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Abstract. This paper investigates inference in knowledge bases
with fuzzy fuzzy non-Horn facts and rules. Sequent calculi with
one structural, one logical rule, and non-logical axioms represent-
ing knowledge base rules and facts serve as a proof theory for these
knowledge bases. These knowledge bases are also characterized by
constrained real-valued models which are applicable to a variety of
truth functions. Inference for fuzzy non-Horn knowledge bases is
done by applying a variant of ordered resolution, transforming res-
olution refuations into sequent calculus derivations, building sym-
bolic expressions from the derivations, and evaluating the symbolic
expressions.

§1. Introduction

The languages of logic programs and knowledge bases (KB) are usually
based on first-order logic (FOL) [17]. Atoms are expressions P (t1, . . . , tk)
where P is a predicate and t1, . . . , tk are terms. Literals are atoms or their
negations. A literal is called ground if it does not contain variables.

In non-Horn KBs, facts are literals. Non-Horn rules are expressions A ⇐
A1 ∧ · · · ∧ Ak, where A,A1, . . . , Ak are literals. The advantages of non-
Horn KB over Horn KBs and normal logic programs are discussed in [20].
In fuzzy KBs, the truth values of atoms are real numbers as opposed to
boolean values, and thus, KB facts are fuzzy. KB rules are also fuzzy. A
real number is associated with every fact or rule.

The principle of Reductio Ad Absurdum (RAA) states that if A is de-
duced from a hypothesis that is A’s complement, then A is derivable. It will
be explained later that reasoning by contradiction, i.e. with using RAA, is
not quite adequate for KBs with fuzzy predicates. Procedures implement-
ing FOL inference for non-Horn KBs without RAA include an adaptation
of ordered resolution [18].

Key words and phrases: resolution, non-Horn rule, truth function, fuzzy logic, se-
quent calculus, Reductio Ad Absurdum.
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We present a set of very simple sequent calculi that characterize infe-
rence without reasoning by contradiction for fuzzy non-Horn KBs. These
sequent calculi have one structural and one logical rule. Non-logical axioms
of the calculi represent KB rules and facts. We also introduce contrained
real-valued models that characterize fuzzy non-Horn KBs. These models
are applicable to a variety of truth functions. Inference for fuzzy non-Horn
KBs is compounded of several steps. Ordered resolution steering clear of
RAA is applied to these KBs. Resolution refutations [3] are mapped to
derivations in the sequent calculi. Ground symbolic expressions are built
from the latter derivations. These expressions are evaluated, yielding the
lower bounds of literal truth values. The time complexity of the computa-
tions following resolution is linear in the size of the resolution refutations.

§2. Fuzzy Non-Horn Knowledge Bases

A substitution is a finite mapping of variables to terms. Let α{b1 →
β1, ..., bj → βm} denote the substitution of term βi for all occurrences of
variable bi in term α for i = 1, . . . ,m. The result of applying a substitution
to a formula or set of formulas is called its instance.

We consider inference of ground literals, which are called goals, from
the facts and rules of fuzzy non-Horn KBs. A KB is called consistent if for
no atom A, both A and ¬A are derivable. As usual, it is assumed that all
KBs under consideration are consistent. Note that some predicates can be
implemented by external means such as neural networks or algorithms in
some programming language. All other predicates will be called derivable.
Some functions can also be implemented by algorithms.

Fuzzy truth values are usually represented by real numbers from interval
[0, 1]. For non-Horn KBs, it is more convenient to use interval [−1, 1] for the
representation of truth values. One represents true, minus one represents
false. Other real numbers from interval [−1, 1] represent fuzzy truth values.
It is expected that real numbers lower than one and higher than a certain
threshold h > 0 are assigned to some facts and rules of a fuzzy KB. These
assigned numbers are the lower bounds of the truth values of all instances
of the respective rules or facts, i.e. it is assumed that all instances of a
given rule or fact have the same lower bound. One is the default truth
value for the other KB facts and rules. These assigned numbers will be
called truth bounds.
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For any function implemented by an external algorithm, its atoms with
constant arguments are evaluated as soon as they appear in KB deriva-
tions. The same applies to atoms of externally-implemented predicates
with constant arguments. This evaluation may not terminate, in which case
it is assumed that the truth value is zero. Any complete search strategy
for inference from KBs with externally-implemented predicates or func-
tions should continue and-or search [17] simultaneously with the evalua-
tion. Suppose the evaluation of ground atom A(. . . ) yields real number r.
If r is greater or equal h, then A(. . . ) is considered a fact and r is its truth
bound. If r is lower or equal −h, then ¬A(. . . ) is considered a fact and −r

is the truth bound of this fact.
Let |A| denote the truth value of logical formula A. Traditionally, the

negation truth function for fuzzy KBs is defined as: |¬A| = −|A|. The
Godel t-norm is traditionally used as the conjunction truth function for
fuzzy KBs: |A∧B| = min{|A|, |B|}. Other truth functions are used as well,
and they may be a better fit for particular KBs [2]. Properties of various
truth functions have been extensively investigated [8].

For non-Horn KBs, the use of the negation truth function is limited to
the calculation of the truth values of negative literals, and the use of the
conjunction truth function is limited to the calculation of the truth values
of the bodies of KB rules. In fact, we use truth functions for the calculation
of truth bounds as opposed to the calculation of exact values. We assume
that the conjunction truth function has a variable number of arguments
since KB rule bodies are conjunctions of multiple arguments.

The disjunction truth function is not used here. The implication truth
function is not used directly. Instead, we assume that the semantics of fuzzy
KB rules is based on the residuum of the conjunction truth function [4], i.e.
|A0| > |(A1∧· · ·∧Ak)∧(A0 ⇐ A1∧· · ·∧Ak)| for KB rule A0 ⇐ A1∧· · ·∧Ak.
Alternatively, this inequality is understood as fuzzy Modus Ponens [4]. For
the Godel t-norm as an example, the semantics of the aforementioned KB
rule is expressed as follows: |A0| > min{|A1|, . . . , |Ak|, |A0 ⇐ A1 ∧ · · · ∧
Ak|}.

Reasoning by contradiction seems inappropriate for fuzzy KBs. Consider
two KB rules P ⇐ Q and P ⇐ ¬Q. Here is reasoning by contradiction in
FOL with boolean truth values. Suppose P is false. The first rule implies
that Q is false, and hence P is true by the second rule. Now suppose
truth values are fuzzy and |P | = 0. If |Q| = 0 as well, then both rules are
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satisfied, but they do not provide any evidence that P is true or |P | > 0
at least.

§3. Calculi

Let −A denote the complement of A, i.e. it is the negation of atom A, and
the atom of negative literal A. A sequent is Γ ⊢ Π where Γ is an antecedent
and Π is a succedent [14]. We consider calculi in which formulas are limited
to literals, antecedents are multisets of formulas, and succedents are single
formulas. KB inference and logic programming are concerned about the
derivation of literals, i.e. sequents of the form ⊢ A where A is a literal.
Consider the two following rules. The swap rule replaces the two standard
negation rules [14].

Γ ⊢ A A,Π ⊢ B

Γ,Π ⊢ B
cut

A,Γ ⊢ B
−B,Γ ⊢−A

swap

KB facts and rules can be treated as non-logical axioms [14]. Sequents
of the form ⊢ A represent facts, and rules are represented by sequents of
the form A1, . . . , An ⊢ A where A,A1, . . . , An are literals. Variables can
be replaced by any terms in instances of these axioms. The conclusions of
swap applied to KB rules are called contrapositives.

Definition 1. L′

cs is the set of sequent calculus instances in which for-
mulas are literals, succedents contain one literal, the structural rule is cut,
the logical rule is swap whose premises are axioms, no logical axioms are
present, and non-logical axioms represent KB rules and facts.

Theorem 1. L′

cs is sound and complete with respect to the derivation of
ground literals in FOL without RAA.

Proof. It is proved in [18] that ground literal L is derivable from KB
facts and rules in FOL without RAA if and only if −L is refutable by
resolution in which the factoring rule is not used and at least one premise of
every resolution step is not −L or its descendant. Consider such resolution
refutation. As usual, the resolution steps that are not ascendants of the
endclause are discarded. Let us ground this refutation and then exclude
the step that resolves −L. There is only one such step because at least one
premise of every resolution step is not −L or its descendant. As a result,
L is added to every descendant clause of this step including the endclause
which becomes L.
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Let us traverse this resolution tree bottom-up and map every resolution
step to an application of cut in L′

cs. Sequent ⊢ L is the conclusion of the
last cut in the respective L′

cs derivation tree. The premises of every cut

in this tree are uniquely determined by the resolution step. The succedent
of the cut conclusion is also the succedent of the second premise, and the
succedent of the first premise is the principal formula of this cut. Every
leaf node in the L′

cs derivation tree is an instance of a KB fact, an instance
of a KB rule, or a sequent that is the conclusion of swap applied to an
instance of a KB rule. Hence, the resulting tree is a L′

cs derivation.
Now consider a ground L′

cs derivation of sequent ⊢ L. Every application
of the cut rule in this derivation corresponds to a resolution step, and
ground instances of KB rules and facts are used as input clauses in this
resolution derivation instead of the rules and facts. The endclause of this
resolution derivation is L.

The lifting lemma [3] states that if clause A is an instance of A′, B is
an instance of B′, and C is the resolvent of A and B, then there is such
clause C′ that C is its instance, and C′ is the resolvent of A′ and B′. It is
well-known that the lifting lemma can be generalized onto arbitrary resolu-
tion derivations: If C is the endclause of a resolution derivation with input
clauses A1, . . . , An which are instances of A′

1, . . . , A
′

n, respectively, then
there is such resolution derivation with input clauses A′

1, . . . , A
′

n and end-
clause C′ that C is an instance of C′. This is proved by a straightforward
induction on the depth of resolution derivations.

As a consequence of this generalization of the lifting lemma, there is a
resolution tree with the input comprised of KB rules and facts treated as
clauses and with such endclause L′ that L is its instance. A step resolving
L′ and −L is added to this derivation. The resolvent of this step is the
empty clause, and −L occurs in one premise of the last step only. Hence, this
resolution refutation corresponds to a FOL derivation without RAA. �

§4. Truth Functions

The Lukasiewicz t-norm and the product t-norm are two other fun-
damental conjunction truth functions along with the Godel t-norm. The
Lukasiewicz t-norm is defined on the domain [0, 1]2 as

|A ∧B| = max{0, |A|+ |B| − 1}.

The product t-norm is defined as |A∧B| = |A||B| on the same domain. For
KBs containing fuzzy predicates, other truth functions for the conjunctions
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that are KB rule bodies could give more accurate truth values. These
conjunction truth functions do not have to be t-norms [8].

Actually, the Lukasiewicz and product t-norms [8] do not look like a
good choice for non-Horn KBs. For example, if |A| = |B| = 0.6, the product
t-norm is 0.36 and the Lukasiewicz t-norm is 0.2. Linearly projecting all
these values onto interval [−1, 1], we would get |A| = |B| = 0.2, the product
t-norm of these truth values is −0.28 and their Lukasiewicz t-norm is −0.6.
The values 0.36 and 0.2 make sense in a probabilistic setting, but the
corresponding negative values are useless for non-Horn KB rules. Clearly,
the Godel t-norm is more meaningful for non-Horn KBs.

In contrast to the product and Lukasiewicz t-norms, the following con-
junction truth function c : [−1, 1]k → [−1, 1] is more reasonable in appli-
cation to the bodies of non-Horn KB rules:

c(x1, . . . , xk) =
k

√

(x1 + 1) . . . (xk + 1)− 1

where k is the number of literals in the rule body. The arithmetic mean
of x1, . . . , xk is another example of alternatives to the Godel t-norm for
the bodies of non-Horn rules. Multivariate functions give more freedom
because they do not have to be associative, which is acceptable for non-
Horn rules.

Clearly, a negation truth function is expected to be decreasing. Since
the language of non-Horn KBs does not include double-negated literals,
it is implicitly assumed the the principle of double negation ¬¬A ≡ A

holds for these KBs. Given that, any negation truth function n should
be an involution, i.e. n(n(x)) = x for any x. For the symmetry between
the facts that are positive literals and the facts that are negative literals,
it is expected that n(h) = −h. The above conditions significantly limit
choices for negation truth functions. Other negation truth functions than
n(x) = −x are not worth considering for fuzzy non-Horn KBs.

If c is the conjunction truth function, then the semantics of KB rule
A0 ⇐ A1 ∧ · · · ∧ Ak is expressed as

|A0| > c(c(|A1|, . . . , |Ak|), |A0 ⇐ A1 ∧ · · · ∧Ak|).

We assume that the semantics of non-Horn KB rules is enforced for positive
values of |A1|, . . . , |Ak|. If any of these values is negative or zero, then it is
fair to say that the premise of the rule is not satisfied, and thus, this rule
in itself does not have to impose constraints on the value of |A0| in this
case.
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Actually, enforcing the semantics of KB rules for truth values in interval
[−1, 1] is problematic for a variety of conjunction truth functions. No real
numbers may satisfy the constraints induced by the residuum of a con-
junction truth function. Consider the arithmetic mean as an example and
a KB with the following facts and rules: C, D, A ⇐ B∧C, ¬A ⇐ ¬B∧D.
Clearly, this simple KB is consistent. Since |C|, |D| > h, the semantics of
KB rules leads to the inequality |A| > h + |A| if it is enforced for truth
values in interval [−1, 1]. The Godel t-norm seems the best choice in this
respect. It is proved in [19] that models satisfying the semantics of KB
rules for truth values in interval [−1, 1] exist for consistent KBs in the case
of the Godel t-norm.

Enforcing the semantics of non-Horn KB rules for positive values of
literals in rule bodies is not sufficient for specifying a set of models that is
complete with respect to the L′

cs calculi because any KB rule A0 ⇐ A1 ∧
· · ·∧Ak holds in L′

cs if and only if its contrapositives hold. Contrapositives
can be viewed as implications −Aj ⇐

−A0∧A1∧· · ·∧Aj−1∧Aj+1∧...∧Ak.
Positive values |−A0| and |−Aj | correspond to negative values |A0| and
|Aj |, and values |−Aj | are not constrained by the semantics imposed on
positive values of literals in the bodies of KB rules.

Additional contraints on the truth values of literals are necessary in
order to align these values with L′

cs. One option is to enforce the se-
mantics of KB rules for such truth values that at most one of them is
negative. Another option is to extend the semantics onto KB rule con-
trapositves. We prefer the second option as the simpler one. The second
option makes it possible to shrink the domain of conjunction truth func-
tions to (0, 1]k. The first option may lead to complicated conjunction truth
functions that behave differently when one argument is negative. Also, the
first option makes it difficult to derive properties of −Aj from inequality
|A0| > c(c(|A1|, . . . , |Ak|), |A0 ⇐ A1 ∧ · · · ∧Ak|).

For any KB rule A0 ⇐ A1∧· · ·∧Ak, the semantics of its contrapositives
is expressed as follows:

|−Aj | > c
(

c(|−A0|, |A1|, . . . , |Aj−1|, |Aj+1|, . . . , |Ak|),

|−Aj ⇐ −A0 ∧ A1 ∧ · · · ∧ Aj−1, Aj+1, . . . , Ak|
)

for j = 1, . . . , k. It is assumed that contrapositives of a given KB rule have
the same truth value as this rule. Similar to KB rules, the semantics of
contrapositives is enforced for positive values of |−A0|, |A1|, . . . , |Aj−1|,
|Aj+1|, . . . , |Ak| only.



FUZZY NON-HORN KNOWLEDGE BASES 183

Definition 2. Conjunction truth function c : (0, 1]k → (0, 1] is called
proper if c is increasing in every argument, c is commutative for every
pair of arguments, and h 6 c(h, . . . , h).

The condition h 6 c(h, . . . , h) is justified by the following. Suppose a
KB contains facts A(a) and B(a) and rule C(x) ⇐ A(x) ∧ B(x). It is
expected that C(a) is a derived fact even if the truth values of A(a) and
B(a) are minimal, i.e., they equal h.

It is easy to verify that the Godel t-norm, the arithmetic mean, and
the conjunction function defined earlier are proper. The conjunction truth
function could be parametrized. For example, it could be parametrized
by weights assigned to predicates. Potentially, the conjunction truth func-
tion used for contrapositives could be different from the function used for
KB rules. Also, custom conjunction truth functions could be defined for
particular KB rules as it is done in Sugeno KBs [2].

§5. Models

Models are usually defined by truth functions for logical connectives
so that the truth values of ground formulas can be calculated. No other
formulas than literals and KB rules are used in KB derivations. Because
of this, only the conjunction and negation truth functions along with the
residuum of the conjunction truth function are necessary, and models for
KB inference can be defined by constraints on truth values in ground
instances of literals and rules.

Definition 3. An assignment of real numbers from interval [−1, 1] to
ground literals as well as to KB rules and their contrapositives is a Mr

model if |¬A| = −|A| for any ground atom A, |L| > f for every ground
KB fact instance L with truth bound f > h, |A0 ⇐ A1, . . . , Ak| > r for
every KB rule/contrapositive instance A0 ⇐ A1, . . . , Ak with truth bound
r > h, and the semantics is satisfied for all instances of KB rules and
their contrapositives in which the truth values of literals in their bodies are
positive.

Definition 4. Literal A is valid regarding Mr models if |A′| > h for all
groundings A′ of A in all Mr models.

Let us define terms t(τ) recursively for all ground L′

cs derivations τ .
In the following definition, lower-case letters are variables. These variables
correspond to the same named upper-case ground literals. Let c denote the
conjunction truth function.
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– If τ is ground instance A of a KB fact and f is the truth bound of
this fact, then t(τ) = f .

– If τ is ground instance A0 ⇐ A1, . . . , Ak of a KB rule and r is the
truth bound of this rule, then t(τ) = c(c(a1, . . . , ak), r).

– If the last rule of τ is swap with the conclusion

A0, A1, . . . , Aj−1, Aj+1, . . . , Ak ⊢ Aj

and r is the truth bound of the source rule, then t(τ) = c(c(a0, , a1, . . . ,
aj−1, aj+1, . . . , ak), r).

– If the last rule of τ is cut with premises

A1, . . . , Ak ⊢ E and E,C1, . . . , Cm ⊢ D,

then t(τ) = t(ν){e → t(µ)}, where µ and ν are the parts of τ whose
endsequents are the first and second premise of this cut, respectively.

Theorem 2. If τ is a ground L′

cs derivation of literal G, and the conjunc-
tion truth function is proper, then |G| > t(τ) > h for all Mr models.

Proof. By a straightforward induction of the depth of derivations, the
only variables occurring in t(τ) are the variables corresponding to literals
in the antecedent of the endsequent of τ . Consequently, t(τ) does not
contain variables for any derivation τ with endsequent ⊢ G.

Now we will prove by induction on the depth of L′

cs derivations that if
A1, . . . , Ak ⊢ D is the endsequent of derivation µ, then t(µ) is increasing in
every variable occurring in it, and |D| > t(µ){a1→|A1|, . . . , ak→|Ak|} > h

provided that |A1| > h, . . . , |Ak| > h. As a corollary, |G| > t(τ) > h.
Base. The depth of derivation µ is zero. If the endsequent of µ is ⊢ D,

then D is an instance of a KB fact, and the above inequalities hold. If the
endsequent of µ is KB rule instance A1, . . . , Ak ⊢ D, then r is the only
constant occurring in t(µ). Clearly, t(µ) is increasing in every variable. The
inequality |D| > t(µ){a1→|A1|, . . . , ak→|Ak|} holds due to the semantics
of KB rules. The inequality t(µ){a1 → |A1|, . . . , ak → |Ak|} > h holds by
the definition of proper conjunction truth functions.

Induction step. Suppose the statement under consideration holds for all
derivations whose depth is less or equal n. Suppose the depth of µ is n+1.
If the last rule in µ is swap and its endsequent is

A0, A1, . . . , Aj−1, Aj+1, . . . , Ak ⊢ Aj ,

then the swap premise is ground instance −A0 ⇐ A1, . . . ,
−Aj , . . . , Ak of a

KB rule, µ does not contain constants except r, and t(µ) is increasing in
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every variable. The inequality |Aj | > t(µ){a0→|A0|, a1→|A1|, . . . , aj−1→
|Aj−1|, aj+1 → |Aj+1|, . . . , ak → |Ak|} holds due to the semantics of KB
rule contrapositives. The inequality t(µ){a0 →|A0|, a1 →|A1|, . . . , aj−1 →
|Aj−1|, aj+1→|Aj+1|, . . . , ak→|Ak|} > h holds by the definition of proper
conjunction truth functions.

Now let the last rule in µ be cut, the first premise of this cut be
B1, . . . , Bk ⊢ C1, and the second premise be C1, . . . , Cm ⊢ D. If γ is
the derivation ending in B1, . . . , Bk ⊢ C1 and δ is the derivation ending
in C1, . . . , Cm ⊢ D, then both t(γ) and t(δ) are increasing in every vari-
able, |C1| > t(γ){b1 → |B1|, . . . , bk → |Bk|} > h and |D| > t(δ){c1 →
|C1|, . . . , cm→|Cm|} > h by the induction assumption.

Due to the monotonicity of t(δ),

|D|> t(δ){c1→t(γ){b1→|B1|, . . . , bk→|Bk|}, c2→|C2|, . . . , cm→|Cm|}>h.

By the definition of t, t(µ) = t(δ){c1 → t(γ)}. Hence, |D| > t(µ){b1 →
|B1|, . . . , bk→|Bk|, c2→|C2|, . . . , cm→|Cm|} > h. Clearly, t(µ) is increas-
ing in every variable. �

Theorem 3. If |G| > h in all Mr models for ground literal G, the KB is
consistent, and the conjunction truth function is proper, then there exists
a derivation of G in L′

cs.

Proof. Suppose G is not derivable in L′

cs from KB facts and rules. Let
us look at model M in which |B| = 1 for every ground literal B that is
derivable from KB facts and rules (including KB fact instances), |C| = −1
for every such ground literal C that −C is derivable, and |D| = 0 for every
other ground literal D. Such model M exists for any consistent KB, and
|G| = 0 in M .

Inequality |L| > h holds for every ground KB fact instance L because
ground instances of facts are derivable. Suppose the semantics of a KB
rule is violated for its ground instance A0 ⇐ A1 ∧ · · · ∧ Ak. In this case,
|A0| 6 0 and |Ai| = 1 for i = 1 . . . k, and thus all sequents ⊢ Ai are
derivable in L′

cs. Hence, A0 is derivable from the latter by k applications
of cut to A1, . . . , Ak ⊢ A0 and to every ⊢ Ai for i = 1 . . . k.

Now suppose the semantics of a KB rule contrapositive is violated for
its ground instance −Aj ⇐

− A0 ∧A1 ∧· · · ∧Aj−1 ∧Aj+1 ∧· · · ∧Ak. In this
case, |−Aj | 6 0, |−A0| = 1, and |Ai| = 1 for i = 1 . . . j− 1, j+1, . . . , k. Se-
quent −A0, A1, . . . , Aj−1, Aj+1, . . . , Ak ⊢−Aj is derived by applying swap

to A1, . . . , Ak ⊢ A0. Literal −Aj is derivable by application of cut to this
sequent and to ⊢−A0 followed by k − 1 applications of cut using ⊢ Ai for
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i = 1...j − 1 and i = j + 1 . . . k as the first premise. Hence, the semantics
of KB rules and their contrapositives could not be violated. �

Theorem 2 is a soundness theorem for L′

cs and Mr. It shows that if there
is a L′

cs derivation of G, then G is valid regarding Mr models. Theorem 3 is
a completeness theorem. It establishes that every valid literal is derivable.
It is also proved in Theorem 3 that Mr models exist for every consistent
KB: M is such Mr model.

§6. Inference

Ordered resolution is one of the most efficient inference methods for
FOL and for non-Horn KBs in particular [1]. It is used in modern theorem
provers [11]. Ordered resolution has been adapted to inference from non-
Horn KBs without RAA [18]. It can be used as the first step in inference
from fuzzy non-Horn KBs. The second step is the transformation of a res-
olution refutation into a L′

cs derivation. The third step is the construction
of t from this derivation τ . And the final step is the evaluation of t(τ).

In addition to the soundness of of L′

cs derivations, Theorem 2 establishes
that, if τ is a L′

cs derivation of ground literal G, then t(τ) is a lower bound
of the truth value of G. The proof of Theorem 1 shows that resolution
refutations without factoring can be transformed into L′

cs derivations in a
single preorder traversal of the resolution refutations. Therefore, the time
complexity of this transformation is linear in the size of the resolution
refutations.

It is reasonable to assume that the time complexity of an algorithm
implementing the conjunction truth function is linear in the number of
function arguments. The construction of t(τ) can be done in a single pos-
torder traversal of τ . Given the aforementioned assumption about truth
function algorithms, the time complexity of evaluating t expressions is lin-
ear in the size of these expressions. Consequently, the calculation of a lower
bound of |G| takes a linear time of the size of G’s derivation in L′

cs and
also of the size of the corresponding resolution refutation.

§7. Related Work

An overview of KB inference methods including resolution-based meth-
ods can be found in [17]. Resolution methods [3] are well suited for inference
from non-Horn KBs. Ordered resolution is recognized as one of the most
efficient inference methods [1]. It is used in modern theorem provers [11].
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Ordered resolution is also relevant to fuzzy KBs and it has a very simple
proof-theoretic characterization.

The L′

cs calculi are similar to the Lcs calculi defined in [19]. The only
difference is that the premises of swap are not limited to KB rules in Lcs.
L′

cs derivations correspond to normal-form derivations in Lcs. These two
sets of calculi have the same inference power. The proof of Theorem 1 is
similar to the proof of completeness of Lcs with respect to the derivation
of ground literals in FOL without RAA. The paper [19] investigates in-
ference from non-Horn KBs with fuzzy facts and crisp rules for the Godel
t-norm. These two calculus sets also have the same inference power as
LK−c [20]. The latter calculi employ standard negation rules and allow
multiple literals in succedents.

Preliminary results of this work are presented in [21]. Major differences
between the two are the following. In [21], the conjunction truth functions
are defined for both negative and positive truth values. It is assumed that
these functions are defined as symbolic expressions and constraints related
to KB rule contrapositives can be derived by transforming these symbolic
expressions. As explained earlier, the existence of models satisfying the
semantics of KB rules is not guaranteed in such setting.

Fuzzy KB systems [2] usually employ the concept of fuzzy sets. As a
result, they involve fuzzification or defuzzification in addition to inference.
Forward chaining normally serves as the inference mechanism for fuzzy
KBs [2]. Our method combines resolution-based inference with symbolic
and numeric calculations, it does not concern fuzzy sets. Inference without
RAA is more powerful than the forward application of Modus Ponens in
chaining [18].

Non-Horn KBs with fuzzy predicates are similar to possibilistic logic
[6] in the sense that in both of them real numbers are associated with
derived ground literals. A survey of fuzzy proof theories in which numbers
indicating truthness are attached to FOL formulas is presented in [7]. The
major difference of our approach is that literals are the only FOL formulas
involved in the KB formalism considered here. Instead of applying fuzzy
truth functions to FOL formulas [8], we propagate constraints on the truth
values of literals.

Numerous recent research papers are devoted to the implementation of
predicates or relations as neural networks [5, 9, 10, 22, 23]. These networks
yield the fuzzy truth values of atoms of these predicates with constant
arguments. Some KBs and logic programs may include so-called evaluable
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predicates implemented by algorithms [13]. Clearly, these algorithms may
yield real numbers treated as fuzzy truth values.

The neural-symbolic method from [16] utilizes weighted real-valued fun-
ctions for calculating lower and upper bounds of the truth values of FOL
formulas. Inference is implemented as alternating upward and downward
passes over the structure of the formulas. Truth value bounds are adjusted
during these passes. Modus Ponens and Modus Tollens are used to update
truth value bounds. In our work, sequents play the role of premises of
Modus Ponens, and the swap rule can be viewed as a form of Modus
Tollens.

ProbLog [15] extends Prolog by associating probabilities with facts. It
is assumed that all ground instances of a non-ground fact are mutually
independent and have the same probability. ProbLog engines calculate
approximate probabilities for inference goals. Fuzzy non-Horn KBs are not
probabilistic, they are based on fuzzy logic [8]. DeepProbLog [12] extends
ProbLog by allowing neural networks to be associated with facts instead of
probabilities. The probabilities of ground instances of a fact are calculated
by the neural network associated with the respective predicate. In contrast,
we interpret the output of neural networks as lower bounds of fuzzy truth
values of ground facts.

§8. Conclusion and Future Work

Fuzzy KBs enable reasoning in the presence of uncertainty. Besides,
fuzzy non-Horn KBs are a mechanism for integrating neural networks or
other fuzzy calculators into rule-based systems. Both proof and model
theories for fuzzy non-Horn KBs are presented here. This paper shows
how to piggyback fuzzy inference on efficient resolution methods by means
of symbolic computations. Our inference method is applicable to a vari-
ety of truth functions but the practical value of this method is yet to be
tested. This method will work even when the conjunction truth function
is parametrized by predicates or KB rules.

It is often possible to get multiple derivations of one goal. The truth
value bounds calculated from these derivations may vary. The design of
algorithms capturing higher truth bounds is an open issue. Investigation
of the applicability of non-proper truth functions is another topic for fu-
ture research. The implication truth function and the semantics of KB
rules could be defined without using the notion of residuum. Alternative
definitions of the semantics of KB rules deserve an investigation as well.
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