Записки научных семинаров ПОМИ

Том 510, 2022 г.

Yu. Davydov, V. Paulauskas

MORE ON THE CONVERGENCE OF GAUSSIAN CONVEX HULLS

Abstract

A "law of large numbers" for consecutive convex hulls for weakly dependent Gaussian sequences $\left\{X_{n}\right\}$, having the same marginal distribution, is extended to the case when the sequence $\left\{X_{n}\right\}$ has a weak limit. Let \mathbb{B} be a separable Banach space with a conjugate space \mathbb{B}^{*}. Let $\left\{X_{n}\right\}$ be a centered \mathbb{B}-valued Gaussian sequence satisfying two conditions: 1) $X_{n} \Rightarrow X$ and 2) For every $x^{*} \in \mathbb{B}^{*}$ $$
\lim _{n, m,|n-m| \rightarrow \infty} E\left\langle X_{n}, x^{*}\right\rangle\left\langle X_{m}, x^{*}\right\rangle=0
$$

Then with probability 1 the normalized convex hulls

$$
W_{n}=\frac{1}{(2 \ln n)^{1 / 2}} \operatorname{conv}\left\{X_{1}, \ldots, X_{n}\right\}
$$

converge in Hausdorff distance to the concentration ellipsoid of a limit Gaussian \mathbb{B}-valued random element X. In addition, some related questions are discussed.

§1. Introduction and Formulation of Results

Let \mathbb{B} be a separable Banach space with a norm $\|\cdot\|$ and let \mathbb{B}^{*} and $\langle\cdot, \cdot\rangle$ denote its conjugate space and the corresponding inner product, respectively. For $A \in \mathbb{B}$ the notation $\operatorname{conv}\{A\}$ is used for the closed convex hull of A. If X is a \mathbb{B}-valued centered Gaussian random element with a distribution \mathcal{P} then by H we denote its reproducing kernel Hilbert space and \mathcal{E} will stand for the closed unit ball in H, see, e.g., [8, p. 207]. The set \mathcal{E} is also called concentration ellipsoid of X.

Finally, we introduce the separable complete metric space $\mathcal{K}_{\mathbb{B}}$ of all nonempty compact subsets of a Banach space \mathbb{B} equipped with the Hausdorff distance $d_{\mathbb{B}}$:

$$
d_{\mathbb{B}}(A, B)=\max \left\{\inf \left\{\epsilon \mid A \subset B^{\epsilon}\right\}, \inf \left\{\epsilon \mid B \subset A^{\epsilon}\right\}\right\},
$$

[^0]where A^{ϵ} is the open ϵ-neighborhood of A. Convergence of compact sets in \mathbb{B} always will be considered in this metric.

It is well known that the set \mathcal{E} belongs to $\mathcal{K}_{\mathbb{B}}$ (see, e.g. the previous reference).

Investigation of the asymptotic behavior of convex hulls

$$
W_{n}=\operatorname{conv}\left\{X_{1}, \ldots, X_{n}\right\}
$$

of multivariate Gaussian random variables is an important part of Extreme Value Theory and has various applications, see for example, [9] and reference list, containing 160 items, in it. In 1988 Goodman [7] proved a fundamental result that the normalized set $\left\{X_{1}, \ldots, X_{n}\right\}$ of independent and identically distributed B-valued centered Gaussian random elements with a distribution \mathcal{P} is approaching the concentration ellipsoid of \mathcal{P} as n grows to infinity. From this result one can immediately derive that a.s.

$$
\begin{equation*}
\frac{1}{b(n)} W_{n} \xrightarrow{\mathcal{K}_{B}} \mathcal{E}, \quad \text { as } n \rightarrow \infty, \tag{1}
\end{equation*}
$$

where $b(t)=\sqrt{2 \ln (t)}, t>1$. Moreover, the rate of convergence in this relation is of the order $o\left(b(n)^{-1}\right)$.

Later the convergence of the type (1) was proved first for stationary d-dimensional weakly dependent Gaussian sequences in [2], and then the similar result was proved for \mathbb{B}-valued Gaussian random fields on \mathbb{R}^{m} or \mathbb{Z}^{m} in [3]. Although at the introduction of the paper [3] it was said that only the case $m>1$ is considered, inspection of the proof of the main result - Theorem 1.1 in [3] - shows that the result holds for $m=1$, too. In particular, this result states that if a \mathbb{B}-valued centered Gaussian sequence $\left\{X_{k}, k \in \mathbb{N}\right\}$ has the same marginal distribution \mathcal{P} and satisfies the following condition:

$$
\begin{equation*}
E\left\langle X_{n}, x^{*}\right\rangle\left\langle X_{m}, x^{*}\right\rangle \rightarrow 0, \quad \text { for all } x^{*} \in \mathbb{B}^{*} \text { as } n, m,|n-m| \rightarrow \infty, \tag{2}
\end{equation*}
$$

then (1) holds.
In the paper we show that the condition of equality of marginal distributions can be essentially relaxed substituting it by the weak convergence of the sequence $\left\{X_{n}\right\}$, and for weak convergence we use the sign \Rightarrow.

Theorem 1. Suppose that a centered Gaussian sequence of \mathbb{B}-valued random elements $\left\{X_{k}, k \in \mathbb{N}\right\}$ satisfies (2) and the following condition:

$$
\begin{equation*}
X_{n} \Rightarrow X . \tag{3}
\end{equation*}
$$

Then a.s.

$$
\begin{equation*}
\frac{1}{b(n)} W_{n} \xrightarrow{\mathcal{K}_{\mathbb{B}}} \mathcal{E}, \quad \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

where \mathcal{E} is concentration ellipsoid of X.
Since the proof of this theorem will be carried in two steps, and in the first step we consider the case $\mathbb{B}=\mathbb{R}$, we look more closely what is the meaning of the result in this particular case. Let $N\left(0, \sigma^{2}\right)$ stand for a Gaussian random variable with mean zero and variance σ^{2}, and $\left\{X_{k}\right\}, k \in$ \mathbb{Z}_{+}, be a sequence of $N\left(0, \sigma_{k}^{2}\right)$ random variables. Without loss of generality we can assume that X in (3) is $N(0,1)$. We have

$$
\begin{equation*}
W_{n}=\left[\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}, \max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right] \tag{5}
\end{equation*}
$$

and $\mathcal{E}=[-1,1]$. If the covariance function $\rho(m, n):=E X_{m} X_{n} \rightarrow 0$ as $n, m,|n-m| \rightarrow \infty$, then we have the relation (4). It is clear, that if the dependence between elements X_{k} of the sequence is stronger, the sequence of their convex hulls is more concentrated. One can consider the extreme case, when $X_{k} \equiv X_{0}$ for all $k \geqslant 1$, then $W_{n}=\left\{X_{0}\right\}$ is one point and $\lim _{n \rightarrow \infty}(g(n))^{-1} W_{n}=\{0\}$ for any sequence $g(n) \rightarrow \infty$. The following example gives us additional information in this question.
Remark 2. Let us consider the sequence of i.i.d. $N(0,1)$ random variables $\left\{\xi_{j}\right\}, j \geqslant 1$, and let $S_{k}=k^{-1 / 2} \sum_{j=1}^{k} \xi_{j}$. Taking $X_{k}=S_{k}$, we are in the setting of Theorem 1, but the condition (2) is not satisfied, since, if $n=$ $m+k, k>0$, then

$$
\begin{equation*}
\rho(m, n)=\frac{E S_{m} S_{m+k}}{(m(m+k))^{1 / 2}}=\frac{m}{(m(m+k))^{1 / 2}}=\left(1+\frac{k}{m}\right)^{-1 / 2} \tag{6}
\end{equation*}
$$

Thus, in order to get $\rho(m, n) \rightarrow 0$, it is not sufficient to require $m \rightarrow$ $\infty, k \rightarrow \infty$, but stronger condition is required $m \rightarrow \infty, k / m \rightarrow \infty$. On the other hand, S_{k} is a sum of i.i.d. random variables, therefore, denoting $c(t)=(2 \ln \ln t)^{1 / 2}, t>e$, the classical LIL gives us that the cluster set for the sequence $\left\{X_{n} / c(n)\right\}$ is $[-1,1]$, while for the sequence $\left\{X_{n} / b(n)\right\}$ with probability one limit is zero. We shall prove that for this example we have the following result:

Proposition 3. With probability one

$$
\begin{equation*}
\frac{1}{c(n)} W_{n} \xrightarrow{\mathcal{K}_{\mathbb{R}}}[-1,1], \quad \text { as } n \rightarrow \infty \tag{7}
\end{equation*}
$$

where W_{n} is from (5).
In connection with this example it is possible to formulate the following problem.

Suppose that a sequence $\left\{X_{n}\right\}$ has standard normal marginal distributions and covariance function $\rho(m, n)$. For which functions $g(n)$ and under what conditions for covariance function ρ we can get the relation (7) with function g instead of c ?

This Proposition and Theorem 1 give us two examples of such functions g. What other normalizing functions are possible in relation (7)?

Let us make three final remarks.
Remark 4. As in [3], having (4), we can get some information on asymptotic behavior of $E f\left(W_{n}\right)$ for some functions defined on $\mathcal{K}_{\mathbb{B}}$. In case $\mathbb{B}=\mathbb{R}^{m}$ typical examples of such functions are diameter, volume or surface measure.

Remark 5. From the proof of Theorem 1 we can extract some information about the rate of convergence in (4). Namely, in the proof we have the equality

$$
\mathbb{P}\left\{d_{\mathbb{B}}(X, b(n) \mathcal{E})>\varepsilon\right\}=\mathbb{P}\left\{\exp \frac{1}{2} \psi_{\varepsilon} \geqslant n\right\}
$$

and since these probabilities are monotonically non-increasing and

$$
\sum_{n} \mathbb{P}\left\{\exp \psi_{\varepsilon} / 2 \geqslant n\right\}=E\left\{\exp \psi_{\varepsilon} / 2\right\}<\infty
$$

we get

$$
\mathbb{P}\left\{d\left(\frac{X_{n}}{b_{n}}, \mathcal{E}\right)>\varepsilon\right\}=o\left(n^{-1}\right)
$$

Let us note that this result cannot be compared with the result from [7], where it is proved that with probability 1

$$
d_{\mathbb{B}}\left(\frac{X_{n}}{b_{n}}, \mathcal{E}\right)=o\left(b_{n}^{-1}\right)
$$

Remark 6. In Theorem 1 and in previous results for Gaussian sequences limit set of convex hulls was ellipsoid of some Gaussian measure. If we dismiss the condition of weak convergence of Gaussian sequence $\left\{X_{k}\right\}$, the limit set may exist, but not necessarily will be an ellipsoid. For example, the following statement holds.

Proposition 7. Let \mathbb{B} be a separable Banach space. Let $V \subset \mathbb{B}$ be a central symmetric polytope, $V=\operatorname{conv}\left\{a_{k},-a_{k}, k=1, \ldots, m\right\}$. Then there exists a sequence of independent Gaussian vectors $\left\{X_{k}\right\}$ such that a.s.

$$
\frac{1}{b(n)} W_{n} \rightarrow V
$$

§2. Proofs

Proof of Theorem 1. As it was mentioned above, the proof will be carried in two steps, and in the first step we consider the case $\mathbb{B}=\mathbb{R}$.
I. Without loss of generality we can suppose that X has a standard Gaussian distribution; then $\mathcal{E}=[-1,1]$.

The condition (2) transforms now in

$$
E X_{n} X_{m} \rightarrow 0 \quad \text { as } \quad n, m,|n-m| \rightarrow \infty
$$

From weak convergence of X_{n} to X it follows that $\sigma_{n}^{2}:=E X_{n}^{2} \rightarrow 1$ as $n \rightarrow \infty$.

For r.v. $Y_{n}=X_{n} / \sigma_{n}$ the conditions (3) and (2) are fulfilled. Since Y_{n} are identically distributed, setting $U_{n}=\operatorname{conv}\left\{Y_{1}, \ldots, Y_{n}\right\}$, by Theorem 1.1 from [3]

$$
\begin{equation*}
\frac{1}{b(n)} U_{n} \quad \xrightarrow{\mathcal{K}_{1}} \quad[-1,1], \text { a.s. } \quad \text { as } n \rightarrow \infty \tag{8}
\end{equation*}
$$

Let us show that a.s.

$$
\begin{equation*}
\Delta_{n}:=d_{\mathbb{R}^{1}}\left(\frac{1}{b(n)} W_{n}, \frac{1}{b(n)} U_{n}\right) \rightarrow 0 \tag{9}
\end{equation*}
$$

We have

$$
\begin{equation*}
\Delta_{n} \leqslant \frac{1}{b(n)} \max _{k \leqslant n}\left\{\left|X_{k}-Y_{k}\right|\right\}=\frac{1}{b(n)} \max _{k \leqslant n}\left\{\left|Y_{k}\right|\left|1-\sigma_{k}\right|\right\} \tag{10}
\end{equation*}
$$

Let $Z_{n}=\max _{k \leqslant n}\left\{\left|Y_{k}\right|\right\} ; \quad M_{n}=\max _{k \leqslant n}\left\{\left|1-\sigma_{k}\right|\right\}$. For $\varepsilon>0$ find n_{0} such that $\sup _{k>n_{0}}\left|1-\sigma_{k}\right|<\varepsilon$. Then for $n \geqslant n_{0}$ by (10)

$$
\Delta_{n} \leqslant \frac{1}{b(n)} \max _{n_{0} \leqslant k \leqslant n}\left\{\left|Y_{k}\right|\right\} \varepsilon+\frac{M_{n_{0}} Z_{n_{0}}}{b(n)}
$$

It follows from (8) that $\limsup _{n} \Delta_{n} \leqslant \varepsilon$. Hence we get (9) and (4) is proved for $\mathbb{B}=\mathbb{R}$.
II. General case. We shall show that with the probability 1 the sequence $\left\{b(n)^{-1} W_{n}\right\}$ is relatively compact in $\mathcal{K}_{\mathbb{B}}$. Due to Lemmas 2.2 and 2.3 from [3] it is sufficient to prove that there exists a compact set K such that
for every $\varepsilon>0$ with probability 1 for all sufficiently large n we have the following inclusion $\left\{b(n)^{-1} W_{n}\right\} \subset K^{\varepsilon}$. We take $K=\mathcal{E}$. Since the space \mathbb{B} is fixed, instead of $d_{\mathbb{B}}$ we shall write simply d. It is clear that this inclusion will follow from the following relation: for every $\varepsilon>0$ a.s.

$$
\begin{equation*}
\limsup _{n} d\left(X_{n},(1+\varepsilon) b(n) \mathcal{E}\right)=0 \tag{11}
\end{equation*}
$$

By Skorokhod representation theorem we can suppose that $X_{n} \rightarrow X$ a.s.

Let $\sigma^{2}=E\|X\|^{2}, \sigma_{\max }^{2}=\sup _{n} E\left\|X_{n}\right\|^{2}$. It follows from Fernique's theorem about integrability of exponential moments (see [6]) that for every $\gamma, 0<\gamma<\left(2 \sigma^{2}\right)^{-1}$,

$$
E \exp \left\{\gamma\|X\|^{2}\right\}<\infty
$$

Moreover, from the proof of Fernique's theorem one can deduce that for every $\gamma, 0<\gamma<\left(2 \sigma_{\max }^{2}\right)^{-1}$,

$$
\limsup _{n} E \exp \left\{\gamma\left\|X_{n}\right\|^{2}\right\}<\infty
$$

It means, in particular, that for every $\gamma, 0<\gamma<\left(2 \sigma_{\max }^{2}\right)^{-1}$, the family $\exp \left\{\gamma\left\|X_{n}\right\|^{2}\right\}$ is uniformly integrable. Therefore

$$
\delta_{n}^{2}:=E\left\|X_{n}-X\right\|^{2} \rightarrow 0 \text { and } E \exp \left\{\gamma\left\|X_{n}-X\right\|^{2}\right\} \rightarrow 1
$$

For $\varepsilon>0$ let n_{ε} be such that $\sigma_{\varepsilon}^{2}:=\sup _{n>n_{\varepsilon}} \delta_{n}^{2}<\varepsilon^{2}$.
We have

$$
\mathbb{P}\left\{d\left(X_{n},(1+\varepsilon) b(n) \mathcal{E}\right)>\varepsilon\right\}=A_{n}+B_{n}
$$

where

$$
\begin{aligned}
& A_{n}=\mathbb{P}\left\{d\left(X_{n},(1+\varepsilon) b(n) \mathcal{E}\right)>\varepsilon,\left\|X_{n}-X\right\|<\varepsilon b(n)\right\} \\
& B_{n}=\mathbb{P}\left\{d\left(X_{n},(1+\varepsilon) b(n) \mathcal{E}\right)>\varepsilon,\left\|X_{n}-X\right\| \geqslant \varepsilon b(n)\right\}
\end{aligned}
$$

Evidently

$$
A_{n} \leqslant \mathbb{P}\{d(X, b(n) \mathcal{E})>\varepsilon\}
$$

Now we formulate Talagrand's lemma [11] as it is formulated in [7], see Lemma 3.1 therein.

Lemma 8. Let X be a \mathbb{B}-valued centered Gaussian random element with a concentration ellipsoid \mathcal{E}. Then for any $\varepsilon>0$ there is a random variable ψ_{ε} such that

$$
E\left\{\exp \left\{\psi_{\varepsilon} / 2\right\}\right\}<\infty
$$

and for all $\lambda>0$

$$
\mathbb{P}\{d(X, \lambda \mathcal{E}) \leqslant \varepsilon\}=\mathbb{P}\left\{\psi_{\varepsilon}<\lambda^{2}\right\} .
$$

We apply this lemma taking $\lambda=b(n)$ and obtain

$$
A_{n} \leqslant \mathbb{P}\{d(X, b(n) \mathcal{E})>\varepsilon\}=\mathbb{P}\left\{\psi_{\varepsilon} \geqslant 2 \ln n\right\}=\mathbb{P}\left\{\exp \left\{\psi_{\varepsilon} / 2\right\} \geqslant n\right\}
$$

Hence $\sum_{n} A_{n}<\infty$.
For $0<\gamma<\left(2 \sigma_{\varepsilon}^{2}\right)^{-1}$ we have $E \exp \left\{\gamma\left\|X_{n}-X\right\|^{2}\right\}<\infty$ for each $n>n_{\varepsilon}$, therefore, denoting

$$
L_{\varepsilon}(a)=\sup _{n>n_{\varepsilon}}\left\{E \exp \left\{a\left\|X_{n}-X\right\|^{2}\right\}\right\}
$$

for $a \in\left(\frac{1}{2 \varepsilon^{2}}, \frac{1}{2 \sigma_{\varepsilon}^{2}}\right)$ and $n \geqslant n_{\varepsilon}$ we apply once more Fernique's theorem and get

$$
B_{n} \leqslant \mathbb{P}\left\{\left\|X_{n}-X\right\|>\varepsilon b(n)\right\} \leqslant \frac{E \exp \left\{a\left\|X_{n}-X\right\|^{2}\right\}}{n^{2 a \varepsilon^{2}}} \leqslant \frac{L_{\varepsilon}(a)}{n^{2 a \varepsilon^{2}}}
$$

Since $2 a \varepsilon^{2}>1$, this estimate gives the convergence of the series $\sum_{n} B_{n}$.
Therefore we see that for every $\varepsilon>0$

$$
\sum_{n} \mathbb{P}\left\{d\left(X_{n},(1+\varepsilon) b(n) \mathcal{E}\right)>\varepsilon\right\}<\infty
$$

Then the Borel-Cantelli lemma gives us (11), which shows that for every $\delta>0$ with probability 1 for all sufficiently large n

$$
\frac{1}{b(n)} W_{n} \subset \mathcal{E}^{\delta}
$$

This proves the relative compactness of $\left\{b(n)^{-1} W_{n}\right\}$.
It follows from Lemma 2.7 [3] that now it is sufficient to prove the convergence for every $\theta \in S_{1}^{*}(0):=\left\{x^{*} \in \mathbb{B}^{*}:\left\|x^{*}\right\|=1\right\}$

$$
\begin{equation*}
M_{n}(\theta) \xrightarrow{\text { a.s. }} M_{\mathcal{E}}(\theta), \quad n \rightarrow \infty, \tag{12}
\end{equation*}
$$

where $M_{n}, M_{\mathcal{E}}$ are support functions for $b(n)^{-1} W_{n}$ and \mathcal{E}, respectively. We recall that a function $M_{A}(\theta)$, defined by the relation

$$
M_{A}(\theta):=\sup _{x \in A}\langle x, \theta\rangle, \quad A \in \mathcal{K}_{\mathbb{B}}, \theta \in S_{1}^{*}(0)
$$

is called the support function of a set $A \in \mathcal{K}_{\mathbb{B}}$. Since

$$
M_{n}(\theta)=\frac{1}{b(n)} \max _{k \leqslant n}\left\{\left\langle X_{k}, \theta\right\rangle\right\}
$$

the convergence (12) follows from the first part of the proof.

Proof of Proposition 3. Let us denote

$$
c_{1}:=\liminf _{n} \frac{V(n)}{c(n)}
$$

Let $l \geqslant 2$ be a fixed integer, then we have $c\left(l^{m}\right) \sim b(m)$, as $m \rightarrow \infty . V(n)$ is non-decreasing, therefore, for $n \in\left[l^{k}, l^{k+1}\right]$, we have

$$
\frac{V(n)}{c(n)} \geqslant \frac{c\left(l^{k}\right)}{c(n)} \frac{V\left(l^{k}\right)}{c\left(l^{k}\right)}
$$

Since

$$
\frac{c\left(l^{k}\right)}{c(n)} \geqslant \frac{c\left(l^{k}\right)}{c\left(l^{k+1}\right)} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

we get

$$
c_{1} \geqslant \liminf _{m}\left\{\frac{V\left(l^{m}\right)}{c\left(l^{m}\right)}\right\} \geqslant \liminf _{m}\left\{\frac{\max \left\{X_{l}, X_{l^{2}}, \ldots, X_{l^{m}}\right\}}{c\left(l^{m}\right)}\right\}
$$

In our example we have (6), therefore $r:=\sup _{i \neq j} E X_{l^{i}} X_{l^{j}}=l^{-1 / 2}$. Due to
Lemma 2.5 from [3] we get

$$
\liminf _{m}\left\{\frac{X_{l}, X_{l^{2}}, \ldots, X_{l^{m}}}{c\left(l^{m}\right)}\right\} \geqslant \sqrt{1-r}=\sqrt{1-l^{-1 / 2}}
$$

This quantity can be made close to 1 if we choose l sufficiently large, therefore with probability one we have

$$
\begin{equation*}
c_{1} \geqslant 1 \tag{13}
\end{equation*}
$$

In order to get the estimate from above for

$$
c_{2}:=\limsup _{n}\left\{\frac{V(n)}{c(n)}\right\}
$$

we shall need the following lemmas.
Lemma 9. Suppose that a sequence of random variables $\left\{Y_{k}\right\}$ satisfies the following condition: for all $\gamma<\left(2 \sigma^{2}\right)^{-1}, \sigma>0$,

$$
\begin{equation*}
\sup _{n} E \exp \left\{\gamma Y_{n}^{2}\right\}<\infty \tag{14}
\end{equation*}
$$

Then

$$
\limsup _{n}\left\{\frac{\max _{k \leqslant n}\left\{Y_{k}\right\}}{b(n)}\right\} \leqslant \sigma
$$

The proof of this lemma coincides with the proof of Lemma 1 in [1], despite of the fact that in this paper the variables $\left\{Y_{k}\right\}$ was i.i.d. It turns out that independence is not used at all and condition of identical distributions of Y_{k} can be replaced by condition (14).
Lemma 10 ([10, Theorem 2.2]). Let $\left\{\xi_{k}\right\}, k \geqslant 1$, be independent symmetric random variables, $S_{n}=\sum_{k=1}^{n} \xi_{k}$. Then for every $x \geqslant 0$

$$
\mathbb{P}\left\{\max _{1 \leqslant k \leqslant n}\left|S_{k}\right| \geqslant x\right\} \leqslant 2 \mathbb{P}\left\{\left|S_{n}\right| \geqslant x\right\} .
$$

Lemma 11. Let X and Y be two non-negative random variables with distribution functions F and G. If for some $a \geqslant 1$ and for all $x \geqslant 0$ we have $1-F(x) \leqslant a(1-G(x))$. Then for every $\gamma>0$

$$
E \exp \left\{\gamma X^{2}\right\} \leqslant a E \exp \left\{\gamma Y^{2}\right\}
$$

Elementary proof of this statement follows from equalities

$$
E \exp \left\{\gamma X^{2}\right\}=\sum_{k=0}^{\infty} \gamma^{k}(k!)^{-1} E\left(X^{2 k}\right), E\left(X^{2 k}\right)=\int_{0}^{\infty}(1-F(x)) d\left(x^{2 k}\right)
$$

Let us fix a non-integer (we have in mind that we shall choose a close to 1) number $a>1$ and let us denote

$$
\Delta_{j}=\left\{i \in N: a^{j} \leqslant i \leqslant a^{j+1}\right\}, \quad Y_{j}=\max _{i \in \Delta_{j}} X_{i}
$$

As in the case of lower bound we can prove that

$$
c_{2} \leqslant \limsup _{m}\left\{\frac{V\left(\left\lfloor a^{m}\right\rfloor\right)}{c\left(\left\lfloor a^{m}\right\rfloor\right)}\right\}
$$

Note that

$$
\Delta_{j}=\left\{i \in N:\left\lfloor a^{j}\right\rfloor+1 \leqslant i \leqslant\left\lfloor a^{j+1}\right\rfloor\right\}
$$

and $V\left(\left\lfloor a^{m}\right\rfloor\right)=\max _{0 \leqslant j \leqslant m-1} Y_{j}$, therefore

$$
\begin{aligned}
\left|Y_{j}\right| & \leqslant \max _{i \in \Delta_{j}}\left\{\left|X_{i}\right|\right\}=\max _{i \in \Delta_{j}}\left\{\left|\frac{S_{i}}{\sqrt{i}}\right|\right\} \\
& \leqslant \frac{1}{\sqrt{\left\lfloor a^{j}\right\rfloor+1}} \max _{i \in \Delta_{j}}\left\{\left|S_{i}\right|\right\} \leqslant \frac{1}{\sqrt{a^{j}}} \max _{i \in\left[\left\lfloor a^{j}\right\rfloor+1,\left\lfloor a^{j+1}\right\rfloor\right]}\left\{\left|S_{i}\right|\right\}
\end{aligned}
$$

Applying Lemma 10, we have

$$
\mathbb{P}\left\{\max _{i \in \Delta_{j}}\left|S_{i}\right| \geqslant x\right\} \leqslant 2 \mathbb{P}\left\{\left|S_{\left\lfloor a^{j+1}\right\rfloor}\right| \geqslant x\right\}
$$

whence

$$
\mathbb{P}\left\{\left|Y_{j}\right| \geqslant x\right\} \leqslant 2 \mathbb{P}\left\{\left|\frac{S_{\left\lfloor a^{j+1}\right\rfloor}}{\sqrt{a^{j}}}\right| \geqslant x\right\}
$$

Let $\xi(j, a)=\left(a^{j}\right)^{-1} S_{\left\lfloor a^{j+1}\right\rfloor}$. It is easy to see that $\xi(j, a)$ has distribution $N\left(0, \sigma^{2}(j, a)\right)$ with

$$
\begin{equation*}
\sigma^{2}(j, a)=\frac{\left\lfloor a^{j+1}\right\rfloor}{a^{j}} \rightarrow a \text { as } j \rightarrow \infty, \quad \text { and } \quad \sigma^{2}(j, a) \leqslant a \tag{15}
\end{equation*}
$$

Applying Lemma 11 with $\gamma<1 / 2 a$, we get

$$
E \exp \left\{\gamma Y_{j}^{2}\right\} \leqslant 2 E \exp \left\{\gamma \xi(j, a)^{2}\right\}
$$

Due to (15) we have $\sup E \exp \left\{\gamma \xi(j, a)^{2}\right\}:=C(a)<\infty$, therefore, using Lemma 9 with $\sigma^{2}=a$ and recalling that $c\left(\left\lfloor a^{m}\right\rfloor\right) \sim b(m)$, as $m \rightarrow \infty$, we get that with probability 1

$$
c_{2} \leqslant \limsup _{m} \frac{1}{b(m)} V\left(\left\lfloor a^{m}\right\rfloor\right) \leqslant \sqrt{a} .
$$

Since the last estimate holds for any $a>1$, we get that with probability 1

$$
\begin{equation*}
c_{2} \leqslant 1 \tag{16}
\end{equation*}
$$

Estimates (13) and (16) prove (7).
Proof of Proposition 7. Let $\mathbb{N}=\cup_{k=1}^{m} T_{k}$, where the sets T_{k}, $k=1, \ldots, m$, are disjoint and have positive densities p_{k}. Let $\left\{X_{n}\right\}$ be a sequence of independent random vectors such that for each k and $j \in T_{k}, X_{j}$ has Gaussian distribution concentrated on the line $\left\{t a_{k}, t \in R^{1}\right\}$ with zero mean and variance $\sigma_{k}^{2}=\left\|a_{k}\right\|$. We denote $W_{n}^{(k)}=\operatorname{conv}\left\{X_{j} j \leqslant n, j \in\right.$ $\left.T_{k}\right\}$. Since for any $p>0$,

$$
\lim _{n} \frac{b(n p)}{b(n)}=1
$$

Theorem 1 implies that a.s. for any $k=1, \ldots, m$,

$$
\frac{1}{b(n)} W_{n}^{(k)} \rightarrow \operatorname{conv}\left\{-a_{k}, a_{k}\right\}
$$

Clearly, we have $W_{n}=\operatorname{conv}\left\{W_{n}^{(1)}, \ldots, W_{n}^{(m)}\right\}$, therefore a.s.

$$
\frac{1}{b(n)} W_{n} \rightarrow \operatorname{conv}\left\{\cup_{k=1}^{m} \operatorname{conv}\left\{-a_{k}, a_{k}\right\}\right\}=V
$$

References

1. Yu. Davydov, On convex hull of Gaussian samples. - Lith. Math. J. 51 (2011), 171-179.
2. Yu. Davydov, C. Dombry, Asymptotic behavior of the convex hull of a stationary Gaussian process. - Lith. Math. J. 52, No. 3 (2012), 363-368.
3. Yu. Davydov, V. Paulauskas, On the asymptotic form of convex hulls of Gaussian random fields. - Cent. Eur. J. Math. 12, No. 5 (2014), 711-720.
4. U. Einmahl, Law of the iterated logarithm type results for random vectors with infinite second moment. - Matematica Applicanda, 44, No. 1 (2016), 167-181.
5. U. Einmahl, D. Li, Some results on two-sided LIL behavior. - Ann. Probab. 33, No. 4 (2005), 1601-1624.
6. X. Fernique, Régularité de processus gaussiens. - Inventiones Mathematicae 12 (1971), 304-320.
7. V. Goodman, Characteristics of normal samples. - Ann. Probab. 16, No. 3 (1988), 1281-1290.
8. M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, 1991.
9. S. N. Majumdar, A. Comptet, J. Randon-Furling, Random convex hulls and extreme value statistics. - J. Stat. Phys. 138 (2010), 955-1009.
10. V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995.
11. M. Talagrand, Sur l'integrabilité des vecteurs gaussiens. - Z. Wahrscheinlich. Verw. Geb. 68 (1984), 1-8.

Université de Lille, Laboratoire Paul Painlevé,
42 rue Paul Duez 59000 Lille - France
Поступило 25 июля 2022 г.
Saint Petersburg state university,
7-9 Universitetskaya Embankment, St Petersburg, Russia
E-mail: davydov.youri@gmail.com
Vilnius University, Department of Mathematics and Informatics, Naugarduko st. 24, LT-03225, Vilnius, Lithuania
E-mail: vygantas.paulauskas@mif.vu.lt

[^0]: Key words and phrases: Gaussian sequences, convex hull, limit behavior.
 The work on this topic was carried out in March-May 2020, at that time the first author was supported by the grant VIZIT-3-TYR-013 of Lithuanian Research Council.

