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RELATIVE DECOMPOSITION OF TRANSVECTIONS:

EXPLICIT BOUNDS

Abstract. Let R be a commutative associative ring with 1, and let
G = GL(n,R) be the general linear group of degree n > 3 over R.
Further, let I E R be an ideal of R. In the present note, which
is a marginalia to the paper of Alexei Stepanov and the second
named author(2000), we obtain explicit expressions of the elemen-
tary transvection gtij(ξ)g

−1, where 1 6 i 6= j 6 n, ξ ∈ I and g ∈ G,
as products of the Stein–Tits–Vaserstein generators of the relative
elementary group E(n,R, I).

Introduction

Let R be a commutative ring with 1, G = GL(n,R) be the general linear
group of degree n > 3 over R. For an ideal I E R denote by E(n, I) the
elementary subgroup generated by the elementary transvections of level I:

E(n, I) =
〈
tij(ξ), 1 6 i 6= j 6 n, ξ ∈ I

〉
.

The corresponding relative elementary subgroup E(n,R, I) is defined as
the normal closure of E(n, I) in the absolute elementary subgroup E(n,R).

One of the pivotal results in the structure theory of linear groups,
Suslin’s normality theorem [18], asserts that relative elementary subgroups
E(n,R, I) are in fact normal in the whole general linear group GL(n,R).
In other words, gtij(ξ)g

−1 ∈ E(n,R, I) for all 1 6 i 6= j 6 n, ξ ∈ I,
and all g ∈ GL(n,R). Later, many further proofs were proposed, using
various versions of localisation and geometric methods, see, in particu-
lar, [1, 5, 17, 19, 21], and many further references in [2, 6, 9].

To state an effective version of this result, for a natural L ∈ N denote by
EL(n,R) the subset of E(n,R) consisting of products of 6 L elementary
transvections.

Key words and phrases: general linear group, congruence subgroups, elementary
subgroups, standard commutator formulae.
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In the absolute case, Suslin’s initial proof provided an explicit factori-
sation which in particular implied that for all 1 6 i 6= j 6 n, ξ ∈ R, and
g ∈ GL(n,R) one has gtij(ξ)g

−1 ∈ EL(n,R) for

L 6 n(n− 1)(n+ 2),

cubic in n.
Later, decomposition of transvections, developed by Alexei Stepa-

nov and the second author, see in particular [17] and references there,
furnished other such factorisations, improving the above bound to a better
one,

L 6 4n(n− 1),

quadratic in n. [Of course, original Suslin’s approach applies to a broader
class of linear transvections, not just conjugates of the elementary ones,
and thus proves stronger results, than just normality of E(n,R).]

This bound was crucial in obtaining sharp estimates of the width of com-
mutators in GL(n,R) in terms of transvections in the work of Alexander
Sivatsky and Stepanov [14], and then in some later applications, [8,10,11].

In connection with similar applications at the relative level, see [8, 16],
it is natural to ask, what are the explicit bounds in the effective versions of
Suslin’s normality theorem in the relative case, for the groups E(n,R, I),
I E R. Amazingly, in the general case, without some strong additional
assumptions on the ring R, no such explicit bounds seem to be available
in the existing literature.

In the present paper, we slightly adapt the proof from [17] to obtain
such a bound, cubic in n, in terms of the Stein–Tits–Vaserstein generators
of E(n,R, I), see [15, 20, 23]. Of course, now we have the advantage of
the hindsight, provided by the papers by the second author and Zhang
Zuhong, where very similar calculations were performed at the birelative
level, see [27, 28] and references there.

Namely, as a group E(n,R, I) is generated by the elements of the form

zij(ξ, ζ) = tji(ζ)tij(ξ)tji(−ζ),

where 1 6 i 6= j 6 n, while ξ ∈ I and ζ ∈ R. For a natural L ∈ N denote
by EL(n,R, I) the subset of E(n,R, I) consisting of products of 6 L such
elementary generators zij(ξ, ζ).

Now the main result of the present note can be stated as follows.
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Theorem 1. Let R be a commutative ring with 1, I ER be an ideal of R,

and n > 3. Then for all 1 6 i 6= j 6 n, ξ ∈ I, and g ∈ GL(n,R) one has

gtij(ξ)g
−1 ∈ EL(n,R, I),

for

L 6 n
(3
2
n2 −

3

2
n− 1

)
.

Observe that under appropriate stability assumptions a similar result
for all classical Chevalley groups follows from the important paper by
Sergei Sinchuk and Andrei Smolensky [13]. The feature of the present
paper is that our results hold – with a uniform bound! – for arbitrary

commutative rings.
The balance of the present work is organized as follows. In §1 we recall

the Theme of [17] which is used in §2 to reduce the proof of Theorem 1
to analysis of the very special case of elements of the form uvu−1, where
u and v are taken from the unipotent radicals of the opposite parabolic
subgroups P1 and P−

1 , and, moreover, v is of level I. This key case is then
addressed in §3 by an easy induction on rank. Finally, in §4, we state some
related open problems.

§1. Decomposition of transvections

As usual, e denotes the identity matrix and eij is a standard matrix
unit. For ξ ∈ R and 1 6 i 6= j 6 n, we denote by tij(ξ) = e + ξeij the
corresponding [elementary] transvection. A matrix g ∈ GL(n,R) is written
as g = (gij), 1 6 i, j 6 n, where gij is its entry in the position (i, j). Entries
of the inverse matrix g−1 = (g′ij), 1 6 i, j 6 n, are denoted by g′ij .

By Rn we denote the free right R-module, consisting of columns of
height n with components in R and by nR, we denote the free left R-
module consisting of rows of length n with components in R. Standard
bases in Rn and nR, are denoted by e1, . . . , en and f1, . . . , fn, respectively.

A transvection is a matrix of the form e + uv, where u ∈ Rn, v ∈ nR
are a column and a row such that vu = 0. Classically, [the line spanned
by] u is called the center of the transvection e+ uv, while [the hyperplane
orthogonal to] v is called its axis, see, for instance [26].
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Clearly, if uj = 0, one has

e+ ufj =




1 u1

. . .
...

1 uj−1

1
uj+1 1

...
. . .

un 1




=
∏

tij(ui),

where the product is taken over all i 6= j. Similarly, if vi = 0, one has

e+ eiv =




1
. . .

1
v1 · · · vi−1 1 vi+1 · · · vn

1
. . .

1




=
∏

tij(vj),

where the product is taken over all j 6= i. If we additionally assume that
u ∈ nI or v ∈ In then, clearly, e+ ufj, e+ eiv ∈ E(n, I).

In [17], Theme, the following lemma is stated only in the absolute case,
but replacing R by an ideal I ER and requesting ξ ∈ I does not make any
difference, see [25], Lemma 4.

Lemma 1. Let R be a commutative ring, n > 3, and I E R. Then, for

any 1 6 i 6= j 6 n, any ξ ∈ I, and any g ∈ GL(n,R), one has

gtij(ξ)g
−1 =

∏

16i6n

(
e+ u(i)v(i)

)
,

where u(i) ∈ Rn, v(i) ∈ nI, are such that v(i)u(i) = 0 and v(i)i = 0.

§2. Unipotent factorisation

All factors of the product in Lemma 1 have exactly the same structure,
up to simultaneous permutation of rows and columns. Thus, to prove The-
orems 1 and 2, it only remains to estimate the width of one such factor,
say that of the first factor e+ u(1)v(1).
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Since we are only interested in this factor, for the time being we modify
notation as follows: we consider a transvection e+uv of level I in the first
standard parabolic subgroup P1. Here, as above, u ∈ Rn, v ∈ nI, are such
that vu = 0 and v1 = 0.

As in the absolute case, our computation starts with the following fac-
torization of e + uv as the product of four factors in the two opposite
unipotent radicals U1 and U−

1 . It is a routine computation based on the
properties of transvections. It is known since [3, 4]. For details, see the
proof of either [17], Lemma 3, or [26], Lemma 21.

Lemma 2. Let A be an ideal of R. Further, let u ∈ Rn and v ∈ nI be a

column and a row such that vu = 0 and v1 = 0. Then

e+ uv = [e+ (u− u1e1)f1, e+ e1v](e + u1e1v).

Expanding the commutator and blending its fourth term e−e1v ∈ U1(I)
with e+ u1e1v ∈ U1(I), we get

e+ uv = (e+ (u− u1e1)f1)(e+ e1v)(e − (u− u1e1)f1) · (e+ (u1 − 1)e1v).

In the absolute case, this supplied an expression of e+ uv as the product
of 4(n− 1) elementary transvections.

This does not work as easily in the relative case. Since v ∈ nI, v1 = 0,
the last factor is indeed the product of n−1 elementary transvections from
E(n, I). However, the components of u do not have to belong to I. It is the
conjugate of e+ e1v by e+(u−u1e1)f1 that belongs to E(n,R, I). We are
going to express this conjugate as the product of elementary generators
zij(ξ, ζ) of the relative group E(n,R, I).

With this end, we simplify the notation once more. From now on, we
consider a column u = (u2, . . . , un)

t ∈ Rn−1 and a row v = (v2, . . . , vn) ∈
n−1I such that vu = 0, set

y1(u)=




1
u2 1
...

. . .

un 1


 ∈ U−

1 , x1(v)=




1 v2 . . . vn
1

. . .

1


∈U1(I),

and form the [left] conjugate

y1(u)x1(v) = y1(u)x1(v)y1(−u) ∈ E(n,R, I).

From the above, it follows that if

y1(u)x1(v) ∈ EM (n,R, I),



14 M. A. BURYAKOV, N. A. VAVILOV

then
gtij(ξ) = gtij(ξ)g

−1 ∈ EL(n,R, I), L = n(M + n− 1).

Thus, it only remains to estimate M . This will be done in the next
section by an easy induction on n.

§3. Proof of Theorem 1

Thus, to finish the proof of Theorem 1 we only have to express

y1(u)x1(v) =




1 + vu v2 . . . vn
u2vu 1 + u2v2 . . . u2vn

...
...

. . .
...

unvu unv2 . . . 1 + unvn


 ,

where u = (u2, . . . , un)
t ∈ Rn−1 and v = (v2, . . . , vn) ∈

n−1I, as a product
of the generators zij(ξ, ζ).

Of course, in the previous section it was additionally assumed that vu =
0. There this property was needed to ensure that g belongs to the parabolic
subgroup P1. However, this additional property is not preserved during
induction, so that we cannot assume it from the very start.

The following result is the main new contribution of the present note, as
compared with [17]. Observe that, unlike Theorem 1, it works uniformly,
starting with n = 2. The reason why Theorem 1 does not, is precisely that
for n = 2 there are no nontrivial u and v such that vu = 0.

Theorem 2. Let R be a commutative ring with 1, I ER be an ideal of R,

and n > 2. Then for all u ∈ Rn−1 and v ∈ n−1I, one has

y1(u)x1(v) ∈ EM (n,R, I),

for

M = M(n) 6
3

2
n2 −

5

2
n.

Proof. The proof proceeds by induction on degree n. The base of induc-
tion, n = 2, is obvious, since in this case

y1(u)x1(v) =
t21(u2)t12(v2) = z12(v2, u2),

is itself a single elementary conjugate of level I.
The induction step is quite straightforward. We express y1(u) and x1(v)

as
y1(u) = tn1(un)y1(ũ), x1(v) = x1(ṽ)t1n(vn),



RELATIVE DECOMPOSITION OF TRANSVECTIONS 15

where

ũ = (u2, . . . , un−1)
t ∈ Rn−2, ṽ = (v2, . . . , vn−1) ∈

n−2I.

Now

y1(u)x1(v) =
tn1(un)y1(ũ)

(
x1(ṽ)t1n(vn)

)
= tn1(un)

(
y1(ũ)x1(ṽ) ·

y1(ũ)t1n(vn)
)
,

and we separately conjugate the two factors by tn1(un).

• The first one of them, y1(ũ)x1(ṽ) is a product of

M(n− 1) 6
3

2
(n− 1)2 −

5

2
(n− 1)

elementary generators of level I by induction hypothesis.
Clearly,

tn1(un)
(
y1(ũ)x1(ṽ)

)
= y1(ũ)x1(ṽ) · xn(w),

where

w = (unṽ ũ, unv2, . . . , unvn−1) ∈
n−1I.

The extra factor xn(w) costs at most n−1 further elementary transvections
of level I, on top of the M(n−1) elementary generators of level I requisite
to express the first factor.

• On the other hand,

y1(ũ)t1n(vn) = t1n(vn) · yn(qvn),

where

q = (0, u2, . . . , un−1)
t ∈ Rn−1.

Further conjugating by tn1(un) we get one additional elementary con-
jugate zn1(vn, un) of level I and

tn1(un)yn(qvn) = y1(−q̂ vnun) · yn(qvn),

where

q̂ = (u2, . . . , un−1, 0)
t ∈ Rn−1.

This last factor is of level I and belongs to the unipotent radical of a
parabolic subgroup of type P2 and, thus, is a product of at most 2(n− 2)
elementary transvections of level I.

Summarizing the above, we see that

M(n) 6 M(n− 1) + (n− 1) + 1 + 2(n− 2) 6
3

2
n2 −

5

2
n,

as claimed. �
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Remark 1. It is clear from the proof that one requires at most n − 1
elementary conjugates of level I, in positions (1, 2), . . . , (1, n), the rest are
elementary transvections of level I.

Remark 2. One can reorganize this proof not as an induction on n, but
as reduction to two types of parabolic subgroups, of types Pn−1 and P2,
the summand 1 in the last display line of the proof should be interpreted
as M(2), whereas n− 1 and 2(n− 2) are the dimensions of the unipotent
radicals Un−1 and U2, respectively.

It is clear that instead of n − 1 = (n − 2) + 1 one could consider any
partition n− 1 = k +m into two summands, and obtain an estimate

M(n) 6 M(k + 1) +M(m+ 1) + dim(Uk+1) + dim(Um+1).

As one can expect from the “divide and conquer” arguments, one gets
a better bound when k and m are close, either k = m, or k = m± 1. This
is indeed the case. The first case, when this makes a difference, is that of
SL(5, R), where our theorem gives M 6 25, whereas 4 = 2+ 2 improves it
to M 6 24. For SL(6, R), the partition 5 = 3 + 2 gives M 6 37, instead
of M 6 39 that we get in our theorem. For SL(7, R) our theorem gives
M 6 56, whereas the partition 6 = 4 + 2 improves it to M 6 53, and
6 = 3 + 3 further improves it to M 6 52.

For SL(n,R) itself, the resulting improvement is not very essential, and
we do not pursue it here. But we intend to elaborate this idea in the next
paper dedicated to generalizations to other Chevalley groups.

§4. Final remarks

A first draft of the present note was written back in 2018. Initially, we
attempted two alternative approaches.

• A straightforward way is to express x1(v) as the product of transvec-
tions t1i(vi), i = 2, . . . n, distribute conjugation by y1(u) over this product,
and estimate the width of an individual factor y1(u)t1i(vi)y1(−u). Clearly,
again all such factors have exactly the same structure, up to simultaneous
permutation of rows and columns, so we only have to estimate the width
of one of them, say y1(u)t12(v2)y1(−u).

• Another way, that gives a slightly better bound, is to use induc-
tion on n. In this approach, initially we isolated one factor of the form
y1(u)t1n(vn)y1(−u) at a time, which gives one generator z1n(ξ, ζ), a bunch
of elementary transvections in E(n, I), and, finally, a conjugate of exactly
the same shape as y1(u)x1(v)y1(−u), but now in E(n− 1, R, I).
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Both ways give cubic bounds, which are, however, slightly worse, as far
as the highest term, than the one exhibited here. Namely, those proofs
yield 2n3, instead of 3n3/2 as in our Theorem 1. Here, we also proceed by
induction on n, but single out the conjugation by tn1(un), rather than the
conjugate of t1n(vn).

The calculations in the proof of Theorem 2 are somewhat reminiscent of
the calculations in the proof of [22], Theorem 1.2. Of course, there Vaser-
stein operates at the absolute level, but with a localization parameter,
which is essentially the same, as working modulo a principal ideal. Since
he considers the usual elementary generators, rather than elementary con-
jugates, his bounds are different. However, a more direct source for us
were the recent calculations in the works of the second author with Zhang
Zuhong, see, for instance [27, 28].

Amazingly, for SL(3, R), the relative bound in Theorem 1 coinsides with
the bound L = 24 obtained in [17] for the absolute case! Unfortunately,
this is a typical “law of small numbers” phenomenon. For n > 4 the relative
bound invariably exceeds the absolute one.

Problem 1. Improve the bounds in Theorems 1 and 2.

As we already mentioned in the previous section, some minor improve-
ments are very possible. However, we do not believe that a cubic bound
could be improved to a quadratic one without some entirely new ideas. At
present we do not see any inroad leading in this direction.

Problem 2. Generalize Theorems 1 and 2 to Chevalley groups.

In the presence of abelian unipotent radicals such a generalization is
straightforward. Lemmas 1 and 2 are known in this case, see [17] and [24].
In turn, Theorem 2 for Dl can be reduced to two parabolics of type Al−1,
the case of E6 can be reduced to two parabolics of type D5, and the case
E7 can be reduced to two parabolics of type E6. We plan to come up with
detailed proofs in the sequel of the present paper.

On the other hand, for all multiply laced systems, apart from Bl, as well
as for E8, there are some complications already at the level of Lemma 1
and Lemma 2. It appears that to get good bounds for Cl even in the
absolute case one should not proceed directly from [17], Variation 7, but
use a shorter decomposition developed by Andrei Lavrenov in [12] instead.
We believe that there is a similar short decomposition of unipotents for F4,
based on the fact that it is the twisted form of E6, but such a decomposition
seems to be quite a bit fancier, and we intend to address it separately.
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Another challenge would be, of course, to generalize Theorem 1 to birel-
ative commutator subgroups in the style of [27, 28].

This iteration of the present paper resulted from a discussion with Pavel
Gvozdevsky on his work on the bounded elementary generation of relative
subgroups in the number case, see [7], where [a special case of] our Theorem
1 serves as the base of induction.
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