarily left unconstrained. This leaves us the freedom to set
them later, in order to fit model M to the constraints of model CS .

AM2 sequences and space invariance. We return to considering al-
ternating sequences of (generally dependent) binary random variables rep-
resenting site values in a given half-step. Apart from fixed marginal site
probability u defined by (2), an alternating sequence also has two fixed
first-order and four fixed second-order conditional site probabilities

va
def
= a

s
=

ā

r
= a

s
= ā wab

def
=

a
b

s
=

ā
b̄

r
= b

a s
= b̄

ā
(7)

linked by the space-invariance equations:

uv̄0 = = ūv1 v̄0w0 = = v0w̄2 v̄1w1 = = v1w̄3 (8)

We generalise Definition 3 as follows.

Definition 4. An alternating sequence (ξi), i ∈ Z, is an AM2 (alternating
second-order Markov) sequence if, given an adjacent pair (ξi, ξi+1), the
infinite prefix (ξj), j < i, is conditionally independent of the infinite suffix
(ξk), k > i+ 1.

An AM2 sequence is completely specified by the probabilities (2), (7).
Equations (8) describe precisely the variety of all possible AM2 sequences,
since every non-trivial equation arising from the AM2 property is covered
by the configurations in (8) and their parity-exchanging shifts and rever-
sals. The three equations (8) leave 7 − 3 = 4 degrees of freedom among
the seven variables u, va, wab, thus describing a four-dimensional variety
of AM2 sequences.

We introduce auxiliary variables for unconditional probabilities of finite
AM2 sequences of length 2, 4, 6. We define

u
2
ab

def
= u

[ā]
v
[b]
a = a

b s
=

ā
b̄

r
=

b
a

s
= b̄

ā

u
4
abcd

def
= u

2
abw

[c̄]

āb̄
w

[d]
bc =

a
b
c
d

s
=

ā
b̄
c̄
d̄ r
=

d
c
b
a s
=

d̄
c̄
b̄
ā
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u
6
abcdeg

def
= u

4
abcdw

[ē]

c̄d̄
w

[g]
de =

a
b
c
d
e
g

s
=

ā
b̄
c̄
d̄
ē
ḡ

r
=

g
e
d
c
b
a

s
=

ḡ
ē
d̄
c̄
b̄
ā

Similar notation, which we won’t require, could be introduced for AM2
sequences of any finite length.

Time invariance. Generalising Theorem 1, we now consider the evolu-
tion of model M on an AM2 sequence in a stationary state. The model’s
partial rates and the parameters of the sequence are linked by the time-
invariance equations:

w0w̄2 = = = w̄3w1 (9a)

��HHw0w2w2��HH̄w2 = = =��HH̄w3w̄1w̄1��HHw1p̄5  w2w2 = w̄1w̄1p̄5 (9b)

��HHw0w2��HH̄w2w3 = = =��HH̄w3w̄1��HHw1w̄0p̄4  w2w3 = w̄1w̄0p̄4 (9c)

w3��HHw0��HH̄w2w3 = = = w̄0��HH̄w3��HHw1w̄0p̄12  w3w3 = w̄0w̄0p̄12 (9d)

In the above equations, conditioning on a pair = or = cor-
responds to cancelling out its probability from both sides of the equation.
We also use (9a) to cancel some of the probabilities on either side of each
of (9b)–(9d).

Theorem 2. An AM2 sequence with parameters u, va, wab determined by
equations (8), (9) is a time-invariant distribution for model M with given
partial rates pabcd.

Proof. It is sufficient to show that the AM2 property is preserved in a
single half-step of the evolution of model M . The conditional independence
between site values a, d, given site values c, d, at the end of the half-step in a

configuration
a
b
c
d

is established by (8), (9a), and in a configuration
a
b
c
d

by (8), (9b)–(9d). In each of the equations (9), the left-hand side expresses
the AM2 property in a configuration at the half-step’s end, while the right-
hand side relies on the same property at the half-step’s beginning. �
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Note that the time-invariance equations (9) link the four-dimensional
variety of AM2 sequences with the three-dimensional variety of realisa-
tions of model M ; therefore, only a three-dimensional subvariety of AM2
sequences is realisable by model M as its time- and duality-invariant dis-
tributions.

§10. Local fitting of model M to model CS

Following the approach developed in previous sections, we now use the
freedom to set the previously unconstrained pseudo-rates, in order to ob-
tain a local fit of model M to model CS . In contrast with model B, model
M turns out to have sufficient flexibility for a seamless fit.

For convenience, we introduce eight auxiliary variables for cell type
probabilities conditioned on a subset of three sites in the extended entry
quadruple, where the sites in a given half-step are known to form an AM2
sequence:

qabc
def
=

a
b
c

=
a
b
c +

a
b
c = wb̄c̄pabc◦ + w̄b̄c̄pabc•

r
=

c̄
b̄
ā

Reverse cell type probabilities. We recall from previous discussion
that model B has a remarkable property of having a reverse process defined
on site values. We might expect that model M has an analogous property,
but in this case reversibility is harder to establish, so we leave it as a
conjecture. Just as with model B, we will define reverse probabilities on
cell types of model M from first principles, without relying on any special
reversibility properties of the process on site values. In order to derive the
linking equations, the probability of a cell’s type in half-step t will need to
be conditioned on a sextuple of site values in half-step t+ 1 (without any
claim that such a dependence is exclusive). We denote the 64 = 28 · 2 + 8
resulting reverse conditional probabilities by auxiliary variables

rabcdeg
def
=

a
b
c
d
e
g

r
= rḡēd̄c̄b̄ā

def
=

ḡ
ē
d̄
c̄
b̄
ā

We consider these probabilities in subsets of four, each subset identified
by fixed site values a, b, e, g. Within each subset, we obtain four equa-
tions parameterised by the middle site pair c, d to determine each of the
probabilities rabcdeg:

u
6
◦◦dc◦◦r̄◦◦cd◦◦ = c

d = c
d

c
d = u

6
◦◦cd◦◦p̄◦cd◦
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u
6
•◦dc◦◦r̄◦◦cd◦• = c

d = c
d

c
d + c

d

c
d = u

6
◦◦cd◦•p̄◦cd◦ + u

6
◦◦cd•◦p̄◦cd•qd•◦

u
6
◦•dc◦◦r̄◦◦cd•◦ = c

d = c
d

c
d = u

6
◦◦cd•◦p̄◦cd•q̄d•◦

u
6
••dc◦◦r̄◦◦cd•• = c

d = c
d

c
d = u

6
◦◦cd••p̄◦cd•

u
6
◦◦dc••r̄••cd◦◦ = c

d = c
d

c
d = u

6
••cd◦◦p̄•cd◦

u
6
◦◦dc•◦r̄◦•cd◦◦ = c

d = c
d

c
d + c

d

c
d = u

6
◦•cd◦◦p̄•cd◦ + u

6
•◦cd◦◦p̄◦cd◦qc̄•◦

u
6
◦◦dc◦•r̄•◦cd◦◦ = c

d = c
d

c
d = u

6
•◦cd◦◦p̄◦cd◦q̄c̄•◦

u
6
•◦dc•◦r̄◦•cd◦• = c

d = c
d

c
d + c

d

c
d + c

d

c
d + c

d

c
d

= u
6
◦•cd◦•p̄•cd◦ + u

6
◦•cd•◦p̄•cd•qd•◦

+
(

u
6
•◦cd◦•p̄◦cd◦ + u

6
•◦cd•◦p̄◦cd•qd•◦

)

qc̄•◦

u
6
•◦dc◦•r̄•◦cd◦•= c

d = c
d

c
d + c

d

c
d =

(

u
6
•◦cd◦•p̄◦cd◦ + u

6
•◦cd•◦p̄◦cd•qd•◦

)

q̄c̄•◦

u
6
◦•dc◦•r̄•◦cd•◦ = c

d = c
d

c
d = u

6
•◦cd•◦p̄◦cd•q̄c̄•◦q̄d•◦

For the sake of brevity, we do not consider various cancellations and sim-
plifications that could be made in the above equations. For instance, the
case cd = •◦ in each of the four-equation subsets could be written as

r̄ab•◦eh =

a
b

e
h

= 1 for all a, b, e, h.

Total probability. Similarly to model B, in a local fit of model M
to model CS the site probabilities, rate and pseudo-rates of model B
must satisfy the total probability equation, where the pseudo-rates pi,
i ∈ {0, . . . , 15} \ {4, 5, 12, 13} fulfill their purpose of balancing out the bias
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in the partial rates pi, i ∈ {4, 5, 12, 13}:
∑

a,b,c,d∈{◦,•} u
4
dcbapabcd =

∑

a,b,c,d∈{◦,•}
a
b
c
d
= = 1

2
(10)

Linking the models. Continuing the previously established pattern, we
now link models M and CS . Our goal this time is to assign the partial
rates and pseudo-rates for model M so that the site values and cell types
at any given half-step would be probabilistically indistinguishable in both
models.

In model M , a cell’s type in half-step t depends exclusively on its ex-
tended entry quadruple. Each site of this quadruple is an exit site for one
of a pair of diagonally adjacent cells in half-step t − 1, and depends ex-
clusively on those cells’ extended entry site quadruples; we thus have an
exclusive dependence of a cell’s type in half-step t on a sextuple (two over-
lapping quadruples) of adjacent sites in half-step t − 1. Each site of this
sextuple, in its turn, is an exit site for one of a triple of diagonally adjacent
cells in half-step t − 2, and depends exclusively on those cells’ extended
entry site quadruples; we thus have an exclusive dependence of a cell’s
type in half-step t on an octuple (three overlapping quadruples) of adja-
cent sites in half-step t− 2. On the other hand, in model CS , as discussed
before, a cell’s type in half-step t is determined uniquely by just the types
of three preceding cells, two in half-step t − 1 and one in half-step t − 2,
forming a -shape between themselves, and a -shape together with the
current cell. Therefore, in order to relate models M and CS , a system of
polynomial equations can be obtained by listing exhaustively all possible
configurations of the relevant site values and cell types over three half-
steps of both models’ evolution. As before, the use of duality and of the
reverse process will provide substantial shortcuts for such an exhaustive
enumeration, this time helping us to avoid an explicit listing of not just
dozens, as was the case with model B, but hundreds of configurations.

For convenience, we introduce 64 auxiliary variables for joint bidirec-
tional (two forward and one reverse) cell type conditional probabilities

s
EFG
abcd

def
=

a
b
c
d�� � r

= s
GFE
d̄c̄b̄ā

def
=

d̄
c̄
b̄
ā�� �

E + F +G is odd

These 64 variables form four subsets of 16 variables: s′′′abcd, s8′8abcd, s88′abcd,
s′88abcd. We have

s
EFG
abcd =

a
b
c
d�� �

=
a
b
c
d�� �

+
a
b
c
d�� �

+
a
b
c
d�� �

+
a
b
c
d�� �
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= u
6
◦dcba◦p

[E]
◦abcr

[F ]
◦abcd◦p

[G]
bcd◦ + u

6
•dcba◦p

[E]
◦abcr

[F ]
◦abcd•p

[G]
bcd• +

u
6
◦dcba•p

[E]
•abcr

[F ]
•abcd◦p

[G]
bcd◦ + u

6
•dcba•p

[E]
•abcr

[F ]
•abcd•p

[G]
bcd•

Note that these equations rely on the exclusive dependence of cell types
E, G on the respective site quadruples, and do not require the reverse
dependence of F on the site sextuple also to be exclusive (which it is not).

There are 10 linking equations, one for each partial rate and pseudo-rate
(considering duality). As before, the left-hand side of every equation repre-
sents a single half-step configuration for a given partial rate or pseudo-rate,
while the right-hand side enumerates exhaustively each of the correspond-
ing three half-step configurations.

p0 = = + + + = s
′′′
0 + s

′88
0 + s

88′
0 + s

8′8
0 (11a)

p1u
4
8 = =

(

+ + +

)

+

(

+

)
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8′8
1

)
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(11b)
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)

(11c)
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Theorem 3. An AM2 sequence with parameters u, va, wab determined
by equations (8), (9), (10), (11) is a time-invariant distribution for model
CS .

Proof. Consider the set of sequence parameters, partial rates and pseudo-
rates determined by the equations. By Theorem 2, the AM2 sequence with
these parameters is time-invariant for model M with the rates and pseudo-
rates given by equations (8), (9). By design of equations (10), (11), the
time-invariant distribution for such a model is identical to a time-invariant
distribution of model CS over three successive half-steps. Furthermore, in
model CS , cell types in a given half-step are completely determined by
the cell types in two previous half-steps. Therefore, the invariance of a
distribution over three successive half-steps of model CS is sufficient for
its overall invariance. �

Solving the equations. The resulting system has 17 main variables u,
va, wab, pi, i ∈ {0, . . . , 6, 8, 10, 12}, involved in 18 main equations: three
space-invariance equations (8), four time-invariance equations (9), one to-
tal probability equation (10), and 10 linking equations (11). There also are
some auxiliary variables, each of which is introduced via its own separate
equation. Similarly to the analysis of model B in previous sections, the
system is overdetermined by one equation, but still consistent, since the
total probability equation is implied by the time-invariance and the linking
equations. By the existence and uniqueness of constant γ, the system must
have a unique admissible solution, providing values for the parameters of
the stationary state of model CS in a small neighbourhood of the main
diagonal. We are now ready to state our main result.

Theorem 4. Constant γ is an algebraic number.

Proof. By (1), we have γ = f̄CS = 2u, which is a (very simple) polynomial
in the marginal site probability u. This probability, in its turn, is a variable
in our (quite complicated) polynomial system expressing the local fit of
models M and CS by Theorem 3. All the coefficients in these polynomials
are integers 1 and 2. In an isolated real solution of a polynomial system with
rational coefficients, all variables must take algebraic values1, therefore we
conclude that γ is also algebraic. �

1Although this statement may seem easy, it is not entirely trivial, since we are not
assuming that the whole set of solutions is zero-dimensional. One way of justifying
this statement is by observing that the property of a polynomial system with rational
coefficients to have a unique real solution in a given neighbourhood is expressible in
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On the negative side, it seems unlikely that our system has a closed-
form analytic solution; obtaining even a numerical solution appears to be
far beyond the capabilities of modern computer algebra software. It is
conceivable that a reasonably accurate numerical approximation for the
solution can be obtained either by an exhaustive enumeration of all possi-
ble configurations for the evolution of model CS over a sufficient number
of time steps, or by Monte Carlo simulation of such an evolution over a
substantially larger number of time steps, or a combination of both ap-
proaches. We leave it as an open direction for future work.

§11. Conclusion

In this paper, we have linked the Chvátal–Sankoff problem to the pa-
rameters of a certain stochastic particle process (model M), using existing
results on the combinatorial structure of the LCS problem and the theory
of continuous scaling limits for discrete particle processes. We have ob-
tained a specific system of polynomial equations with integer coefficients
that determines the parameters for this process, which implies that γ is
an algebraic number. Short of finding a closed-form solution for such a
polynomial system, which appears to be unlikely, our approach essentially
resolves the Chvátal–Sankoff problem, at least in theory. Some immedi-
ate further questions arise, listed in the increasing order of their apparent
difficulty.

Computational experiments. Obtaining an accurate numerical solu-
tion for our system, improving and reconciling various existing numerical
estimates for γ, appears to be non-trivial, but may well be possible with
some reasonable software design and programming effort, and possibly
some advanced hardware.

Strings of unequal lengths. For uniformly random binary input strings
of unequal lengths, the solution should be possible by a direct extension
of our approach; however, it may become even more cumbersome, since
we have used the symmetry between the input strings and the resulting
duality properties as a substantial shortcut.

the first-order logical theory of real numbers. By Tarski’s theorem on the elementary
equivalence of real closed fields (see e.g. Jensen and Lenzing [25, Theorem 2.28], Chang
and Keisler [12, Theorem 5.4.4]), such a system must have a unique real algebraic
solution in the same neighbourhood; the two solutions must obviously coincide.
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Levenshtein distance. The Levenshtein distance problem for random
binary strings has been considered by Schimd and Bilardi [45]. It is well-
known that the Levenshtein distance can be obtained as the LCS length
between strings over the alphabet extended with an extra character $,
blowing up each character c to a two-character substring $c. Thus, the
Levenshtein distance problem for binary strings becomes a special case of
the LCS problem for ternary strings, where the cell types in the corre-
sponding transposition network possess the three-wise independence and
four-wise dependence properties similar to those of binary strings. There-
fore, a solution should be possible to obtain by a direct extension of our
approach.

Non-uniform and non-independent character distributions. The
LCS problem on random input strings with more general (in particular,
non-uniform and/or non-independent) character distributions seems more
challenging, since in this case the three-wise independence of cell types does
not hold. Such independence has been essential in obtaining our linking
equations. Therefore, a generalisation to these types of character distribu-
tions seems far from straightforward.

Larger alphabets. The LCS problem on uniformly random input strings
over a larger alphabet presents an opposite challenge, since in this case the
cells’ four-wise (and higher-order) dependencies are much looser than those
with the binary alphabet. Again, such dependencies have been essential in
obtaining our linking equations, so a generalisation to a larger alphabet
seems far from straightforward.

More than two strings. While the LCS problem can be defined just as
easily on three or more strings, none of any existing approaches, including
ours, seem to be applicable for solving an analogue of the Chvátal–Sankoff
problem on more than two strings. In particular, the LCS problem on three
input strings does not appear to possess any of the combinatorial structure
that is critical for our transposition network-based approach.
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38. V. B. Priezzhev, G. M. Schütz, Exact solution of the Bernoulli matching model

of sequence alignment. — J. Statist. Mech.: Theory and Experiment 09 (2008),
P09007.

39. N. Rajewsky, L. Santen, A. Schadschneider, M. Schreckenberg, The asymmetric

exclusion process: comparison of update procedures. — J. Statist. Phys. 92 (1998),
151–194.

40. D. Romik, The Surprising Mathematics of Longest Increasing Subsequences. Cam-
bridge University Press, Cambridge, 2014.



224 A. TISKIN

41. H. Rost, Non-equilibrium behaviour of a many particle process: Density profile and

local equilibria. — Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
58, No. 1 (1981), 41–53.

42. Y. Sakai, An Almost Quadratic Time Algorithm for Sparse Spliced Alignment. —
Theory Comput. Systems 48, No. 1 (2011), 189–210.

43. Y. Sakai, A substring–substring LCS data structure. — Theor. Comput. Sci. 753,
No. 2 (2019), 16–34.

44. S. Salsa, Partial Differential Equations in Action, Vol. 99 of UNITEXT. Springer
International Publishing, 2016.

45. M. Schimd, G. Bilardi, Bounds and Estimates on the Average Edit Distance. — In:
Proceedings of SPIRE (2019), pp. 91–106.

46. J. P. Schmidt, All highest scoring paths in weighted grid graphs and their application

to finding all approximate repeats in strings. — SIAM J. Comput. 27, No. 4 (1998),
972–992.

47. J. M. Steele, An Efron-Stein inequality for nonsymmetric statistics. — Annals
Statist. 14, No. 2 (1986), 753–758.

48. J. M. Steele, Probability Theory and Combinatorial Optimization, Vol. 69 of CBMS-

NSF regional conference series in applied mathematics. SIAM, 1997.
49. A. Tiskin, Semi-local longest common subsequences in subquadratic time. — J.

Discrete Algorithms 6, No. 4 (2008), 570–581.
50. A. Tiskin, Semi-local string comparison: Algorithmic techniques and applications.

— Math. Comput. Sci. 1, No. 4 (2008), 571–603.
51. A. Tiskin, Periodic String Comparison. — In: Proceedings of CPM, Vol. 5577 of

Lecture Notes in Computer Science, pages 193–206, 2009.
52. A. Tiskin, Towards Approximate Matching in Compressed Strings: Local Subse-

quence Recognition. — In: Proceedings of CSR, Vol. 6651 of Lecture Notes in Com-

puter Science, pages 401–414. 2011.
53. A. Tiskin, Fast distance multiplication of unit-monge matrices. — Algorithmica 71

(2015), 859–888.
54. A. Tiskin, Bounded-length Smith-Waterman alignment. — In: Proceedings of

WABI, Vol. 143 of Leibniz International Proceedings in Informatics, pages 16:1–
16:12, 2019.

55. A. Tiskin, Communication vs synchronisation in parallel string comparison. — In:
Proceedings of SPAA, pages 479–489, 2020.

56. A M Vershik, S V Kerov, Asymptotics of the Plancherel measure of the symmetric

group and the limiting form of Young tableaux. — Dokl. Akad. Nauk 233, No. 6
(1977), 1024–1027.

57. R. A. Wagner, M. J. Fischer, The string-to-string correction problem. — J. ACM
21, No. 1 (1974), 168–173.

Поступило October 25, 2022Department of Mathematics
and Computer Science
St. Petersburg State University;
St. Petersburg Electrotechnical University “LETI”

E-mail : alextiskin@gmail.com


