В. М. Бабич, М. В. Бабич

ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ ЛУЧЕВОЙ МЕТОД И КВАЗИФОТОНЫ ВОЛН ШЕПЧУЩЕЙ ГАЛЕРЕИ

§1. Введение

Исследование локализованных волн шепчущей галереи тема не новая, например этому посвящена недавняя статья М. М. Попова [5], где построены соответствующие гауссовы пучки. Однако гауссовы пучки это решения, сосредоточенные а окрестности линии, одномерного многообразия, в данной же статье строятся квазифотоны, то есть решения, сосредоточенные возле нульмерного многообразия – точки, движущейся по двумерной поверхности в \mathbb{R}^3 . Такие решения называются квазифотонами, см. обзор А. П. Киселёва [6].

Напи построения близки по духу к главе III книги [4], где также содержится список литературы, посвящённой волнам шепчущей галереи, также были использованы методы работы, посвящённые собственным функциям, локализованным в окрестности замкнутой геодезической [2,7].

Для математического описания волн шепчущей галереи модулированных по частоте и амплитуде естественно использовать соответствующий вариант ПВЛМ (см. [1]). Решения волнового уравнения в окрестности ПВЛМ-лучей – это и есть квазифотоны. ПВЛМ-луч это линия в пространстве-времени. С точки зрения трёхмерного наблюдателя – это точка, летящая вдоль луча со скоростью *с*.

Тема этой статьи – построение ПВЛМ волн шепчущей галереи и соответствующих квазифотонов.

Ключевые слова: поверхностные волны, волны шепчущей галереи, лучевой метод, пространственно-временные решения, квазифотоны.

§2. Основные формулы.

Рассмотрим волновой процесс, который описывается волновым уравнением с постоянной скоростью *с*:

$$\Delta u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0, \tag{1}$$

а на гладкой поверхности S выполняется краевое условие

$$u|_S = 0. (2)$$

Методика волн шепчущей галереи, используемая здесь – это методика пограничного слоя (см. [3] и указанную там литературу). Формальное асимптотическое разложение волны шепчущей галереи мы будем искать в виде:

$$u = e^{ip\theta(M,t) + ip^{1/3}\sigma(M,t)} \sum_{j=1}^{\infty} \frac{U_j(t,M,\nu)}{p^{j/3}}.$$
(3)

Здесь p – большой параметр, M – точка поверхности S, которую мы будем характеризовать координатами $s = \alpha^1, y = \alpha^2$. В качестве третьей координаты возьмем расстояние от поверхности S по нормали n. Поскольку характерный размер области, где сосредоточены волны шепчущей галереи, имеет порядок $1/p^{2/3}$, то, для измерения расстояния до поверхности по нормали, мы, в основном, будем использовать масштабированную переменную $\nu := n/p^{2/3} = n/\hat{p}^2$, где n это расстояние от поверхности до нормали, $\hat{p} := p^{1/3}$.

Обозначим буквой
 ${\bf R}$ радиус вектор произвольной точки в окрестност
иS,тогда

$$\mathbf{R} = \mathbf{r}(\alpha^1, \alpha^2) + n\mathbf{m}(\alpha^1, \alpha^2).$$
(4)

Эта формула вводит в окрестности S координатную систему α^1, α^2, n . Система координат устроена так. На поверхности S первая координатная линия, где отсчитывается $s = \alpha^1$ (т.е. линия n = 0, y = 0) идёт вдоль выделенной (опорной) геодезической, координата $y = \alpha^2$ на S отсчитывается тоже вдоль геодезических, пересекающих опорную перпендикулярно. Третья координата n отсчитывается по нормали к поверхности, используется масштабированная в \hat{p}^2 раз переменная $\nu := n \hat{p}^{-2}$. "Координатная сетка" на поверхности S переносится по нормали (к S), на координатные поверхности $n = \text{const} \neq 0$, которые образуют семейство поверхностей, параллельных S. То есть касательные плоскости к ним в точках с одинаковыми значениями s, y параллельны друг другу. Такая система координат является ортогональной (вообще говоря) только на поверхности S. При отходе от неё, сказывается кривизна S и координатная сетка на поверхностях n = const уже не ортогональна даже если y = 0 или n = 0. Однако линии s = const, y = const всегда ортогональны поверхности n = const.

Как и в §3 монографии [3], мы считаем, что волновой процесс про-исходит при $n\leqslant 0.$

Коэффициенты разложения U_j при $\nu = np^{\frac{2}{3}} \leq 0$ предполагаются гладкими функциями α^1, α^2, ν , причем:

$$U_j|_{\nu=0} = 0, \ U_j|_{\nu\to-\infty} \to 0.$$
 (5)

§3. Формулы ПВ лучевого метода для волн шепчущей галереи.

Прежде всего запишем уравнение (1) в координатах α^1, α^2, ν . Наши построения являются пространственно-временным (ПВ) аналогом, и, заметим, очень близким аналогом, построений главы 3 монографии [3]. Так же как и там, предполагается, что волны шепчущей галереи распространяются вблизи поверхности *S* при n < 0.

Поскольку лапласиан не зависит от координат, то (методически) правильно вычислять его сразу в координатах $\alpha^1=s,\alpha^2=y,\nu=\widehat{p}^2n:=p^{2/3}n.$ В этих координатах элемент длины

$$dl^{2} = g_{ij}(n, s, y) d\alpha^{i} d\alpha^{j} + \hat{p}^{4} d\nu^{2}, \quad i, j \in \{1, 2\}.$$
 (6)

Таким образом, метрический тензор пространства в этих координатах блочно-диагональный, имеется нетривиальный 2×2 блок (соответствующий координатам s, y) и константа на диагонали (это координата n). Будем использовать немного некорректные обозначения – через g будем, как правило, обозначать только этот блок, но иногда и весь метрический тензор (формула (10)). Как правило, в тексте, будет обсуждаться тензор с поднятыми вверх индексами, так что g^{ij} это матричные элементы матрицы, *обратной* к тому нетривиальному диагональному 2×2 блоку метрического тензора. В общем, обычно индексы i, j в обозначении g^{ij} пробегают значения 1 и 2, а g^{33} указываем отдельно.

Заметим, что, в последствии, у нас будут, вообще говоря, три малых параметра асимптотических разложений: это длина волны, расстояние от точки где вычисляем поле до поверхности S, и расстояние от ортогональной проекции на S точки наблюдения до луча, бегущего по поверхности.

На странице 258 [2] вычислены g^{ij} (формулы (5.7)) в первом приближении. Отличие наших обозначений от обозначений [2] в том, что сейчас $g^{33} = \hat{p}^4$, а было $g^{33} = 1$. Метрический тензор (с верхними значками, т.е. обратная матрица) пространства \mathbb{R}^3 в наших (криволинейных) координатах такой:

$$\begin{pmatrix} g & 0 \\ 0 & \widehat{p}^{-4} \end{pmatrix} = \begin{pmatrix} 1 + K(s)y^2 + 2nb_{ss}(n,0) + \dots & -2nb_{yy}(n,0) + \dots & 0 \\ -2nb_{yy}(n,0) + \dots & 1 + 2nb_{yy}(n,0) + \dots & 0 \\ 0 & 0 & \widehat{p}^{-4} \end{pmatrix}.$$
(7)

Ещё нужен определитель метрического тензора:

$$\sqrt{g} = \hat{p}^2 \det^{-1/2}(g)$$

= $\hat{p}^2 ((1 + Ky^2) + 2n(b_{ss} + b_{yy}(1 + Ky^2)))$ (8)
+ $4n^2 (b_{ss}b_{yy} - b_{sy}^2) + \dots)^{-1/2}$,

участвующий в формуле (10), формуле для вычисления оператора Лапласа в криволинейных координатах, точками обозначены члены $O(|y|^3 + |y||n| + n^2)$.

Поскольку матричные элементы 2×2 матрицы $g^{ij} = g^{ij}(s, y, \nu)$ это нетривиальные ряды по степеням малого параметра \hat{p}^{-2} , то введём обозначения

$$g = \sum_{k=0}^{\infty} \hat{p}^{-2k} \nu^k g_{(k)}, \tag{9}$$

где $g_{(k)} = g_{(k)}(s, y)$ нетривиально зависят от обеих переменных. Аккуратное исследование (см. [2]) показывает, что

$$\begin{split} g_{(0)} &= \begin{pmatrix} 1+K(s)y^2 & 0\\ 0 & 1 \end{pmatrix} + O(y^3), \\ g_{(1)} &= 2 \begin{pmatrix} b_{ss}(s,0) & -b_{sy}(s,0)\\ -b_{sy}(s,0) & b_{yy}(s,0) \end{pmatrix} + O(y). \end{split}$$

Матрица $g_{(0)} = g_{(0)}(s, y)$ диагональна в первых двух порядках по y, $g_{(1)}$, в нулевом порядке по y, составлена из матричных элементов второй квадратичной формы поверхности S на опорной геодезической. Остальные члены тэйлоровского разложения матрицы g объединены в бесконечный ряд.

Заметим, что, на первых порах, для получения уравнения эйконала, достаточно просто того, что это всё (и $d \log \sqrt{g}$ и g^{ij}) – ряды по \hat{p}^{-2} с ненулевыми свободными членами, только у $g^{12} = -2nb_{yy} = -2\hat{p}^{-2}\nu b_{yy}$ нет свободного члена (что не важно). Но, поскольку нам, в дальнейшем, нужны и остальные члены разложения, сделаем всё аккуратно.

3.1. Вычисление лапласиана. Воспользуемся классической формулой

$$\Delta = \frac{1}{\sqrt{g}} \frac{\partial}{\partial \alpha^i} \sqrt{g} g^{ij} \frac{\partial}{\partial \alpha^j} = G^i \frac{\partial}{\partial \alpha^i} + g^{ij} \frac{\partial^2}{\partial \alpha^i \partial \alpha^j} + \hat{p}^2 G^3 \frac{\partial}{\partial \nu} + \hat{p}^4 \frac{\partial^2}{\partial \nu^2}, \quad (10)$$

тут

$$G^{i} := \frac{\partial}{\partial \alpha^{j}} g^{ij} + \left(\frac{\partial}{\partial \alpha^{j}} \log \sqrt{g}\right) g^{ij},$$
$$G^{3} := \frac{1}{\hat{p}^{2}} \left(\frac{\partial}{\partial \nu} \log \sqrt{g}\right) g^{33} = \frac{\partial}{\partial n} \log \sqrt{g}$$

это степенные ряды по $\hat{p}^{-2}\nu$ с ненулевыми свободными членами

$$G^{i} = \sum_{k=0}^{\infty} G^{i}_{(k)} \nu^{k} \hat{p}^{-2k}, \quad G^{3} = \sum_{k=0}^{\infty} G^{3}_{(k)} \nu^{k} \hat{p}^{-2k}.$$
 (11)

Перепишем волновое уравнение как $\Delta u/u=\frac{1}{c^2}\frac{\partial^2 u}{\partial t^2}/u,$ и применим равенство

$$\frac{1}{f}\frac{\partial^2}{\partial x \partial y}f = \frac{\partial^2}{\partial x \partial y}\log f + \frac{\partial}{\partial x}\log f\frac{\partial}{\partial y}\log f,$$

– будем вычислять логарифмические производные. Подставим в уравнение анзац

$$u = \exp\{i\widehat{p}(\widehat{p}^2\theta + \sigma)\}U = \exp\{i\widehat{p}(\widehat{p}^2\theta + \sigma) + \widehat{U}\},\$$

где, для единообразия вычислений, временно, введено $\hat{U} := \log U$. Как U, так и \hat{U} – ряды по \hat{p}^{-1} со свободным членом. Это конечные величины, нулевой порядок по \hat{p} .

Учитывая, что н
и $\theta,$ ни σ от nне зависят, получаем

$$\begin{split} &\frac{1}{u}\Delta u = \frac{1}{u} \left(G^{i} \frac{\partial}{\partial \alpha^{i}} + g^{ij} \frac{\partial^{2}}{\partial \alpha^{i} \partial \alpha^{j}} + \hat{p}^{2} G^{3} \frac{\partial}{\partial \nu} + \hat{p}^{4} \frac{\partial^{2}}{\partial \nu^{2}} \right) u \\ &= G^{i} \frac{\partial}{\partial \alpha^{i}} \left(\sqrt{-1} \hat{p} \left(\hat{p}^{2} \theta + \sigma \right) + \hat{U} \right) + \hat{p}^{2} G^{3} \frac{\partial}{\partial \nu} \hat{U} \\ &+ g^{ij} \left(\frac{\partial^{2}}{\partial \alpha^{i} \partial \alpha^{j}} \left(\sqrt{-1} \hat{p} \left(\hat{p}^{2} \theta + \sigma \right) + \hat{U} \right) \right) \\ &+ \left(\frac{\partial}{\partial \alpha^{i}} \left(\sqrt{-1} \hat{p} \left(\hat{p}^{2} \theta + \sigma \right) + \hat{U} \right) \right) \left(\frac{\partial}{\partial \alpha^{j}} \left(\sqrt{-1} \hat{p} \left(\hat{p}^{2} \theta + \sigma \right) + \hat{U} \right) \right) \right) \\ &+ \hat{p}^{4} \left(\frac{\partial^{2}}{\partial \nu^{2}} \hat{U} + \left(\frac{\partial}{\partial \nu} \hat{U} \right)^{2} \right) \\ &= \frac{1}{c^{2}} u_{tt} / u = \frac{1}{c^{2}} \left(i \hat{p} (\hat{p}^{2} \theta_{tt} + \sigma_{tt}) + \hat{U}_{tt} - \left(\hat{p} (\hat{p}^{2} \theta_{t} + \sigma_{t}) + \hat{U}_{t} / i \right)^{2} \right). \end{split}$$

Приведём подобные по степеням p, убрав временное обозначение \widehat{U} :

$$\begin{split} \hat{p}^{6}(-g^{ij}\theta_{\alpha^{i}}\theta_{\alpha^{j}} + \frac{1}{c^{2}}\theta_{t}^{2}) + \hat{p}^{4}\left(-2g^{ij}\theta_{\alpha^{i}}\sigma_{\alpha^{j}} + \frac{2}{c^{2}}\theta_{t}\sigma_{t} + U_{\nu\nu}/U\right) \\ &+ i\hat{p}^{3}\left(G^{i}\theta_{\alpha^{i}} + g^{ij}(\theta_{\alpha^{i}\alpha^{j}} + 2\theta_{\alpha^{i}}U_{\alpha^{j}}/U) - \frac{1}{c^{2}}\theta_{tt} - \frac{2}{c^{2}}\theta_{t}U_{t}/U\right) \\ &+ \hat{p}^{2}\left(-g^{ij}\sigma_{\alpha^{i}}\sigma_{\alpha^{j}} + \frac{1}{c^{2}}\sigma_{t}^{2} + G^{3}U_{\nu}/U\right) \\ &+ i\hat{p}\left(G^{i}\sigma_{\alpha^{i}} + g^{ij}(\sigma_{\alpha^{i}\alpha^{j}} + 2\sigma_{\alpha^{i}}U_{\alpha^{j}}/U) - \frac{1}{c^{2}}\sigma_{tt} - \frac{2}{c^{2}}\sigma_{t}U_{t}/U\right) \\ &+ G^{i}U_{\alpha^{i}}/U + g^{ij}U_{\alpha^{i}\alpha^{j}}/U - \frac{1}{c^{2}}U_{tt}/U = 0. \end{split}$$

$$(13)$$

Заметим, что

$$\sum_{i=1}^{2} G^{i} \frac{\partial}{\partial \alpha^{i}} + \sum_{i,j=1}^{2} g^{ij} \frac{\partial^{2}}{\partial \alpha^{i} \partial \alpha^{j}} =: \Delta_{2}$$
(14)

это оператор Лапласа (координатных) поверхносте
й $n={\rm const}$ параллельных S:

$$\begin{aligned} \hat{p}^{6}(-g^{ij}\theta_{\alpha^{i}}\theta_{\alpha^{j}} + \frac{1}{c^{2}}\theta_{t}^{2})U \\ &+ \hat{p}^{4} \left(\left(-2g^{ij}\theta_{\alpha^{i}}\sigma_{\alpha^{j}} + \frac{2}{c^{2}}\theta_{t}\sigma_{t} \right)U + U_{\nu\nu} \right) \\ &+ i\hat{p}^{3} \left(\left(\Delta_{2}\theta - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\theta \right)U + 2g^{ij}\theta_{\alpha^{i}}U_{\alpha^{j}} - \frac{2}{c^{2}}\theta_{t}U_{t} \right) \\ &+ \hat{p}^{2} \left(\left(-g^{ij}\sigma_{\alpha^{i}}\sigma_{\alpha^{j}} + \frac{1}{c^{2}}\sigma_{t}^{2} \right)U + G^{3}U_{\nu} \right) \\ &+ i\hat{p} \left(\left(\Delta_{2}\sigma - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\sigma \right)U + 2g^{ij}\sigma_{\alpha^{i}}U_{\alpha^{j}} - \frac{2}{c^{2}}\sigma_{t}U_{t} \right) \\ &+ \Delta_{2}U - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}U = 0. \end{aligned}$$
(15)

Это ещё не конец разложения по степеням \widehat{p} – нельзя приравнивать нулю множители при разных степенях отдельно, поскольку тут присутствуют и ряды по \widehat{p}^{-1} . Члены этих рядов при ненулевых степенях будут "просачиваться ниже", менять суммы при меньших степенях $\widehat{p}.$

Учтём, что матричные элементы g^{ij}, G это ряды по $\widehat{p}^{-2}\nu$, а также то, что оператор Лапласа Δ_2 координатных поверхностей n= const тоже содержит в себе ряды g^{ij}, G^i , зависит от $n=\widehat{p}^{-2}\nu$, и только в главном, нулевом порядке по \widehat{p}^{-2} , является оператором Лапласа поверхности S

$$\Delta_2 =: \Delta^{(0)} + \sum_{k=1}^{\infty} \widehat{p}^{-2k} \nu^k \widetilde{\Delta}^{(k)},$$

где $\widetilde{\Delta}^{(k)}$ это некоторые дифференциальные операторы второго порядка по α^j , $\Delta^{(0)}$ – оператор Лапласа поверхности S.

Подставим эти разложения в формулу (14), и сгруппируем члены при одинаковых степенях \hat{p} . Мы получим выражение вида

$$\hat{p}^{6}\left(g_{(0)}^{ij}\theta_{\alpha^{i}}\theta_{\alpha^{j}} - \frac{1}{c^{2}}\theta_{t}^{2}\right)U + \hat{p}^{4}\sum_{k=0}^{\infty}\hat{p}^{-k}L_{k}U = 0.$$
(16)

Тут L_k это дифференциальные операторы второго порядка по переменным ν, α^j, t с коэффициентами, полиномиально зависящими от ν :

$$\begin{split} L_{0} &= \frac{\partial^{2}}{\partial\nu^{2}} - g_{(1)}^{ij}\theta_{\alpha^{i}}\theta_{\alpha^{j}}\nu - 2g_{(0)}^{ij}\theta_{\alpha^{i}}\sigma_{\alpha^{j}} + \frac{2}{c^{2}}\theta_{t}\sigma_{t} \\ L_{1} &= i\left(2g_{(0)}^{ij}\theta_{\alpha^{i}}\frac{\partial}{\partial\alpha^{j}} - \frac{2}{c^{2}}\theta_{t}\frac{\partial}{\partial t} + \Delta^{(0)}\theta - \frac{1}{c^{2}}\theta_{tt}\right) \\ L_{2} &= G_{(0)}^{3}\frac{\partial}{\partial\nu} - g_{(0)}^{ij}\sigma_{\alpha^{i}}\sigma_{\alpha^{j}} + \frac{1}{c^{2}}\sigma_{t}^{2} - 2g_{(1)}^{ij}\nu\theta_{\alpha^{i}}\sigma_{\alpha^{j}} - \nu^{2}g_{(2)}^{ij}\theta_{\alpha^{i}}\theta_{\alpha^{j}} \\ L_{3} &= i\left(2(g_{(0)}^{ij}\sigma_{\alpha^{i}} + \nu g_{(1)}^{ij}\theta_{\alpha^{i}})\frac{\partial}{\partial\alpha^{j}} - \frac{2}{c^{2}}\sigma_{t}\frac{\partial}{\partial t} + \nu\widetilde{\Delta}^{(1)}\theta + \Delta^{(0)}\sigma - \frac{1}{c^{2}}\sigma_{tt}\right) \\ L_{4} &= \Delta^{(0)} - \frac{2}{c^{2}}\frac{\partial^{2}}{\partial t^{2}} + \nu G_{(1)}^{3}\frac{\partial}{\partial\nu} - \nu g_{(1)}^{ij}\sigma_{\alpha^{i}}\sigma_{\alpha^{j}} \\ - 2\nu^{2}g_{(2)}^{ij}\theta_{\alpha^{i}}\sigma_{\alpha^{j}} - \nu^{3}g_{(3)}^{ij}\theta_{\alpha^{i}}\theta_{\alpha^{j}} \\ L_{3+2k} &= i\nu^{k}\left(2(g_{(k)}^{ij}\sigma_{\alpha^{i}} + \nu g_{(k+1)}^{ij}\theta_{\alpha^{i}})\frac{\partial}{\partial\alpha^{j}} + \nu\widetilde{\Delta}^{(k+1)}\theta + \widetilde{\Delta}^{(k)}\sigma\right) \\ L_{4+2k} &= \nu^{k}\left(\widetilde{\Delta}^{(k)} + \nu G_{(k+1)}^{3}\frac{\partial}{\partial\nu} - \nu g_{(k+1)}^{ij}\sigma_{\alpha^{i}}\sigma_{\alpha^{j}} \\ - 2\nu^{2}g_{(k+2)}^{ij}\theta_{\alpha^{i}}\sigma_{\alpha^{j}} - \nu^{3}g_{(k+3)}^{ij}\theta_{\alpha^{i}}\theta_{\alpha^{j}}\right), \quad \text{rge} \ k = 1, 2, \dots \end{split}$$

Эти операторы применяются к ряду $U = \sum_{k=0}^{\infty} \hat{p}^{-k} U_k$, так что при одинаковых степенях \hat{p} , в итоге, будут выражения вида $\sum_{s=0}^{k} L_s U_{k-s}$.

3.2. Построение асимптотического разложения, решение цепочки уравнений. Материал этого раздела во многом повторяет § 3 монографии [3]. Рассмотрим возникающие уравнения. Прежде всего, приравнивая нулю множитель при \hat{p}^6 , мы получаем уравнение эйконала

$$g_{(0)}^{ij}\theta_{\alpha^i}\theta_{\alpha^j} - \frac{1}{c^2}\theta_t^2 = 0.$$
(18)

Его можно записать в виде уравнения Гамильтона-Якоби:

$$\theta_t + H = 0, \ H = c \left(g^{ij}\theta_{\alpha^i}\theta_{\alpha^j}\right)^{1/2}.$$
 (19)

Тут g^{ij} – матрица обратная матрице $g_{ij} = (\mathbf{r}_{\alpha^i}, \mathbf{r}_{\alpha^j})$ первой квадратичной формы поверхности $S, \, \theta_{\alpha^i} = \frac{\partial \theta}{\partial \alpha^i}.$

Найти решение уравнения (19) позволяет теория, восходящая к первой половине девятнадцатого века. Центральную роль в этой теории играет каноническая система уравнений: $\frac{d\alpha^i}{dt} = \frac{\partial H}{\partial \theta_i}, \frac{d\theta_i}{dt} = -\frac{\partial H}{\partial \alpha^i}$. В работах по ПВЛМ решения соответствующей системы уравнений принято называть ПВ лучами. ПВ луч можно представлять себе как бегущую по геодезической линии точку $\alpha^1(t), \alpha^2(t)$, причём задав момент времени t, мы однозначно определяем не только $\alpha^1(t), \alpha^2(t)$, но и $\theta_{\alpha^1}, \theta_{\alpha^2}$ – компоненты градиента искомого эйконала в этой точке.

Будем считать уравнение эйконала решённым, то есть отныне $\theta = \theta(\alpha^1, \alpha^2, t)$ это некоторое решение (18). Следующее уравнение $L_0 U_0 = 0$ будет уже на главный член ряда U, на U_0 :

$$\frac{\partial^2}{\partial\nu^2}U_0 + \left(\nu(-2\widehat{b}^{ij}\theta_{\alpha^i}\theta_{\alpha^j}) - 2g^{ij}_{(0)}\theta_{\alpha^i}\sigma_{\alpha^j} + \frac{2}{c^2}\theta_t\sigma_t\right)U_0 = 0.$$
(20)

Его можно рассматривать как обыкновенное линейное дифференциальное уравнение по переменной ν , поскольку функции в скобках от ν не зависят (кроме самой ν). Это уравнение, масштабным преобразованием, сводится к уравнению Эйри.

Вследствие нулевых краевых условий $U_0|_{\nu=0} = U_0|_{\nu=\infty} = 0$, подходящие нам нетривиальные решения это собственные функции соответствующей задачи Штурма–Лиувилля. Они образуют дискретный набор функций – такие сдвиги функции Эйри, чтобы в нуле значение было ноль.

Итак, решение уравнения $L_0 U_0 = 0$ это

$$U_0 = A_0(\alpha^1, \alpha^2, t) v(\zeta_{Ai} - \psi^{1/3} \nu), \qquad (21)$$

где v это функция Эйри, константа ζ_{Ai} – её корень. Через ψ обозначена (положительная) функция

$$\psi := -g_{(1)}^{ij}\theta_{\alpha^i}\theta_{\alpha^j} = -2b^{ij}\theta_{\alpha^i}\theta_{\alpha^j} > 0.$$
(22)

Мы требуем, чтобы выполнялось неравенство $\psi > 0$. Это неравенство обеспечивает существование волны шепчущей галереи, распространяющейся в направлении, задаваемом вектором ($\theta_{\alpha^i}, \theta_{\alpha^j}$), т.е. градиентом θ . Величина ψ имеет простой геометрический смысл (см. [1]) – это кривизна нормального сечения поверхности S в направлении этого градиента, умноженная на длину градиента. Для существования волны необходимо, чтобы кривизна была отрицательной, то есть поверхность – вогнутой.

Нулевые граничные условия влекут за собой условие, что ζ_{Ai} это корень функции Эйри, и, следовательно, функция σ определится из уравнения

$$(-g_{(1)}^{ij}\theta_{\alpha^{i}}\theta_{\alpha^{j}})^{2/3}\zeta_{Ai} = 2g_{(0)}^{ij}\theta_{\alpha^{i}}\sigma_{\alpha^{j}} - \frac{2}{c^{2}}\theta_{t}\sigma_{t}.$$
 (23)

Таким образом, оператор L_0 имеет вид

$$L_0 = \frac{\partial^2}{\partial \nu^2} - \psi^{2/3} \left(\zeta_{Ai} - \psi^{1/3} \nu \right),$$
 (24)

где $\psi = -g_{(1)}^{ij} \theta_{\alpha^i} \theta_{\alpha^j}$ уже, на этот момент, фиксированная функция времени на поверхности S – она определяется выбранным решением уравнения эйконала и кривизной поверхности. Константа ζ_{Ai} это ноль функции Эйри.

Собственная функция f задачи Штурма–Лиувилля

$$L_0 f = 0, f(0) = f(\infty) = 0,$$

это функция Эйри $v(\zeta_{Ai} - \psi^{1/3}\nu)$.

Рассмотрим следующее по порядку уравнение (при \hat{p}^3):

$$L_0 U_1 + L_1 U_0 = 0. (25)$$

Тут и U_0 и L_0 , L_1 уже определены, так что рассматриваем его как неоднородное обыкновенное линейное дифференциальное уравнение на U_1 :

$$L_0 U_1 = -L_1 U_0$$
, rge $U_0 = A_0(\zeta^1, \alpha^2, t) v(\zeta_{Ai} - \psi^{1/3} \nu).$ (26)

Поскольку уравнение $L_0 f = 0$ имеет нетривиальное решение – это $v(\zeta_{Ai} - \psi^{1/3}\nu)$, – то (25), вообще говоря, не имеет решения. Условие разрешимости это ортогональность правой части (26) решению однородного уравнения, то есть

$$\int_{-\infty}^{0} v(\zeta_{Ai} - \psi^{1/3}\nu) L_1\left(A_0(\alpha^1, \alpha^2, t)v(\zeta_{Ai} - \psi^{1/3}\nu)\right) d\nu = 0, \qquad (27)$$

где

$$L_1 = i \left(2g_{(0)}^{ij} \theta_{\alpha^i} \frac{\partial}{\partial \alpha^j} - \frac{2}{c^2} \theta_t \frac{\partial}{\partial t} + \Delta^{(0)} \theta - \frac{1}{c^2} \theta_{tt} \right) =: \sum_{k=0}^2 B^k \frac{\partial}{\partial \alpha^k} + C, \quad (28)$$

где, для обозримости формул, введены обозначения

$$B_k := \sum_{i=1}^2 2g_{(0)}^{ik} \theta_{\alpha^i}, B_0 := -\frac{2}{c^2} \theta_t, \frac{\partial}{\partial \alpha^0} := \frac{\partial}{\partial t}, C := \Delta^{(0)} \theta - \frac{1}{c^2} \theta_{tt}$$
(29)

Из этого условия находим $A_0,$ то есть завершаем вычисление $U_0=A_0v.$ Подставляя в (27)

$$L_1 A_0 v(\zeta_{Ai} - \psi^{1/3} \nu) = C A_0 v + B^k A_{0\alpha^k} v - A_0 \nu B^k (\psi^{1/3})_{\alpha^k} v', \qquad (30)$$

и интегрируя по частям слагаемое с vv', получаем

Ω

$$\int_{-\infty}^{0} \left(CA_0 + B^k A_{0\alpha^k} - \frac{1}{2} A_0 B^k \log_{\alpha^k} \psi^{1/3} \right) v^2 d\nu = 0.$$

Поскольку выражение в скобках от ν не зависит, на $\int v^2 d\nu$ можно сократить, и на A_0 получаем линейное уравнение

$$2g_{(0)}^{ij}\theta_{\alpha^{i}}\frac{\partial}{\partial\alpha^{j}}A_{0} + \frac{2}{c^{2}}\theta_{t}\frac{\partial}{\partial t}A_{0} + A_{0}\left(\Delta^{(0)}\theta - \frac{1}{c^{2}}\theta_{tt} - g_{(0)}^{ij}\theta_{\alpha^{i}}\log_{\alpha^{j}}\psi^{1/3} + \frac{1}{c^{2}}\theta_{t}\log_{t}\psi^{1/3}\right) = 0 \quad (31)$$

Пусть теперь A_0 это какое-то решение (31), то есть U_0 определено, уравнение $L_0U_1 = -L_1U_0$:

$$\frac{\partial^2}{\partial\nu^2} U_1 - \psi^{2/3} \left(\zeta_{Ai} - \psi^{1/3} \nu \right) U_1 = \widetilde{C}v + \nu \widetilde{B}v' \tag{32}$$

разрешимо. Тут $\widetilde{C}:=CA_0+B^kA_{0\,\alpha^k},\,\widetilde{B}:=A_0B^k(\psi^{1/3})_{\alpha^k},$ см. формулы (28)–(29).

Будем искать решение U₁ методом неопределённых коэффициентов:

$$U_1 = (D\nu^2 + E\nu + A_1)v\left(\zeta_{Ai} - \psi^{1/3}\nu\right) + Fv'\left(\zeta_{Ai} - \psi^{1/3}\nu\right).$$
(33)

Подставив в уравнение получаем

$$(2D + \psi^{1/3}F)v - \psi^{1/3}2(2D\nu + E)v' = \widetilde{C}v + \nu\widetilde{B}v',$$

то есть

$$E = 0, D = -\psi^{-1/3}\widetilde{B}/4, F = \psi^{-2/3}(\widetilde{C} + \psi^{-1/3}\widetilde{B}/2).$$
(34)

Коэффициент A_1 на этом шаге, естественно, не определить. Он, как в прошлый раз A_0 , определится из условия разрешимости последующего уравнения, то есть разрешимости $L_0U_2 = -(L_1U_1 + L_2U_0)$, ортогональности v и $L_1U_1 + L_2U_0$:

$$\int_{-\infty}^{0} v(\zeta_{Ai} - \psi^{1/3}\nu) \left(L_1 U_1 + L_2 U_0\right) d\nu = 0.$$
(35)

Заметим, что, как и на прошлом шаге, $L_1U_1 + L_2U_0$ имеет вид $P_1v + P_2v'$, где $P_{1,2}$ это полиномы по ν , а v и v' это функция Эйри и её производная от аргумента $\zeta_{Ai} - \psi^{1/3}\nu$. Проинтегрировав по частям слагаемое с v', опять получим линейное дифференциальное уравнение на A_1 .

Для любого его решения уравнение (35) разрешимо, и его решение снова можно найти методом неопределённых коэффициентов (см. [3]).

Действуя дальше таким образом, построим весь ряд $U = \sum_k U_k \hat{p}^{-k}$. На каждом шагу будут возникают выражения того же вида, то есть vи v', умноженные на многочлены по ν . Метод неопределённых коэффициентов даёт все коэффициенты кроме одного. Этот коэффициент определится из условия разрешимости следующего уравнения.

§4. ГАУССОВА СОСРЕДОТОЧЕННОСТЬ

Пусть $\alpha^i(t)$ – решение канонической системы $\frac{d\alpha^i}{dt} = \frac{\partial H}{\partial \theta_i}, \frac{d\theta_i}{dt} = -\frac{\partial H}{\partial \alpha^i}$ для уравнения (19), уравнения эйконала. Это бегущая по геодезической линии поверхности *S* точка ($\alpha^1(t), \alpha^2(t)$), ПВ-луч.

Обозначим $\gamma^i := \alpha^i - \alpha^i(t), i = 1, 2$ – расстояние, вдоль координаты α^i , от точки наблюдения до луча в момент времени t.

Заменим ряды, описывающие $\theta,\,\sigma$ конечными суммами. Мы придём к выражению

$$W = \exp\left\{ip\left(\theta^{(0)} + \theta^{(1)} + \theta^{(2)} + \dots + \theta^{(n_1)}\right) + ip^{1/3}\left(\sigma^{(0)} + \sigma^{(1)} + \sigma^{(2)} + \dots + \sigma^{(n_2)}\right)\right\}$$
(36)

$$\times \left(U_0 + U_1/p^{1/3} + U_2/p^{2/3} + \dots + U_{n_3}/p^{n_3/3}\right),$$

где n_1, n_2, n_3 – целые неотрицательные числа, $\theta^{(j)}, \sigma^{(j)}$ – однородные полиномы по γ^1, γ^2 , в частности $\theta^{(2)}, \sigma^{(2)}$ это квадратичные формы. Предполагается, что мнимая часть $\theta^{(2)}$ – положительно определённая квадратичная форма, $\theta^{(1)}$ – вещественная линейная форма.

Назовём такую формулу приближённым выражением для квазифотона. Естественно потребовать, чтобы его экспоненциальная часть удовлетворяла требованию "гауссовой сосредоточенности". Под "гауссовой сосредоточенностью" понимаем оценки вида

$$|\exp\{ip\left(\theta^{(0)} + \theta^{(1)} + \theta^{(2)} + \dots + \theta^{(n_1)}\right) + ip^{1/3}\left(\sigma^{(0)} + \sigma^{(1)} + \sigma^{(2)} + \dots + \sigma^{(n_2)}\right)\}| < a_1 e^{-pa_2|\gamma|^2}, a_3 \leq t \leq a_4, |\gamma| \leq a_5, |\gamma| = \sqrt{(\gamma^1)^2 + (\gamma^2)^2}, p \geq a_6, \quad (37)$$

здесь a_k постоянные, причём $a_1 > 0, a_2 > 0, a_3 < a_4, a_5 > 0, a_6 > 0.$

Покажем, что гауссова сосредоточенность имеет место при любых целых $n_1 \ge 2, n_2 \ge 0.$

Доказательство гауссовой сосредоточенности базируется на том, что квадратичная форма $p \ Im \ \theta^{(2)}$ при достаточно большом p и достаточно малом a_5 мажорирует $p \theta^{(j)}, j > 2, p^{1/3} \sigma^{(l)}, l \ge 2.$

Рассмотрим отношение

$$\frac{|p\theta^{(j)}|}{|p \ Im \ \theta^{(2)}|} = O(1)|\gamma|^{j-2} \le O(1)a_5^{j-2}.$$
(38)

Здесь O(1) функция γ равномерно ограниченная при $|\gamma| \leq a_5$. Чем у́же окрестность рассматриваемого ПВ луча, то есть чем меньше a_5 , тем меньше правая часть (38). В этом смысле $p \ Im \ \theta^{(2)}$ мажорирует $p\theta^{(j)}, j > 2$.

Рассмотрим при $j \ge 2$ отношение

$$\frac{|p^{1/3}\sigma^{(j)}|}{|p \ Im \ \theta^{(2)}|} = O(1)|\gamma|^{j-2}p^{-2/3} \leq O(1)a_5^{j-2}p^{-2/3}.$$
(39)

Оно сколь угодно мало, если p достаточно велико. Остаётся оценить $|p^{1/3}\sigma^{(1)}|/|p \ Im \ \theta^{(2)}|$. Это отношение равно $O(1)p^{-2/3}\frac{1}{|\gamma|}$.

Откуда следует, что при

$$|\gamma| \ge \text{const } p^{-b} \quad b < 2/3 \tag{40}$$

имеет место мажорируемость и, следовательно, гауссова оценка (37).

Гауссова оценка имеет место и при малых $|\gamma|$, но она следует из других рассуждений.

Имеет место оценка $|\sigma^{(1)}p^{1/3}| \leq \text{const} |\gamma|p^{1/3}$. Если $|\gamma| < p^{-b}$ const, где b > 1/3, то это выражение стремится к нулю, если $p \to \infty$ и поэтому на любом интервале вида $(a_2, +\infty), p_0 > 1$ равномерно ограничено по модулю. Таким образом следствием учёта $\sigma^{(1)}$ является "возникновение" равномерно ограниченного множителя $\exp\{p^{1/3}\sigma^{(1)}\}$, см. формулу (36). Константу a_2 потребуется заменить на

$$a_2' = a_2 \max |\exp\{p^{1/3}\sigma^{(1)}\}|.$$

Это легко следует из аналитического выражения левой части неравенства (37).

Гауссова оценка (37) тем самым сохраняется. Пусть *b* какое-нибудь число из интервала (1/3, 2/3), например 1/2. Тогда имеет место при $|\gamma| \ge \text{const } p^{-1/2}$ гауссова оценка, ибо при таких $|\gamma|$ форма $p \ Im \ \theta^{(2)}$ мажорирует линейную форму $p^{1/3}\sigma^{(1)}$.

При $|\gamma| \leq \text{сonst } p^{-1/2}$ учёт этой формы не нарушает выполнения гауссовой оценки (37), только константу a_2 надо будет умножить на соответствующий постоянный множитель. Таким образом оценка (37) остаётся справедливой и при учёте линейной формы $p^{1/3}\sigma^{(1)}(\gamma)$.

Результаты работы подтверждают следующий общий тезис: если волна описывается ПВЛМ-разложением, то комплексный вариант этого разложения описывает соответствующие квазифотоны.

Список литературы

- В. М. Бабич, Пространственно-временной лучевой метод (ПВЛМ) для волн шепчущей галереи. — Зап. научн. семин. ПОМИ 506 (2021), 15–20.
- В. М. Бабич, В. С. Булдырев, Асимптотические методы в задачах дифракции коротких волн (метод эталонных задач). — М.: Наука, 1972, 456с.
- В. М. Бабич, Н. Я. Кирпичникова, Memod пограничного слоя в задачах дифракции. — Л.: Изд. ЛГУ 1974, 124с.
- В. М. Бабич, В. С. Булдырев, И. А. Молотков, Пространственно-временной лучевой метод (Линейные и нелинейные волны). — Л.: Изд. ЛГУ 1984, 329с.
- М. М. Попов, Новая концепция поверхностных волн интерференционного типа для строго выпуклых поверхностей, вложенных в R³. — Зап. научн. семин. ПОМИ 493 (2020), 301–313.
- A. P. Kiselev, Localized light waves: paraxial and exact solutions of the wave equation (a review), Opt. Spectrosc., 102, No. 4, 2007, 603–622.
- В. М. Бабич, В. Ф. Лазуткин, О собственных функциях, сосредоточенных вблизи замкнутой геодезической — Пробл. матем. физики. Вып. 2 Л.: Изд. ЛГУ (1967), 15–25.

Babich V. M., Babich M. V. Space-time ray method and quasiphotons of whispering gallery.

The article is devoted to the construction of the space-time ray method (STRM) in the whispering gallery case. The complex version of the STRM-expansion describing quasiphotons is also considered.

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, наб. р. Фонтанки, д. 27, 192288 Санкт-Петербург, Россия

E-mail: babich@pdmi.ras.ru

E-mail: mbabich@pdmi.ras.ru