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AROUND THE INFINITE DIVISIBILITY OF THE

DICKMAN DISTRIBUTION AND RELATED TOPICS

Abstract. There are two probability distributions related to the
Dickman function from number theory, which are sometimes con-
fused with each other. We give a careful exposition on the difference
between the two. While one is known to be infinite divisible, we give
a computational proof to show that the other is not. We apply this
to get related results for self-decomposable distributions with so-
called truncated Lévy measures. Further, we extend several results
about the infinitely divisible Dickman distribution related to its role
in the context of sums on independent random variables and perpe-
tuities. Along the way, we discuss several approaches for checking if
a distribution is or is not infinitely divisible.

To Ildar Abdullovich Ibragimov on the occasion of his 90th

birthday, with great admiration and gratitude

§1. Introduction

The Dickman distribution first appeared in the context of number the-
ory in the following setting. For a positive integer k, let p1(k) be the
largest prime divisor of k. If ξn is a uniform random variable on the set
{1, 2, . . . , n}, then for any a > 0,

P(p1(ξn) 6 n1/a) =
#{k ∈ {1, 2, . . . , n} : p1(k) 6 n1/a}

n
→ D(a), (1)

as n → ∞, where D is a continuous and nonnegative function satisfying
the differential-difference equation

aD′(a) +D(a− 1) = 0, a > 1, (2)

with initial condition D(a) = 1 for a ∈ [0, 1]. We further set D(a) = 0 for
a < 0. This result was first published in 1930 by Dickman in the remarkable
paper [9]. This paper gave heuristic arguments, which were later rigorized
and extended in the work of Buchstab [5], Ramaswami [21], de Bruijn [3,4],

Key words and phrases: Dickman distribution, infinite divisibility, perpetuities,
truncated Lévy measures.
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and others. The function D has come to be called the Dickman function.
Many properties of this function are discussed in [27], see also the recent
review [19].

The function G(x) = 1 −D(x) is the cumulative distribution function
(cdf) of a distribution supported on the interval [1,∞) and the Dickman
function D is the corresponding survival (or tail) function, i.e., Ḡ = D.
From (2) it follows that this distribution is absolutely continuous with
probability density function (pdf)

g(x) = −D′(x) = x−1D(x− 1), x > 1.

In this context, we can reformulate (1) as

logn

log p1(ξn)

d→ G as n → ∞,

where
d→ denotes convergence in distribution. The fact that logn> log p1(ξn)

explains the support of G. We will call this the Dickman Type A distri-
bution and denote it by DA. We choose this terminology to avoid confusion
with another distribution that is related to the Dickman function, which
we now introduce.

It can be verified that

∞
∫

0

D(x)dx = eγ ,

where γ = 0.5772 . . . is the Euler-Mascheroni constant. Thus, the function

f(x) = e−γD(x), x > 0 (3)

is the pdf of a distribution supported on [0,∞). Note that f satisfies the
differential-difference equation (2), but with initial condition f(a) = e−γ

for a ∈ [0, 1]. In the probability literature, this distribution is often called
the Dickman distribution, but, to avoid confusion, we call it the Dickman

Type B distribution and denote it by DB. This distribution arises in a
variety of applications, see the surveys [20] and [19]. Many applications
stem from the fact that DB satisfies the following relation. If X ∼ DB and
U ∼ U(0, 1) are independent random variables, then

X
d
= U(1 +X), (4)
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where
d
= denotes equality in distribution. This further implies that if

U1, U2, . . . are independent and identically distributed (iid) U(0, 1) ran-
dom variables and

X = U1 + U1U2 + U1U2U3 + U1U2U3U4 + . . . , (5)

then X ∼ DB. Such sums of products are important in the study of per-
petuities, see, e.g., [14, 28], and the references therein. From another per-
spective, the Dickman distribution is the limiting distribution in a number
of limit theorem, see, e.g., [6, 13], or [2]. One simple example is the fact
that

Un
1 + Un

2 + · · ·+ Un
n

d→ DB. (6)

From (3) it follows that the cdf G of the DA distribution and the pdf f
of the DB distribution satisfy the relationship

G(x) = 1− 1

f(0)
f(x), x > 0. (7)

In fact, given any bounded and monotonely decreasing pdf f on [0,∞), (7)
defines a valid cdf so long as we use a version of f that is right continuous
with left limits. In this case, it is easy to check that G satisfies G(0) = 0
and that it has a finite mean. In this paper, we introduce the transform
T between such pdfs and cdfs given by (7) and discuss various relation-
ships between the distribution with pdf f and that with cdf G. We are
particularly interested in the question of whether this transform preserves
infinite divisibility. We will see that there are cases where both f and G
are infinitely divisible and cases where one is infinitely divisible, but the
other is not. A full characterization is beyond the scope of this paper. To
the best of our knowledge this problem was previously studied only in the
context of distribution with log convex pdfs. In this case both f and G are
infinitely divisible, see Proposition III.10.10 in the monograph [26].

Our interest in the question of infinite divisibility is motivated, in part,
by the situation with the two types of Dickman distributions. It is well-
known that the DB distribution is infinitely divisible. However, the infinite
divisibility of the DA distribution has not been studied. We give a compu-
tational proof to show that, in fact, the DA distribution is not infinitely
divisible. This has some important implications. In particular, it implies
that for large classes of self-decomposable distributions with so-called trun-
cated Lévy measures the image of the distribution under transform T is
not infinitely divisible.
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The rest of this paper is organized as follows. In Section 2 we formally
introduce the transform T and give many properties. We also review some
basic properties of infinitely divisible distributions. In Section 3 we give
several example where both f and G are infinitely divisible. In Section 4
we give two computational proofs that the DA distribution is not infin-
itely divisible. In Section 5 we discuss the implications of this for certain
self-decomposable distributions with truncated Lévy measures. In Section
6 we discuss some extensions of the result in (6) and, in particular, correct
a mistake in [19]. In Section 7 we discuss the relationship between the
Dickman distribution and perpetuities and give some results about gen-
eralizations of (4) and (5). The proof of the main result of Section 5 is
postponed to Section 8.

Before proceeding we introduce some notation. We write cdf, pdf, and
pmf for cumulative distribution function, probability density function, and
probability mass function, respectively. We write a.s. for “almost surely”
and 1A to denote the indicator function on A. For a distribution µ we
write X ∼ µ to denote that X is a random variable with distribution

µ and X1, X2, . . .
iid∼ µ to denote that X1, X2, . . . are independently and

identically distributed (iid) random variables with distribution µ. For sim-
plicity, instead of µ, we often write the corresponding cdf or pdf. We write
U(a, b) to denote a uniform distribution on (a, b), Exp(λ) to denote the
exponential distribution with rate λ, gamma(α, λ) to denote a gamma dis-
tribution with pdf

λα

Γ(α)
xα−1e−λx, x > 0,

where Γ is the gamma function, and beta(α, β) to denote a beta distribu-
tion with pdf

1

B(a, b)
xα−1(1− x)β−1, 0 < x < 1,

where B is the beta function. We write ∨ and ∧ to denote the maximum
and minimum, respectively. Further, we use the convention that

∑0
n=1 is

0. We write :=,
d
=,

d→, and
w→ to denote a defining equality, equality in dis-

tribution, convergence in distribution, and weak convergence, respectively.
For two sequences of real numbers {an} and {bn}, we write an ∼ bn to
denote an/bn → 1 as n → ∞.

We use the terms ‘Theorem’, ‘Proposition’, and ‘Lemma’ to denote re-
sults that have been proved rigorously. We use the term ‘Result’ to denote
results that were either proved computationally or whose proof uses a



AROUND THE INFINITE DIVISIBILITY 95

result that was proved computationally. While we have faith in our com-
putational results, we acknowledge that such proofs are not completely
rigorous.

§2. Setup and preliminaries

We begin this section by defining the transform between certain pdfs and
cdfs given by (7). This generalizes the relationship between the Dickman
Type A and Dickman Type B distributions. First, we define the domain
and range of this transform. Let A be the collection of bounded pdfs that
are vanishing on (−∞, 0) and monotonely decreasing on [0,∞). Without
loss of generality we assume that these are right continuous with left limits.
Let B be the collection of cdfs G with

G(0) = 0 (8)

and having a finite mean. A standard application of Fubini’s theorem im-
plies that if G ∈ B and X ∼ G, then

E[X ] =

∞
∫

0

xG(dx) =

∞
∫

0

(1−G(x)) dx < ∞.

We define a bijection T : A 7→ B as follows. If f ∈ A, then G = T (f) is
the cdf given by

G(x) = 1− cf(x), x > 0. (9)

where c = 1/f(0). Equivalently, the corresponding survival function is
given by

Ḡ(x) = 1−G(x) = cf(x), x > 0.

If f is differentiable, then G has pdf

g(x) = −cf ′(x).

The inverse transform T −1 is as follows. If G ∈ B, then f = T −1(G) is
the pdf given by

f(x) =
1−G(x)

∞
∫

0

(1−G(x)) dx

, x > 0.
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Note that, if G = T (f), then

c =
1

f(0)
=

∞
∫

0

(1−G(x)) dx =

∞
∫

0

xdG(x).

Clearly, if f is the pdf of the Dickman Type B distribution and G is the cdf
of the Dickman Type A distribution, then G = T (f). In this case c = eγ .

Remark 1. The formula in (9) can be generalized slightly. For any f ∈ A

and any 0 6 c′ 6 1/f(0) we can define a cdf G by G(0−) = 0 and

G(x) = 1− c′f(x), x > 0.

In this case G(0) = 1− c′f(0) and, if c′ 6= 1/f(0), then we have a mass at
0. In order to avoid such masses, to have a well-defined transform, and to
focus on a clear extension of the situation with the two types of Dickman
distributions, we do not consider such cases here.

We now gather several useful facts about T .

Proposition 1. Fix f ∈ A and let X ∼ f , G = T (f), and Y ∼ G. The

following hold:

1. Fix a > 0. If fa(·) = f(·/a)/a is the pdf of aX, then fa ∈ A and

Ga = T (fa) is of the form

Ga(x) = G(x/a).

2. Let h : [0,∞) 7→ R be a differentiable function with |h(0)| < ∞. We

have

E|h(Y )| < ∞ if and only if E|h′(X)| < ∞.

Further, when these are finite, we have

E[h(Y )] = cE[h′(X)] + h(0).

3. For the moments we have

E[Y β ] = cβE[Xβ−1], β > 0 (10)

and for the Laplace transforms we have

E[e−sY ] = 1− csE[e−sX ], s > 0. (11)

4. Let f1, f2, · · · ∈ A, Xn ∼ fn for each n, and let Yn ∼ Gn = T (fn) for

each n. If fn(0) → f(0) and Xn
d→ X, then Yn

d→ Y .
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Proof. The first part follows immediately from the definition of T . To see
the second part, note that

E[h(Y )] =

∞
∫

0





y
∫

0

h′(t)dt+ h(0)



dG(y)

=

∞
∫

0

h′(t)

∞
∫

0

1[t<y]dG(y)dt + h(0)

=

∞
∫

0

h′(t) (1−G(t)) dt+ h(0)

= c

∞
∫

0

h′(t)f(t)dt+ h(0) = cE[h′(X)] + h(0),

where the second line follows by Fubini’s theorem and the fourth by the
definition of T . The third part follows immediately from the second. For
the fourth part, note that (11) implies

E[e−sYn ] = 1− 1

fn(0)
sE[e−sXn ], s > 0

and the result follows by the fact that convergence of Laplace transforms
is equivalent to convergence in distribution. �

In the context of the fourth part of Proposition 1, we note that it is
important that the limiting pdf f ∈ A. This is because, in general, A

is not closed under weak convergence since distributions with pdfs can
converge weakly to ones without pdfs. Similarly, note that B is not closed
under weak convergence since distributions with finite means can converge
weakly to ones with infinite means and distributions satisfying (8) may
converge to ones that do not satisfy this.

In this paper, we are interested in the following question: If f ∈ A

and G = T (f), under what conditions will both distributions be infinitely
divisible? While we do not have a complete characterization, we give several
illustrative examples in the next section. We then give our results about
the two types of Dickman distributions. Before proceeding, we recall some
facts about infinitely divisible distributions.

A distribution µ on R is called infinitely divisible if for any positive
integer n, there exists a distribution µn on R such that if X ∼ µ and
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Y1, Y2, . . . , Yn
iid∼ µn, then

X
d
= Y1 + Y2 + · · ·+ Yn.

For a wealth of information on infinitely divisible distributions, see the
classic text [15] or the more recent monographs [23] and [26]. We are
specifically interested in infinitely divisible distributions on the positive
half line. Such distributions are sometimes called subordinators. If µ is a
subordinator, then its Laplace transform is of the form

φµ(s) =

∫

[0,∞)

e−sxµ(dx) = exp







−sη −
∞
∫

0

(1− e−sx)ν(dx)







, s > 0, (12)

where η > 0 is called the drift and ν is called the Lévy measure. It is a Borel

measure satisfying ν((−∞, 0]) = 0 and
∞
∫

0

(x∧1)ν(dx) < ∞. We denote this

distribution by ID+(ν, η). It is well-known that the support of ID+(ν, η)
is contained in [η,∞). For simplicity of terminology, if a distribution is
infinitely divisible, we will refer to its cdf as infinitely divisible as well.
Further, if the distribution has a pdf, we will also refer to the pdf as
infinitely divisible.

We now discuss the moments and cumulants of subordinators. The cu-
mulant generating function of µ = ID+(ν, η) is given by

Cµ(s) = logφµ(s) = −ηs−
∞
∫

0

(1− e−sx)ν(dx), s > 0.

The first cumulant of µ is given by

κ1 = −C′
µ(0) = η +

∞
∫

0

xν(dx) (13)

and for integer k > 2, the kth cumulant is given by

κk = (−1)kC(k)
µ (0) =

∞
∫

0

xkν(dx), (14)

where C
(k)
µ is the kth derivative of the cumulant generating function. The

cumulants can be easily converted into moments. The relationship between
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these is well-known, see e.g. [25]. If mk is the kth moment, then

mk =

k−1
∑

i=0

(

k − 1

i

)

κk−imi

and conversely

κk = mk −
k−1
∑

i=1

(

k − 1

i

)

κk−imi. (15)

In particular, this means that, if X ∼ ID+(ν, η), then

E[X ] = η +

∞
∫

0

xν(dx) and var(X) =

∞
∫

0

xν(dx).

We conclude this section with four facts that will be foundational to
our results. They are useful for checking whether a distribution is or is not
infinitely divisible. Another method is described in Section 4 below. The
first fact is given in Corollary III.7.2 of [26], the second in Theorem 8.7
of [23], the third follows by combining Theorem III.4.1 in [26] with (12),
and the fourth by Corollary 24.4 in [23].

Fact 1: The cumulants of a subordinator are nonnegative. Thus, if a distri-
bution has its support contained in [0,∞) and it has at least one negative
cumulant, then it is not infinitely divisible.

Fact 2: If {µn} is a sequence of infinitely divisible distributions and

µn
w→ µ, then µ is infinitely divisible. Equivalently, if µn

w→ µ and µ is
not infinitely divisible, then µn is not infinitely divisible for large enough
n.

Fact 3: A positive and differentiable function φ on [0,∞) with φ(0+) = 1
is the Laplace transform of an infinitely divisible subordinator if and only
if the function

ρ(s) = − d

ds
logφ(s), s > 0

is of the form

ρ(s) = η +

∞
∫

0

xe−xsν(dx)
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for some Lévy measure ν and η > 0. In this case, φ is the Laplace trans-
form of ID+(ν, η).

Fact 4: If the support of a distribution is bounded and not concentrated
at a point, then the distribution is not infinitely divisible.

§3. Examples

In this section we give several examples of f ∈ A and G ∈ B with
G = T (f), where both f and G are infinitely divisible.

Example 1. From (11) and the fact that Laplace transforms uniquely
determine distributions of [0,∞), it follows that f ∈ A and G = T (f)
correspond to the same distribution if and only if the Laplace transform
is given by

1

1 + s/λ
, s > 0,

which holds if and only if f is the pdf of an Exp(λ) distribution. Since

Exp(λ) = ID+(νλ, 0) with νλ(dx) =
e−λx

x 1[x>0]dx, see Example 4.8 in [26],
it follows that both f and T (f) are infinitely divisible in this case.

Example 2. Let g be a pdf on [0,∞) and let G be the corresponding cdf.
Assume that g is a completely monotone function. This means that for
every positive integer n

(−1)n
dn

dxn
g(x) > 0.

In this case, a version of Bernstein’s theorem (see Proposition A.3.11 in [26]
or Section XIII.4 in [11]) implies that g is a scale mixture of exponentials.
Specifically, that

g(x) =

∞
∫

0

λe−λxdH(λ),

where H is some cdf on (0,∞). It is well known that all distributions
with completely monotone pdfs are infinitely divisible, see, e.g., Theorem
III.10.7 in [26]. Let X ∼ G and note that, by Fubini’s theorem, we have

c := E[X ] =

∞
∫

0

∞
∫

0

λxe−λxdxdH(λ) =

∞
∫

0

1

λ
dH(λ).
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Henceforth, assume that this is finite and set f = T −1(G). Fubini’s The-
orem implies that

f(x) =
1

c
(1−G(x)) =

1

c

∞
∫

x

∞
∫

0

λe−λtdH(λ)dt

=
1

c

∞
∫

0

e−λxdH(λ) =

∞
∫

0

λe−λxdH1(λ)

where dH1(λ) = λ−1dH(λ)/c. Thus, f is again completely monotone and,
thus, the corresponding distribution is infinitely divisible.

Example 3. We now give an example, which can be found in Proposition
III.10.10 of [26]. Assume that pdf f is log convex with a finite mean. In
this case, both f and T (f) are infinitely divisible. It is readily checked
that the density of the exponential distribution is log convex. Further, all
completely monotone functions are log convex. Thus, Examples 1 and 2
are special cases of this result.

Example 4. In this example we consider convolutions of exponential dis-
tributions. Let X1 ∼ Exp(λ1) and X2 ∼ Exp(λ2) be independent exponen-
tial random variables with λ1 6= λ2 and let Y = X1+X2. The distribution
of Y is the so-called hypoexponential distribution. It is also sometimes
called the generalized Erlang distribution. Its pdf is given by

g(x) =
λ1λ2

λ2 − λ1

(

e−λ1x − e−λ2x
)

, x > 0.

This is an infinitely divisible distribution since it is the convolution of
two infinitely divisible distributions. Integrating we find that the survival
function is given by

Ḡ(x) = 1−G(x) =
1

λ2 − λ1

(

λ2e
−λ1x − λ1e

−λ2x
)

, x > 0.

This is integrable and, after rescaling, we get the pdf f = T −1(G) given
by

f(x) =
λ1λ2

λ2
2 − λ2

1

(

λ2e
−λ1x − λ1e

−λ2x
)

, x > 0.
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The corresponding Laplace transform is

φ(s) =
λ1λ2

λ2
2 − λ2

1

(

λ2

λ1 + s
− λ1

λ2 + s

)

=
λ1λ2

λ2 + λ1

λ1 + λ2 + s

(λ1 + s)(λ2 + s)

=

(

λ2

λ2 + s

)(

λ1

λ2 + λ1

λ1 + λ2 + s

(λ1 + s)

)

=

(

λ2

λ2 + s

)

(

λ1

λ1+s
λ1+λ2

λ1+λ2+s

)

The first term is the Laplace transform of Exp(λ2) and the second term is
the ratio of the Laplace transform of Exp(λ1) and the Laplace transform
of Exp(λ1 + λ2). Such ratios are Laplace transforms of infinitely divisible
distributions by Example III.11.8 in [26]. Thus, this distribution is infin-
itely divisible. In fact it is not difficult to show that a random variable with
this second term as its Laplace transform is compound geometric. Toward
this end, we write geo(p) to denote the distribution with pmf

p(n) = (1− p)np, n = 0, 1, 2, . . . .

Let N ∼ geo(p) with p = λ1

λ1+λ2
, let Z1, Z2, . . .

iid∼ Exp(λ1 + λ2), and set

S =
N
∑

i=1

Zi.

A standard conditioning argument shows that the distribution of S has the
required Laplace transform. One can try to extend this example to consider
the case of more than two exponential random variables. Unfortunately,
our approach does not seem to scale and it does not seem feasible even for
the sum of three independent exponential random variables with different
means. In the next example we consider the case where the means are
equal.

Example 5. Let X1, X2, . . . , Xn
iid∼ Exp(λ) and set Y = X1+X2+· · ·+Xn.

The distribution of Y is gamma(n, λ), such distributions are also sometimes
called Erlang distributions. Since Y is the sum of independent infinitely
divisible random variables, it is infinitely divisible. Its pdf is given by

gn(x) =
λn

(n− 1)!
xn−1e−λx, x > 0.

and the survival function is given by

Ḡn(x) = 1−Gn(x) =
λn

(n− 1)!

∞
∫

x

tn−1e−λtdt = e−λx
n−1
∑

k=0

(λx)k

k!
, x > 0,
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where the last equality can be verified using substitution, induction on n,

and integration by parts. It is easily checked that
∞
∫

0

Ḡn(x)dx = n/λ. Thus,

fn = T −1(Gn) is given by

fn(x) =
1

n
e−λx

n−1
∑

k=0

λk+1xk

k!
=

1

n

n
∑

k=1

λkxk−1

(k − 1)!
e−λx.

This is a mixture of gamma(k, λ) distributions with k = 1, 2, . . . , n, where
the mixing distribution is discrete uniform on the set {1, 2, . . . , n}. We can
equivalently write the pdf as

fn(x) =
λn+1

n!

∞
∫

x

tn−1e−λtdt =
λ

n!

∞
∫

λx

tn−1e−tdt.

Applying 6.5.36 in [1] shows that the Laplace transform is

φn(s) =
λ

sn

(

1− λn

(λ+ s)n

)

=
λ

sn

(λ+ s)n − λn

(λ+ s)n

We can check the infinite divisibility of this distribution using Fact 3. Let

ρn(s) := − d

ds
logφn(s) =

1

s
+

n

λ+ s
− n(λ+ s)n−1

(λ+ s)n − λn
.

When n = 1

ρ1(s) =
1

λ+ s
=

∞
∫

0

xe−xse−λxx−1dx

and the distribution is ID+(ν1, 0), where ν1(dx) =
e−λx

x 1[x>0]dx. This was
already discussed in Example 1. When n = 2

ρ2(s) =
2

λ+ s
− 1

s+ 2λ
=

∞
∫

0

xe−sx
(

2e−λx − e−2λx
)

x−1dx.
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and the distribution is ID+(ν2, 0), where ν2(dx)=
e−λx

x (2− e−λx)1[x>0]dx.
When n = 3

ρ3(s) =
3

λ+ s
− 3λ+ 2s

3λ2 + 3λs+ s2

=

∞
∫

0

xe−sx
(

3e−λx − 2e−3λx/2 cos(λ
√
3x/2)

)

x−1dx,

where we use the fact that
∞
∫

0

cos(bx)e−(s+a)xdx =
s+ a

(s+ a)2 + b2
,

see 29.3.27 in [1]. It follows that the distribution is ID+(ν3, 0), where

ν3(dx) = e−λx

x

(

3− 2e−λx/2 cos(λ
√
3x/2)

)

1[x>0]dx. When n = 4 we can
write

ρ4(s) =
4

λ+ s
− 1

s+ 2λ
− 2(λ+ s)

s2 + 2sλ+ 2λ2

=

∞
∫

0

xe−sx
(

4e−λx − e−2λx − 2e−λx cos(x
√
λ)
)

x−1dx

and the distribution is ID+(ν4, 0), where

ν4(dx) =
e−λx

x

(

4− e−λx − 2 cos(x
√
λ)
)

1[x>0]dx.

We conjecture that the distribution is infinitely divisible for every n, but
are unable to show this for n > 5.

§4. Results for the Dickman type A distribution

It is well-known that the Dickman Type B distribution is infinitely
divisible. In fact DB = ID+(ν, 0), where ν(dx) = x−11[0<x<1]dx. In this
section we show, computationally, that the Dickman Type A distributions
is not infinitely divisible. We do this in two ways. In the first approach, we
will show that some of the cumulants of the Dickman Type A distributions
are negative, which implies that the distribution is not infinitely divisible
by Fact 1. The second approach will use the cumulants in a more intricate
manner.
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For k = 1, 2, . . . , let mA
k , CA

k and mB
k , κB

k represents the kth moment
and kth cumulant of the Dickman Type A and Dickman Type B distribu-
tions, respectively. It is readily checked that

κB
k =

1
∫

0

xk−1dx =
1

k
, k = 1, 2, . . .

and by Proposition 3 in [20] we have mB
0 = 1 and

mB
k =

1

k

k−1
∑

i=0

(

k

i

)

mB
i , k = 1, 2, . . . . (16)

From (10) we get

mA
k = eγkmB

k−1, k = 1, 2, . . . .

Applying (16) gives

mA
k =

1

k − 1

k−1
∑

i=1

(

k

i

)

mA
i , k = 2, 3, . . . ,

where mA
1 = eγ .

We used this formula to find the first 16 moments of the Dickman Type
A distribution. We then converted these into cumulants using (15). This
was done computationally using the statistical software R. We obtained
the following values for the first 16 cumulants:

[1] 1.781072 0.3899259 0.2814155 0.2399205
[5] 0.2241395 0.2150961 0.1900575 0.1073168
[9] −0.1027234 −0.4956145 −0.8315754 0.5344953
[13] 9.871239 43.49430 116.5033 81.20428

Since some of these are negative, we can conclude the following:

Result 1. The Dickman Type A distribution is not infinitely divisible.

The above approach required us to compute 9 cumulants before we
obtained one that was negative. We now describe an alternate approach
that only requires 7 cumulants. This is a general approach and we will use
it later for another distribution of interest.

We begin by describing this methodology for showing that a distribution
is not infinitely divisible. First, consider the distribution ID+(ν, η) and as-

sume that
∞
∫

0

x2k−1ν(dx) < ∞ for some integer k > 1. Let κ1, κ2, . . . , κ2k−1
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be the first 2k−1 cumulants of this distribution, let z = (z0, z1, . . . , zk−1) ∈
R

d and let

Mk =













κ1 κ2 κ3 ... κk

κ2 κ3 κ4 ... κk+1

κ3 κ4 κ5 ... κk+2

... ... ... ... ...
κk κk+1 κk+2 ... κ2k−1













. (17)

We have

0 6

∞
∫

0

x
(

z0 + z1x+ · · ·+ zk−1x
k−1
)2

ν(dx)

=

k−1
∑

i=0

k−1
∑

j=0

zizj

∞
∫

0

xi+j+1ν(dx)

6

k−1
∑

i=0

k−1
∑

j=0

zizjκi+j+1 = zTMkz

where zT is the transpose of vector z and the third line follows from (13),
(14) and the fact that η > 0. Thus, the matrix Mk is nonnegative definite
for every k > 1. This leads to the following lemma.

Lemma 1. Given a distribution whose support is contained in [0,∞) with

cumulants κ1, κ2, . . . , κ2k−1, let Mk be as in (17). If there exists at least

one k > 1 such that det(Mk) < 0, then the distribution is not infinitely

divisible.

We now apply this to the Dickman Type A distribution. Evaluating the
cumulants and determinants computationally, we get the following results

det(M1) ≈ 1.78, det(M2) ≈ 0.34, det(M3) ≈ 0.006, det(M4) ≈ −0.0001.

The fact that det(M4) < 0 means that the Dickman Type A distribution
is not infinitely divisible. This gives an alternate verification of Result 1.
We note that, in this case, we only use the first 7 cumulants, which is less
than the 9 cumulants that we needed in the previous approach.

It may be interesting to ask if a result corresponding to Result 1 holds
for G = T (f) when f is not the pdf of the Dickman Type B distribution,
but of a distribution from a slightly more general class. Specifically, con-
sider distributions of the form ID+(νθ, 0), where νθ(dx) = θx−11[0<x<1]dx
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for some θ > 0. Such distributions are called generalized Dickman distribu-
tions in [20]. We note that this term was used to denote a different class of
distributions in [19]. For more on this difference, see Section 7 below. While
these distributions always have pdfs, the only case where the pdf belongs
to A, the domain of the transform T , is when θ = 1, which corresponds
to the Dickman Type B distribution. In all other cases, it does not belong
to A because, in those cases, the pdf is not bounded and monotonely de-
creasing. To see this, note that, by (13) in [20], the cdf of a generalized
Dickman distribution on the interval [0, 1] is given by

κθt
θ

for some κθ > 0. It follows that the pdf on [0, 1] is given by

κθθt
θ−1.

As t → 0+, this approaches a finite and strictly positive constant if and
only if θ = 1. Thus we cannot apply transform T to these distributions.

§5. Truncated self-decomposable distributions

A distribution µ is called self-decomposable if for any b > 1 there exists
a distribution ρb such that if X ∼ µ and Yb ∼ ρb are independent, then

X
d
= b−1X + Yb. (18)

Such distributions are important in the study of autoregressive processes
and limit theorems for sums of independent random variables, see [23].
All self-decomposable distributions are infinitely divisible. Further, a self-
decomposable distribution µ is a subordinator if and only if µ = ID+(ν, η)
with η > 0 and the Lévy measure is of the form

ν(dx) =
k(x)

x
1[x>0]dx, (19)

where k is a monotonely decreasing function on [0,∞) satisfying

∞
∫

0

k(x)
(

1 ∧ x−1
)

dx < ∞. (20)
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This distribution has a pdf so long as k(0+) > 0. Further, the pdf is
bounded and monotonely decreasing on [0,∞) if and only if η = 0

k(0+) = 1 and

1
∫

0

1− k(x)

x
dx < ∞, (21)

see Corollary V.2.18 and (2.28) in [26]. Thus, under these conditions, the
pdf of ID+(ν, η) belongs to A, the domain of T .

Henceforth, let µ = ID+(ν, 0), where ν is of the form (19), k satisfies
the appropriate conditions and (21) holds. Let f and φ be the pdf and
Laplace transform of µ, respectively. By Proposition A.3.4 in [26]

f(0+) = lim
s→∞

sφ(s). (22)

We now introduce the truncated version of this distribution. Fix ǫ > 0 and
let µǫ = ID+(νǫ, 0) where

νǫ(dx) = 1[0<x<ǫ]ν(dx).

We call this the truncated Lévy measure. In the context of Lévy processes,
this corresponds to focusing only on small jumps. For more on distributions
with truncated Lévy measures see [7] or [8]. Note that µǫ is still self-
decomposable and hence it has a pdf, which we denote by fǫ. Further,
(21) is still satisfied and thus fǫ ∈ A. Next, we apply an important limit
theorem due to [6]. Specifically, Corollary 2.1 in that paper implies that,
if Xǫ ∼ µǫ, then

Xǫ

ǫ

d→ DB as ǫ ↓ 0, (23)

where DB is the Dickman Type B distribution. This leads to the following.

Result 2. There exists a δ > 0 such that for every ǫ ∈ (0, δ), the distri-

bution T (fǫ) is not infinitely divisible.

The proof follows by showing that (23) implies that the distributions
T (fǫ) (after rescaling) converge to the DA distribution as ǫ ↓ 0. We then
use the fact that the DA distribution is not infinitely divisible together
with Fact 2. While the basic idea of the proof is straightforward, the proof
is not trivial and is given in Section 8.

We now focus to the special case of scale mixtures of exponential dis-
tributions, which we discussed in Example 2. A distribution of this type
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has a pdf of the form

f(x) =

∞
∫

0

λe−λxdH(λ),

where H is a cdf on (0,∞). In this case

f(0) =

∞
∫

0

λdH(λ),

is the mean of H . The Lévy measure of this distribution is given by

ν(dx) = 1[x>0]q(x)dx, (24)

where q(x) =
∞
∫

0

e−λxv(λ)dλ for some measurable function v with 0 6 v 6

1. In particular, if v is a cdf on the positive half-line, then integration by
parts gives

q(x) = x−1

∞
∫

0

e−λxdv(λ). (25)

Such distributions are self-decomposable and satisfy (21).
Let µ = ID+(ν, 0), where ν is given by (24) and q is given by (25), and

let f be the pdf of µ. In this case, T (f) is infinitely divisible by Example
2. However, for the truncated case, Result 2 implies that T (fǫ) is not
infinitely divisible for small enough ǫ. We conjecture that this will, in fact,
hold for all ǫ > 0, but are unable to prove this. It is interesting to

note that the infinite divisibility of T (f) is not preserved under

truncation of the Lévy measure.

§6. Dickman distribution as a limit

In (6) we saw that the Dickman Type B distribution is the limiting
distribution, as n → ∞, of the sum of n iid U(0, 1) random variables
each raised to the power of n. In this section we consider a more general
situation where the limit is the Dickman Type B or a closely related dis-
tribution. Such limit theorems can be used for simulation. Further, they
help to explain the mechanism by which these distributions may arise in
applications. Our result extends the results given in Theorem 1 of [13] and
Theorem 4.1 in [19]. We note that the result in [19] has several misprints,
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specifically in the form of the Lévy measure. Thus, our result should be
used in place of the one given there.

We consider the following generalization of the situation in (6). Assume
that the random variables T1, T2, . . . are iid with cdf F and that there
exists a nonrandom constant 0 < B < ∞ such that 0 6 T1 6 B a.s. This
implies that F (0−) = 0 and F (B) = 1. Assume that X1, X2, . . . are iid
random variables with support contained in [0, 1] and

P (X1 > x) = (1 − x)αL(1− x), x ∈ (0, 1),

where α > 0 and L is a slowly varying at 0 function. The slow variation of
L means that for every t > 0

lim
x→0+

L(xt)

L(x)
= 1.

Theorem 1. Assume that the Ti’s and the Xi’s are independent of each

other and have distributions as described above. Let N(n) be a sequence of

integers with N(n)n−αL(1/n) → c for some c ∈ (0,∞) and set

An =

N(n)
∑

i=1

TiX
n
i .

Then An
d→ A∞, where the Laplace transform of A∞ is equal to

Ee−λA∞ = exp







−
B
∫

0

(

1− e−λx
)

k(x)
1

x
dx







,

with

k(x) = cα

∫

(x,B]

(log(t/x))α−1 dF (t).

When α > 1 the distribution of A∞ is self-decomposable.

Note that, when L(0) = c ∈ (0,∞) we can take N(n) = ⌊nα⌋, where ⌊·⌋
is the floor function. Note further that, when α = 1 and F is a point mass
at 1, in the limit we get the Dickman Type B distribution.

Proof. To prove this result, it suffices to verify the conditions for conver-
gence of sums of infinitesimal triangular arrays. Such conditions can be
found in, e.g., [18] or [17]. We use the conditions given in Proposition 3
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of [12] as these are fine-tuned for convergence to subordinators. We begin
by noting that, by L’Hôpital’s rule, for any t > s > 0 we have

n
(

1− (s/t)1/n
)

∼ log(t/s).

Let L0(t) = L(1/t) and note that L0 is slowly varying at ∞, i.e. for every
t > 0

lim
x→∞

L0(xt)

L0(x)
= 1.

Proposition 2.6 in [22] implies that for t > s > 0 we have

L
(

1− (s/t)1/n
)

= L0

(

n

n(1− (s/t)1/n)

)

∼ L0 (n) = L(1/n).

Hence

lim
n→∞

N(n)P (X1 > (s/t)1/n) = lim
n→∞

cnα(1 − (s/t)1/n)α
L(1− (s/t)1/n)

L(1/n)

= c(log(t/s))α.

Next, note that for s > B

lim
n→∞

N(n)P (Xn
1 T1 > s) = 0

and for 0 < s < B

lim
n→∞

N(n)P (Xn
1 T1 > s) = lim

n→∞

∫

(s,B]

N(n)P (X1 > (s/t)1/n)dF (t)

=

∫

(s,B]

lim
n→∞

N(n)P (X1 > (s/t)1/n)dF (t)

= c

∫

(s,B]

(log(t/s))
α
dF (t)

= c

∫

(s,B]

t
∫

s

α (log(t/u))
α−1

u−1dudF (t)

=

B
∫

s

k(u)u−1du,
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where the last line follows by Fubini’s theorem and in the second line we
interchange limit and integration using bounded convergence. Specifically,
let N1 be such that, for n > N1 we have

N(n)P (X1 > (s/B)1/n) 6 c (log(B/s))
α
+ 1.

For all such n

N(n)P (X1 > (s/t)1/n) 6 N(n)P (X1 > (s/B)1/n) 6 c (log(B/s))
α
+ 1

and we can use bounded convergence. Next consider

lim
ǫ↓0

lim sup
n→∞

N(n)E
[

Xn
1 T11[Xn

1 T<ǫ]

]

= lim
ǫ↓0

lim sup
n→∞

N(n)

∞
∫

0

P (Xn
1 T11[Xn

1 T<ǫ] > s)ds

6 lim
ǫ↓0

lim sup
n→∞

N(n)

ǫ
∫

0

P (Xn
1 T1 > s)ds

6 lim
ǫ↓0

lim sup
n→∞

ǫ
∫

0

N(n)P (X1 > (s/B)1/n)ds

= lim
ǫ↓0

ǫ
∫

0

lim sup
n→∞

N(n)P (X1 > (s/B)1/n)ds

6 lim
ǫ↓0

c

ǫ
∫

0

(log(B/s))
α
ds = lim

ǫ↓0
cB

∞
∫

log(B/ǫ)

sαe−sds = 0,

where we interchange lim sup and integration similar to the above. From
here, the result follows by Proposition 3 in [12]. For α > 1, the self-
decomposability follows from the fact that k satisfies (20) and is mono-
tonely decreasing in this case. �

§7. Dickman distribution and perpetuities

Recall that the Dickman Type B distribution satisfies the relation given
in (4). We can consider the more general relation

X
d
= AX + T, (26)
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where (A, T ) and X are independent. Equivalently,

X = T1 + T2A1 + T3A1A2 + T4A1A2A3 + . . . , (27)

where (A1, T1), (A2, T2), (A3, T3), . . . are iid random vectors having the
same distribution as (A, T ). Note that we do not require A and T to
be independent. In fact when A = T and A ∼ U(0, 1), (4) holds and X
has a Dickman Type B distribution. When A = T and A ∼ beta(α, 1) for
some α > 0, the distribution of X is what was called a generalized Dick-
man distribution in [20]. We adopt this terminology here. In [19] the term
“generalized Dickman distribution” was used to refer to the distribution of
any solution X to (26). However, in this paper, we refer to the latter class
of distributions by the more commonly used term: “perpetuities.” Perpetu-
ities are important for a variety of application areas. They are particularly
useful in applications to actuarial science and economics, see e.g. [14] and
the references therein. For other applications, see [19].

In principle, (26) places no restriction on the distribution of A. No
matter what A is, if we take T = c(1−A) for some c ∈ R, then a solution
to (26) is given by X = c a.s. Of course, such situations are not interesting.
Conditions for (26) to have a solution, where X is not a point mass are
given in [28]. A necessary condition is

E[log |A|] < 0 (28)

A simple sufficient condition is

−∞ < E[log |A|] < 0 and E[log(|T | ∨ 1)] < ∞.

Theorem 5.1 in [28] says that so long as there exists an integer k with
E[|T |k] < ∞ and E[|A|k] < 1, a unique solution to (26) exists. Further, in
this case, E[|X |k] < ∞ and

E[Xk] =

k
∑

j=0

(

k

j

)

E
[

AjT k−j
]

E[Xj]

If E[Ak] 6= 1,

E[Xk] =
1

1− E
[

Ak
]

k−1
∑

j=0

(

k

j

)

E
[

AjT k−j
]

E[Xj].
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If, in addition, A = cT for some c ∈ R, then this simplifies to

E[Xk] =
E
[

T k
]

1− ckE
[

T k
]

k−1
∑

j=0

(

k

j

)

cjE[Xj].

An important question is: Under what conditions are perpetuities in-
finitely divisible? This question goes back, at least, to [28], see also [14].
The problem of giving a full characterization has proven to be a tough nut
to crack. However, many results are known. We now give some interesting
examples. We begin with the case where A and T are independent:

• If there is a constant c > 0 with A = c a.s., then (28) implies
that c ∈ (0, 1). In this case every self-decomposable distribution
satisfies (26) for an appropriate choice of T , since (18) holds. More
generally, in this case (26) holds if and only if the distribution of
X has a so-called semi-self-decomposable distribution. See Section
15 in [23] for more on these distribution.

• If for some ǫ ∈ (0, 1) we have |A| 6 (1 − ǫ) a.s. and for some
nonrandom constant B > 0 we have |T | 6 B a.s., then (27) implies
that |X | 6

∑∞

i=0 B(1 − ǫ)i = B/ǫ < ∞ a.s. It follows that the
distribution of X has a bounded support and is thus not infinitely
divisible by Fact 4.

• When T = 1 a.s. and A ∼ U(0.5, 1) then X is not infinitely divis-
ible. This was verified computationally in [14] using Fact 1.

• If the characteristic function of T has zeros, then X is not infinitely
divisible. This holds, in particular, if T ∼ U(0, 1), see Section 5.4
in [19].

• In [16] it is shown that if T ∼ Exp(λ) and A ∼ beta(α, 1), then
X ∼ gamma(α+1, λ), which is well-known to be infinitely divisible.

The proof of this last example as given in [16] is fairly complicated.
We now give a simple derivation, which further illustrates a standard ap-
proach to these kinds of problems. Let T ∼Exp(λ) and A ∼ beta(α, 1) be
independent random variables. The Laplace transform of X for u > 0 is
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given by

φ(u) = E
[

e−uX
]

= E
[

e−uT
]

E
[

e−uAX
]

=
λ

u+ λ

1
∫

0

φ(ux)αxα−1dx

=
λ

(u+ λ)uα

u
∫

0

φ(x)αxα−1dx.

We rewrite this equality as

(u+ λ)uαφ(u) = λ

u
∫

0

φ(x)αxα−1dx

and differentiate both parts with respect to u. After simplification, we get
the differential equation

φ′(u) = −1 + α

u+ λ
φ(u)

with initial condition φ(0) = 1. It follows that

logφ(u) = −
u
∫

0

1 + α

t+ λ
dt = −(α+ 1) log

(

u+ λ

λ

)

and hence

φ(u) =
( λ

u+ λ

)α+1

,

which is the Laplace transform of gamma(α+ 1, λ), as required.
We now turn to the case where A and T are dependent. Several known

situations are as follows:

• If A = T and A ∼ beta(α, 1) for α > 0, then X has a generalized
Dickman distribution, which is infinitely divisible. In particular,
when α = 1 the beta distribution reduces to a U(0, 1) distribution
and X has a Dickman Type B distribution.

• Several examples involving gamma and beta distributions are col-
lected in [10]. For instance, if T = −A and T ∼ beta(α, β), then
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det(M4) det(M5)

Figure 1. Plots of det(M4) on the left and det(M5) on the
right. The x-axis is the value of β, which ranges for β ∈
[0.95, 1.5] on the left and for β ∈ [0.95, 2] on the right. We
can see that det(M4) is only positive for β ∈ [0.986, 1.198]
and det(M5) is only positive for β = 1 and β ∈
[1.479, 2.992].

X ∼ beta(α, α + β). Since beta distributions have bounded sup-
ports, Fact 4 implies that they are not infinite divisible. This sit-
uation was used for modeling the distance between parked cars
in [24].

• In [16] it is shown that every self-decomposable distribution that is
not concentrated at a point, satisfies (28) for some A and T whose
distributions are not concentrated at a point.

The first example suggests the following question. Let A = T with
A ∼ beta(1, β) for some β > 0. In this case, will the distribution of X
be infinitely divisible? Of course when β = 1 the distribution reduces to
U(0, 1) and X has a Dickman Type B distribution. In the other cases,
we are unable to get analytic results. However, computational results sug-
gest that the distribution is not infinitely divisible. We use the approach
described by Lemma 1. We now discuss our results.
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Example 6. Let A = T with A ∼ beta(1, β) for some β > 0. For a
fixed value of β, we calculate the moments of X using (29). We then
convert these into cumulants using (15) and, for several choices of k, we
evaluate det(Mk), where Mk is given by (17). We did this for every β on
the grid from 0.1 to 5 with step 0.001. We found that det(Mk) > 0 for
k = 1, 2, 3 and for all considered values of β. However, det(M4) is positive
only for β ∈ [0.986, 1.198] and det(M5) is positive only for β = 1 and
β ∈ [1.479, 2.992]. These results are summarized in Figure 1, which plot
the values of det(M4) and det(M5) near the point β = 1. Our results
show, computationally, that this distribution is not infinitely divisible for
all considered values of β except β = 1. We conjecture (but cannot prove
rigorously) that the distribution is infinitely divisible only for β = 1, which
is when X has a Dickman Type B distribution.

§8. Proof of result 2

Let X ∼ µ = ID+(ν, 0) and Xǫ ∼ µǫ = ID+(νǫ, 0). Let Fǫ, fǫ, and φǫ

be the cdf, pdf, and Laplace transform of Xǫ/ǫ, respectively, let F∞, f∞,
and φ∞ be the corresponding terms for the distribution of X , and let F0,
f0, φ0 be the corresponding terms for the Dickman Type B distribution,
respectively. Let Gǫ = T (fǫ) and G0 = T (f0). Note that G0 is the cdf of
the Dickman Type A distribution. Result 2 follows immediately from the
the first part of Proposition 1 and the following result.

Result 3. There exists a δ > 0 such that for every ǫ ∈ (0, δ) the distribu-

tion of Gǫ is not infinitely divisible.

Before proving this result, we give a lemma.

Lemma 2. We have

f∞(0+) = e−γe

1∫

0

1−k(x)
x dx

e
−

∞∫

1

k(x)
x dx

, (29)

lim
ǫ→0

fǫ(0+) = f0(0+),

and

Gǫ
w→ G0 as ǫ ↓ 0. (30)

In (30) when we take the limit as ǫ ↓ 0 we mean the limit along any
sequence {ǫn} with ǫn ↓ 0.
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Proof. First note that (22) and dominated convergence imply that

f∞(0+) = lim
s→∞

se

∞∫

0
(e−sx−1) k(x)

x dx

= lim
s→∞

sφ0(s)e

∞∫

0
(e−sx−1) k(x)

x dx−
1∫

0
(e−sx−1) 1

xdx

= lim
s→∞

sφ0(s)e

∞∫

1
(e−sx−1) k(x)

x dx−
1∫

0
(e−sx−1) 1−k(x)

x dx

= e−γe

1∫

0

1−k(x)
x dx

e
−

∞∫

1

k(x)
x dx

and similarly for ǫ ∈ (0, 1)

f∞(0+) = lim
s→∞

se

∞∫

0
(e−sx

−1) k(x)
x dx

= lim
s→∞

ǫ−1se

∞∫

0
(e−sx/ǫ−1) k(x)

x dx

= lim
s→∞

ǫ−1sφǫ(s)e

∞∫

ǫ
(e−sx/ǫ−1) k(x)

x dx

= ǫ−1fǫ(0+)e
−

∞∫

ǫ

k(x)
x dx

= fǫ(0+)e

1∫

ǫ

1−k(x)
x dx

e
−

∞∫

1

k(x)
x dx

.

By dominated convergence, it follows that

lim
ǫ→0

fǫ(0+) = f∞(0+)e
−

1∫

0

1−k(x)
x dx

e

∞∫

1

k(x)
x dx

= e−γ = f0(0).

From here the result follows by the fourth part of Proposition 1. �

Proof of Result 3. Assume for the sake of contradiction that there does
not exist such a δ > 0. Then there exists a sequence {ǫn} with ǫn ↓ 0 such

that Gǫn is infinitely divisible for every n. But Gǫn
w→ G0, which is not

infinitely divisible by Result 1. This is a contradiction by Fact 2. �
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Example 7. We can illustrate (29) for the case where X ∼ Exp(λ) for
some λ > 0. In this case k(x) = e−λx and f∞(0+) = λ. We have

e−γe

1∫

0

1−k(x)
x dx

e
−

∞∫

1

k(x)
x dx

= e−γe

1∫

0

1−e−λx

x dx
e
−

∞∫

1

e−λx

x dx

= e−γe

λ∫

0

1−e−x

x dx
e
−

∞∫

λ

e−x

x dx

= λ = f∞(0+),

as required. Here the third equality follows from the fact that

λ
∫

0

1− e−x

x
dx =

∞
∫

λ

e−x

x
dx+ lnλ+ γ,

see 5.1.39 in [1].
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measure, and applications. — Advances Appl. Probab. 41, No. 2 (2009), 367–392.
8. A. Dassio, J. W. Lim, Y. Qu, Exact simulation of a truncated Lévy subordina-
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23. K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge Univer-

sity Press, Cambridge (1999).
24. P. Seba, Markov chain of distances between parked cars. — J. Physics A: Math.

Theor. 41, No. 12 (2008), 122003.
25. P.J. Smith, A recursive formulation of the old problem of obtaining moments from

cumulants and vice versa. — The American Statistician 49, No. 2 (1995), 217–218.
26. F. W. Steutel, K. Van Harn, Infinite Divisibility of Probability Distributions on the

Real Line. Marcel Dekker, Inc, New York (2004).
27. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory 3rd ed.

American Mathematical Society, Providence (2015).
28. W. Vervaat, On a stochastic difference equation and a representation of non-

negative infinitely divisible random variables. — Adv. Appl. Probab. 11, No. 4
(1979), 750–783.

Поступило 2 октября 2022 г.Department of Mathematics
and Statistics, UNC Charlotte

E-mail : mgrabcha@uncc.edu

International Laboratory
of Stochastic Analysis
and its Applications, HSE University


