Yu. Davydov, V. Paulauskas

MORE ON THE CONVERGENCE OF GAUSSIAN CONVEX HULLS

ABSTRACT. A "law of large numbers" for consecutive convex hulls for weakly dependent Gaussian sequences $\{X_n\}$, having the same marginal distribution, is extended to the case when the sequence $\{X_n\}$ has a weak limit. Let $\mathbb B$ be a separable Banach space with a conjugate space $\mathbb B^*$. Let $\{X_n\}$ be a centered $\mathbb B$ -valued Gaussian sequence satisfying two conditions: 1) $X_n \Rightarrow X$ and 2) For every $x^* \in \mathbb B^*$

$$\lim_{n,m,\,|n-m|\to\infty} E\langle X_n,x^*\rangle\langle X_m,x^*\rangle = 0.$$

Then with probability 1 the normalized convex hulls

$$W_n = \frac{1}{(2 \ln n)^{1/2}} \operatorname{conv} \{ X_1, \dots, X_n \}$$

converge in Hausdorff distance to the concentration ellipsoid of a limit Gaussian \mathbb{B} -valued random element X. In addition, some related questions are discussed.

§1. Introduction and formulation of results

Let $\mathbb B$ be a separable Banach space with a norm $||\cdot||$ and let $\mathbb B^*$ and $\langle\cdot,\cdot\rangle$ denote its conjugate space and the corresponding inner product, respectively. For $A\in\mathbb B$ the notation $\mathrm{conv}\{A\}$ is used for the closed convex hull of A. If X is a $\mathbb B$ -valued centered Gaussian random element with a distribution $\mathcal P$ then by H we denote its reproducing kernel Hilbert space and $\mathcal E$ will stand for the closed unit ball in H, see, e.g., [8, p. 207]. The set $\mathcal E$ is also called *concentration ellipsoid* of X.

Finally, we introduce the separable complete metric space $\mathcal{K}_{\mathbb{B}}$ of all nonempty compact subsets of a Banach space \mathbb{B} equipped with the Hausdorff distance $d_{\mathbb{B}}$:

$$d_{\mathbb{B}}(A, B) = \max\{\inf\{\epsilon \mid A \subset B^{\epsilon}\}, \inf\{\epsilon \mid B \subset A^{\epsilon}\}\},\$$

Key words and phrases: Gaussian sequences, convex hull, limit behavior.

The work on this topic was carried out in March–May 2020, at that time the first author was supported by the grant VIZIT-3-TYR-013 of Lithuanian Research Council.

where A^{ϵ} is the open ϵ -neighborhood of A. Convergence of compact sets in \mathbb{B} always will be considered in this metric.

It is well known that the set \mathcal{E} belongs to $\mathcal{K}_{\mathbb{B}}$ (see, e.g. the previous reference).

Investigation of the asymptotic behavior of convex hulls

$$W_n = \operatorname{conv}\{X_1, \dots, X_n\}$$

of multivariate Gaussian random variables is an important part of Extreme Value Theory and has various applications, see for example, [9] and reference list, containing 160 items, in it. In 1988 Goodman [7] proved a fundamental result that the normalized set $\{X_1, \ldots, X_n\}$ of independent and identically distributed B-valued centered Gaussian random elements with a distribution \mathcal{P} is approaching the concentration ellipsoid of \mathcal{P} as n grows to infinity. From this result one can immediately derive that a.s.

$$\frac{1}{b(n)}W_n \stackrel{\mathcal{K}_{\mathbb{B}}}{\to} \mathcal{E}, \quad \text{as } n \to \infty, \tag{1}$$

where $b(t) = \sqrt{2 \ln(t)}$, t > 1. Moreover, the rate of convergence in this relation is of the order $o(b(n)^{-1})$.

Later the convergence of the type (1) was proved first for stationary d-dimensional weakly dependent Gaussian sequences in [2], and then the similar result was proved for \mathbb{B} -valued Gaussian random fields on \mathbb{R}^m or \mathbb{Z}^m in [3]. Although at the introduction of the paper [3] it was said that only the case m > 1 is considered, inspection of the proof of the main result – Theorem 1.1 in [3] – shows that the result holds for m = 1, too. In particular, this result states that if a \mathbb{B} -valued centered Gaussian sequence $\{X_k, k \in \mathbb{N}\}$ has the same marginal distribution \mathcal{P} and satisfies the following condition:

$$E\langle X_n, x^* \rangle \langle X_m, x^* \rangle \to 0$$
, for all $x^* \in \mathbb{B}^*$ as $n, m, |n - m| \to \infty$, (2) then (1) holds.

In the paper we show that the condition of equality of marginal distributions can be essentially relaxed substituting it by the weak convergence of the sequence $\{X_n\}$, and for weak convergence we use the sign \Rightarrow .

Theorem 1. Suppose that a centered Gaussian sequence of \mathbb{B} -valued random elements $\{X_k, k \in \mathbb{N}\}$ satisfies (2) and the following condition:

$$X_n \Rightarrow X.$$
 (3)

Then a.s.

$$\frac{1}{b(n)}W_n \stackrel{\mathcal{K}_{\mathbb{B}}}{\to} \mathcal{E}, \quad \text{as } n \to \infty, \tag{4}$$

where \mathcal{E} is concentration ellipsoid of X.

Since the proof of this theorem will be carried in two steps, and in the first step we consider the case $\mathbb{B} = \mathbb{R}$, we look more closely what is the meaning of the result in this particular case. Let $N(0, \sigma^2)$ stand for a Gaussian random variable with mean zero and variance σ^2 , and $\{X_k\}$, $k \in \mathbb{Z}_+$, be a sequence of $N(0, \sigma_k^2)$ random variables. Without loss of generality we can assume that X in (3) is N(0, 1). We have

$$W_n = [\min\{X_1, X_2, \dots, X_n\}, \max\{X_1, X_2, \dots, X_n\}]$$
 (5)

and $\mathcal{E} = [-1,1]$. If the covariance function $\rho(m,n) := EX_mX_n \to 0$ as $n,m,|n-m|\to\infty$, then we have the relation (4). It is clear, that if the dependence between elements X_k of the sequence is stronger, the sequence of their convex hulls is more concentrated. One can consider the extreme case, when $X_k \equiv X_0$ for all $k \geqslant 1$, then $W_n = \{X_0\}$ is one point and $\lim_{n\to\infty}(g(n))^{-1}W_n = \{0\}$ for any sequence $g(n)\to\infty$. The following example gives us additional information in this question.

Remark 2. Let us consider the sequence of i.i.d. N(0,1) random variables $\{\xi_j\}, \ j \geqslant 1$, and let $S_k = k^{-1/2} \sum_{j=1}^k \xi_j$. Taking $X_k = S_k$, we are in the setting of Theorem 1, but the condition (2) is not satisfied, since, if n = m + k, k > 0, then

$$\rho(m,n) = \frac{ES_m S_{m+k}}{(m(m+k))^{1/2}} = \frac{m}{(m(m+k))^{1/2}} = \left(1 + \frac{k}{m}\right)^{-1/2}.$$
 (6)

Thus, in order to get $\rho(m,n) \to 0$, it is not sufficient to require $m \to \infty$, $k \to \infty$, but stronger condition is required $m \to \infty$, $k/m \to \infty$. On the other hand, S_k is a sum of i.i.d. random variables, therefore, denoting $c(t) = (2 \ln \ln t)^{1/2}$, t > e, the classical LIL gives us that the cluster set for the sequence $\{X_n/c(n)\}$ is [-1,1], while for the sequence $\{X_n/b(n)\}$ with probability one limit is zero. We shall prove that for this example we have the following result:

Proposition 3. With probability one

$$\frac{1}{c(n)}W_n \stackrel{\mathcal{K}_{\mathbb{R}}}{\to} [-1, 1], \quad as \ n \to \infty, \tag{7}$$

where W_n is from (5).

In connection with this example it is possible to formulate the following problem.

Suppose that a sequence $\{X_n\}$ has standard normal marginal distributions and covariance function $\rho(m,n)$. For which functions g(n) and under what conditions for covariance function ρ we can get the relation (7) with function g instead of c?

This Proposition and Theorem 1 give us two examples of such functions g. What other normalizing functions are possible in relation (7)?

Let us make three final remarks.

Remark 4. As in [3], having (4), we can get some information on asymptotic behavior of $Ef(W_n)$ for some functions defined on $\mathcal{K}_{\mathbb{B}}$. In case $\mathbb{B} = \mathbb{R}^m$ typical examples of such functions are diameter, volume or surface measure.

Remark 5. From the proof of Theorem 1 we can extract some information about the rate of convergence in (4). Namely, in the proof we have the equality

$$\mathbb{P}\left\{d_{\mathbb{B}}(X,b(n)\mathcal{E})>\varepsilon\right\}=\mathbb{P}\{\exp\frac{1}{2}\psi_{\varepsilon}\geqslant n\},$$

and since these probabilities are monotonically non-increasing and

$$\sum_{n} \mathbb{P}\{\exp \psi_{\varepsilon}/2 \geqslant n\} = E\{\exp \psi_{\varepsilon}/2\} < \infty$$

we get

$$\mathbb{P}\left\{d\left(\frac{X_n}{b_n},\mathcal{E}\right) > \varepsilon\right\} = o(n^{-1}).$$

Let us note that this result cannot be compared with the result from [7], where it is proved that with probability 1

$$d_{\mathbb{B}}\left(\frac{X_n}{b_n},\mathcal{E}\right) = o(b_n^{-1}).$$

Remark 6. In Theorem 1 and in previous results for Gaussian sequences limit set of convex hulls was ellipsoid of some Gaussian measure. If we dismiss the condition of weak convergence of Gaussian sequence $\{X_k\}$, the limit set may exist, but not necessarily will be an ellipsoid. For example, the following statement holds.

Proposition 7. Let \mathbb{B} be a separable Banach space. Let $V \subset \mathbb{B}$ be a central symmetric polytope, $V = \text{conv}\{a_k, -a_k, k = 1, ..., m\}$. Then there exists a sequence of independent Gaussian vectors $\{X_k\}$ such that a.s.

$$\frac{1}{b(n)}W_n \to V.$$

§2. Proofs

Proof of Theorem 1. As it was mentioned above, the proof will be carried in two steps, and in the first step we consider the case $\mathbb{B} = \mathbb{R}$.

I. Without loss of generality we can suppose that X has a standard Gaussian distribution; then $\mathcal{E} = [-1, 1]$.

The condition (2) transforms now in

$$EX_nX_m \to 0$$
 as $n, m, |n-m| \to \infty$.

From weak convergence of X_n to X it follows that $\sigma_n^2 := EX_n^2 \to 1$ as $n \to \infty$.

For r.v. $Y_n = X_n/\sigma_n$ the conditions (3) and (2) are fulfilled. Since Y_n are identically distributed, setting $U_n = \text{conv}\{Y_1, \dots, Y_n\}$, by Theorem 1.1 from [3]

$$\frac{1}{b(n)}U_n \xrightarrow{\mathcal{K}_1} [-1,1], \quad a.s. \quad as \quad n \to \infty.$$
 (8)

Let us show that a.s.

$$\Delta_n := d_{\mathbb{R}^1} \left(\frac{1}{b(n)} W_n, \ \frac{1}{b(n)} U_n \right) \to 0. \tag{9}$$

We have

$$\Delta_n \leqslant \frac{1}{b(n)} \max_{k \leqslant n} \{ |X_k - Y_k| \} = \frac{1}{b(n)} \max_{k \leqslant n} \{ |Y_k| |1 - \sigma_k| \}.$$
 (10)

Let $Z_n = \max_{k \leq n} \{|Y_k|\};$ $M_n = \max_{k \leq n} \{|1 - \sigma_k|\}.$ For $\varepsilon > 0$ find n_0 such that $\sup_{k > n_0} |1 - \sigma_k| < \varepsilon$. Then for $n \geq n_0$ by (10)

$$\Delta_n \leqslant \frac{1}{b(n)} \max_{n_0 \leqslant k \leqslant n} \{|Y_k|\} \varepsilon + \frac{M_{n_0} Z_{n_0}}{b(n)}.$$

It follows from (8) that $\limsup_{n} \Delta_n \leq \varepsilon$. Hence we get (9) and (4) is proved for $\mathbb{B} = \mathbb{R}$.

II. General case. We shall show that with the probability 1 the sequence $\{b(n)^{-1}W_n\}$ is relatively compact in $\mathcal{K}_{\mathbb{B}}$. Due to Lemmas 2.2 and 2.3 from [3] it is sufficient to prove that there exists a compact set K such that

for every $\varepsilon > 0$ with probability 1 for all sufficiently large n we have the following inclusion $\{b(n)^{-1}W_n\} \subset K^{\varepsilon}$. We take $K = \mathcal{E}$. Since the space \mathbb{B} is fixed, instead of $d_{\mathbb{B}}$ we shall write simply d. It is clear that this inclusion will follow from the following relation: for every $\varepsilon > 0$ a.s.

$$\lim_{n} \sup_{n} d(X_n, (1+\varepsilon)b(n)\mathcal{E}) = 0.$$
(11)

By Skorokhod representation theorem we can suppose that $X_n \to X$ a.s.

Let $\sigma^2 = E||X||^2$, $\sigma_{\max}^2 = \sup_n E||X_n||^2$. It follows from Fernique's theorem about integrability of exponential moments (see [6]) that for every γ , $0 < \gamma < (2\sigma^2)^{-1}$,

$$E\exp\{\gamma \|X\|^2\} < \infty.$$

Moreover, from the proof of Fernique's theorem one can deduce that for every γ , $0 < \gamma < (2\sigma_{\max}^2)^{-1}$,

$$\limsup_{n} E \exp\{\gamma \|X_n\|^2\} < \infty.$$

It means, in particular, that for every γ , $0 < \gamma < (2\sigma_{\text{max}}^2)^{-1}$, the family $\exp{\{\gamma ||X_n||^2\}}$ is uniformly integrable. Therefore

$$\delta_n^2 := E \|X_n - X\|^2 \to 0 \text{ and } E \exp\{\gamma \|X_n - X\|^2\} \to 1.$$

For $\varepsilon > 0$ let n_{ε} be such that $\sigma_{\varepsilon}^2 := \sup_{n > n_{\varepsilon}} \delta_n^2 < \varepsilon^2$.

We have

$$\mathbb{P}\{d(X_n, (1+\varepsilon)b(n)\mathcal{E}) > \varepsilon\} = A_n + B_n,$$

where

$$A_n = \mathbb{P}\{d(X_n, (1+\varepsilon)b(n)\mathcal{E}) > \varepsilon, \|X_n - X\| < \varepsilon b(n)\},$$

$$B_n = \mathbb{P}\{d(X_n, (1+\varepsilon)b(n)\mathcal{E}) > \varepsilon, \|X_n - X\| \ge \varepsilon b(n)\}.$$

Evidently

$$A_n \leq \mathbb{P}\{d(X, b(n)\mathcal{E}) > \varepsilon\}.$$

Now we formulate Talagrand's lemma [11] as it is formulated in [7], see Lemma 3.1 therein.

Lemma 8. Let X be a \mathbb{B} -valued centered Gaussian random element with a concentration ellipsoid \mathcal{E} . Then for any $\varepsilon > 0$ there is a random variable ψ_{ε} such that

$$E\{\exp\left\{\psi_{\varepsilon}/2\right\}\}<\infty$$

and for all $\lambda > 0$

$$\mathbb{P}\{d(X,\lambda\mathcal{E})\leqslant\varepsilon\}=\mathbb{P}\{\psi_{\varepsilon}<\lambda^{2}\}.$$

We apply this lemma taking $\lambda = b(n)$ and obtain

$$A_n \leq \mathbb{P}\{d(X, b(n)\mathcal{E}) > \varepsilon\} = \mathbb{P}\{\psi_\varepsilon \geqslant 2\ln n\} = \mathbb{P}\{\exp\{\psi_\varepsilon/2\} \geqslant n\}$$

Hence $\sum_{n} A_n < \infty$.

For $0 < \gamma < (2\sigma_{\varepsilon}^2)^{-1}$ we have $E \exp\{\gamma \|X_n - X\|^2\} < \infty$ for each $n > n_{\varepsilon}$, therefore, denoting

$$L_{\varepsilon}(a) = \sup_{n > n_{\varepsilon}} \{ E \exp\{a \|X_n - X\|^2\} \},$$

for $a \in \left(\frac{1}{2\varepsilon^2}, \frac{1}{2\sigma_{\varepsilon}^2}\right)$ and $n \geqslant n_{\varepsilon}$ we apply once more Fernique's theorem and get

$$B_n \leqslant \mathbb{P}\{\|X_n - X\| > \varepsilon b(n)\} \leqslant \frac{E \exp\{a\|X_n - X\|^2\}}{n^{2a\varepsilon^2}} \leqslant \frac{L_{\varepsilon}(a)}{n^{2a\varepsilon^2}}.$$

Since $2a\varepsilon^2 > 1$, this estimate gives the convergence of the series $\sum_n B_n$. Therefore we see that for every $\varepsilon > 0$

$$\sum_{n} \mathbb{P}\{d(X_n, (1+\varepsilon)b(n)\mathcal{E}) > \varepsilon\} < \infty.$$

Then the Borel–Cantelli lemma gives us (11), which shows that for every $\delta>0$ with probability 1 for all sufficiently large n

$$\frac{1}{b(n)}W_n\subset\mathcal{E}^\delta.$$

This proves the relative compactness of $\{b(n)^{-1}W_n\}$.

It follows from Lemma 2.7 [3] that now it is sufficient to prove the convergence for every $\theta \in S_1^*(0) := \{x^* \in \mathbb{B}^* : ||x^*|| = 1\}$

$$M_n(\theta) \stackrel{\text{a.s.}}{\to} M_{\mathcal{E}}(\theta), \quad n \to \infty,$$
 (12)

where $M_n, M_{\mathcal{E}}$ are support functions for $b(n)^{-1}W_n$ and \mathcal{E} , respectively. We recall that a function $M_A(\theta)$, defined by the relation

$$M_A(\theta) := \sup_{x \in A} \langle x, \theta \rangle, \quad A \in \mathcal{K}_{\mathbb{B}}, \ \theta \in S_1^*(0),$$

is called the support function of a set $A \in \mathcal{K}_{\mathbb{B}}$. Since

$$M_n(\theta) = \frac{1}{b(n)} \max_{k \le n} \{\langle X_k, \theta \rangle\},\,$$

the convergence (12) follows from the first part of the proof.

Proof of Proposition 3. Let us denote

$$c_1 := \liminf_{n} \frac{V(n)}{c(n)}.$$

Let $l \ge 2$ be a fixed integer, then we have $c(l^m) \sim b(m)$, as $m \to \infty$. V(n) is non-decreasing, therefore, for $n \in [l^k, l^{k+1}]$, we have

$$\frac{V(n)}{c(n)} \geqslant \frac{c(l^k)}{c(n)} \frac{V(l^k)}{c(l^k)}.$$

Since

$$\frac{c(l^k)}{c(n)}\geqslant \frac{c(l^k)}{c(l^{k+1})}\to 1 \ \text{ as } n\to\infty,$$

we get

$$c_1 \geqslant \liminf_m \left\{ \frac{V(l^m)}{c(l^m)} \right\} \geqslant \liminf_m \left\{ \frac{\max\{X_l, X_{l^2}, \dots, X_{l^m}\}}{c(l^m)} \right\}.$$

In our example we have (6), therefore $r := \sup_{i \neq j} EX_{l^i}X_{l^j} = l^{-1/2}$. Due to

Lemma 2.5 from [3] we get

$$\liminf_{m} \left\{ \frac{X_{l}, X_{l^{2}}, \dots, X_{l^{m}}}{c(l^{m})} \right\} \geqslant \sqrt{1 - r} = \sqrt{1 - l^{-1/2}}.$$

This quantity can be made close to 1 if we choose l sufficiently large, therefore with probability one we have

$$c_1 \geqslant 1. \tag{13}$$

In order to get the estimate from above for

$$c_2 := \limsup_{n} \left\{ \frac{V(n)}{c(n)} \right\}$$

we shall need the following lemmas.

Lemma 9. Suppose that a sequence of random variables $\{Y_k\}$ satisfies the following condition: for all $\gamma < (2\sigma^2)^{-1}$, $\sigma > 0$,

$$\sup_{n} E \exp\{\gamma Y_n^2\} < \infty. \tag{14}$$

Then

$$\limsup_{n} \left\{ \frac{\max_{k \leqslant n} \{Y_k\}}{b(n)} \right\} \leqslant \sigma.$$

The proof of this lemma coincides with the proof of Lemma 1 in [1], despite of the fact that in this paper the variables $\{Y_k\}$ was i.i.d. It turns out that independence is not used at all and condition of identical distributions of Y_k can be replaced by condition (14).

Lemma 10 ([10, Theorem 2.2]). Let $\{\xi_k\}$, $k \ge 1$, be independent symmetric random variables, $S_n = \sum_{k=1}^n \xi_k$. Then for every $x \ge 0$

$$\mathbb{P}\left\{\max_{1\leqslant k\leqslant n}|S_k|\geqslant x\right\}\leqslant 2\,\mathbb{P}\{|S_n|\geqslant x\}.$$

Lemma 11. Let X and Y be two non-negative random variables with distribution functions F and G. If for some $a \ge 1$ and for all $x \ge 0$ we have $1 - F(x) \le a(1 - G(x))$. Then for every $\gamma > 0$

$$E\exp\{\gamma X^2\} \leqslant aE\exp\{\gamma Y^2\}.$$

Elementary proof of this statement follows from equalities

$$E\exp\{\gamma X^2\} = \sum_{k=0}^{\infty} \gamma^k(k!)^{-1} E(X^{2k}), \ E(X^{2k}) = \int\limits_{0}^{\infty} (1 - F(x)) d(x^{2k}).$$

Let us fix a non-integer (we have in mind that we shall choose a close to 1) number a>1 and let us denote

$$\Delta_j = \{ i \in N : a^j \leqslant i \leqslant a^{j+1} \}, \quad Y_j = \max_{i \in \Delta_j} X_i.$$

As in the case of lower bound we can prove that

$$c_2 \leqslant \limsup_{m} \left\{ \frac{V(\lfloor a^m \rfloor)}{c(\lfloor a^m \rfloor)} \right\}.$$

Note that

$$\Delta_j = \{ i \in N : |a^j| + 1 \leqslant i \leqslant |a^{j+1}| \}$$

and $V(\lfloor a^m \rfloor) = \max_{0 \leqslant j \leqslant m-1} Y_j$, therefore

$$|Y_j| \leqslant \max_{i \in \Delta_j} \{|X_i|\} = \max_{i \in \Delta_j} \left\{ \left| \frac{S_i}{\sqrt{i}} \right| \right\}$$

$$\leqslant \frac{1}{\sqrt{\lfloor a^j \rfloor + 1}} \max_{i \in \Delta_j} \{|S_i|\} \leqslant \frac{1}{\sqrt{a^j}} \max_{i \in [\lfloor a^j \rfloor + 1, \lfloor a^{j+1} \rfloor]} \{|S_i|\}.$$

Applying Lemma 10, we have

$$\mathbb{P}\{\max_{i\in\Delta_{i}}|S_{i}|\geqslant x\}\leqslant 2\mathbb{P}\{|S_{\lfloor a^{j+1}\rfloor}|\geqslant x\},\,$$

whence

$$\mathbb{P}\{|Y_j| \geqslant x\} \leqslant 2\mathbb{P}\left\{ \left| \frac{S_{\lfloor a^{j+1} \rfloor}}{\sqrt{a^j}} \right| \geqslant x \right\}.$$

Let $\xi(j,a) = (a^j)^{-1} S_{\lfloor a^{j+1} \rfloor}$. It is easy to see that $\xi(j,a)$ has distribution $N(0,\sigma^2(j,a))$ with

$$\sigma^2(j,a) = \frac{\lfloor a^{j+1} \rfloor}{a^j} \to a \text{ as } j \to \infty, \quad \text{and} \quad \sigma^2(j,a) \leqslant a.$$
 (15)

Applying Lemma 11 with $\gamma < 1/2a$, we get

$$E\exp\{\gamma Y_j^2\} \leqslant 2E\exp\{\gamma \xi(j,a)^2\}.$$

Due to (15) we have $\sup_j E \exp\{\gamma \xi(j,a)^2\} := C(a) < \infty$, therefore, using Lemma 9 with $\sigma^2 = a$ and recalling that $c(\lfloor a^m \rfloor) \sim b(m)$, as $m \to \infty$, we get that with probability 1

$$c_2 \leqslant \limsup_{m} \frac{1}{b(m)} V(\lfloor a^m \rfloor) \leqslant \sqrt{a}.$$

Since the last estimate holds for any a > 1, we get that with probability 1

$$c_2 \leqslant 1. \tag{16}$$

Estimates (13) and (16) prove (7).

Proof of Proposition 7. Let $\mathbb{N}=\cup_{k=1}^m T_k$, where the sets T_k , $k=1,\ldots,m$, are disjoint and have positive densities p_k . Let $\{X_n\}$ be a sequence of independent random vectors such that for each k and $j\in T_k$, X_j has Gaussian distribution concentrated on the line $\{ta_k,t\in R^1\}$ with zero mean and variance $\sigma_k^2=\parallel a_k\parallel$. We denote $W_n^{(k)}=\operatorname{conv}\{X_j\ j\leqslant n,\ j\in T_k\}$. Since for any p>0,

$$\lim_{n} \frac{b(np)}{b(n)} = 1,$$

Theorem 1 implies that a.s. for any k = 1, ..., m,

$$\frac{1}{b(n)}W_n^{(k)} \to \operatorname{conv}\{-a_k, a_k\}.$$

Clearly, we have $W_n = \text{conv}\{W_n^{(1)}, \dots, W_n^{(m)}\}\$, therefore a.s.

$$\frac{1}{b(n)}W_n \to \operatorname{conv}\{\bigcup_{k=1}^m \operatorname{conv}\{-a_k, a_k\}\} = V.$$

References

- Yu. Davydov, On convex hull of Gaussian samples. Lith. Math. J. 51 (2011), 171–179.
- Yu. Davydov, C. Dombry, Asymptotic behavior of the convex hull of a stationary Gaussian process. — Lith. Math. J. 52, No. 3 (2012), 363–368.
- 3. Yu. Davydov, V. Paulauskas, On the asymptotic form of convex hulls of Gaussian random fields. Cent. Eur. J. Math. 12, No. 5 (2014), 711–720.
- 4. U. Einmahl, Law of the iterated logarithm type results for random vectors with infinite second moment. Matematica Applicanda, 44, No. 1 (2016), 167–181.
- U. Einmahl, D. Li, Some results on two-sided LIL behavior. Ann. Probab. 33, No. 4 (2005), 1601–1624.
- X. Fernique, Régularité de processus gaussiens. Inventiones Mathematicae 12 (1971), 304–320.
- V. Goodman, Characteristics of normal samples. Ann. Probab. 16, No. 3 (1988), 1281–1290.
- 8. M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, 1991.
- 9. S. N. Majumdar, A. Comptet, J. Randon-Furling, Random convex hulls and extreme value statistics. J. Stat. Phys. 138 (2010), 955–1009.
- 10. V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995.
- 11. M. Talagrand, Sur l'integrabilité des vecteurs gaussiens. Z. Wahrscheinlich. Verw. Geb. $\mathbf{68}$ (1984), 1–8.

Université de Lille, Laboratoire Paul Painlevé, 42 rue Paul Duez 59000 Lille - France Поступило 25 июля 2022 г. Saint Petersburg state university, 7-9 Universitetskaya Embankment, St Petersburg, Russia E-mail: davydov.youri@gmail.com

Vilnius University, Department of Mathematics and Informatics, Naugarduko st. 24, LT-03225, Vilnius, Lithuania

 $E ext{-}mail: wygantas.paulauskas@mif.vu.lt}$