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LOCAL LAWS FOR SPARSE SAMPLE COVARIANCE
MATRICES WITHOUT THE TRUNCATION CONDITION

ABsTrRACT. We consider sparse sample covariance matrices M%XX*,
where X is a sparse matrix of order n xm with the sparse probability
pn. We prove the local Marchenko—Pastur law in some complex do-
main assuming that np, > logB n, 8 > 0 and some (4 + §)-moment
condition is fulfilled, § > 0.

§1. INTRODUCTION

Sample covariance matrices are of great practical importance for prob-
lems of multivariate statistical analysis and such rapidly developing areas
as the theory of wireless communication and deep learning. Another sig-
nificant area of application of sample covariance matrices is graph theory.
The adjacency matrix of an undirected graph is asymmetric, so the study
of its singular values leads to the sample covariance matrix. If we assume
that the probability p, of having graph edges tends to zero as the number
of vertices n increases to infinity, we get to the concept of sparse random
matrices.

Sparse Wigner random matrices have been considered in a number of
papers (see [1-4]) where many results have been obtained. With the sym-
metrization of sample covariance matrices it is possible to apply this re-
sults in the case when the observation matrix is square. However, when the
sample size is greater than observation dimension, the spectral limit dis-
tribution has the singularity in zero, which requires different approaches.

The limit spectral distribution of sparse sample covariance matrices
with sparsity np, ~ n¢, (¢ > 0 is arbitrary small) was studied in [5,6]. In
particular, a local law was proved under the assumption that the matrix
elements satisfy the moments condition E | X ;4|7 < (Cq)“?. In the paper [7]
the case of the sparsity np, ~ log®n, for some o > 1 was considered,
assuming that the moments of the matrix elements satisfy the conditions
E|X;k*° < C < oo, |Xji| < ¢1(npn)2 >, for some 3 > 0. Under this
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assumptions the local Marchenko—Pastur law was proved in some complex
domain z € D with Im z > vg > 0, where v is of order 1og4 n/n and the
domain bound not depend on p,, while np,, > log’B n.

This work is devoted to the case, when the elements X are not trun-
cated, and only the conditions E |X ;| < C < oo, np, ~ log®n, for
some a > 1 are fulfilled. We prove the local Marchenko—Pastur law in
some complex domain u+iv € D, with the real part contained in the sup-
port of the Marchenko—Pastur distribution and separated from the support
ends.

§2. MAIN RESULTS

Let m = m(n), m > n. Counsider independent identically distributed
zero mean random variables X5, 1 < j < n, 1 < k < m, with IEX]?,C =1
and independent of that set independent Bernoulli random variables &;y,
1<7<n,1 <k <m,with E§j; = p,. In addition suppose that np, — oo
as n — oo.

Observe the sequence of sparse sample covariance random matrices

1
X=—(£iX; ; .
e (i Xjk)1<i<n,1<k<m
Denote by s; > -+ > s, the singular values of X and define the sym-

metrized empirical spectral distribution function (ESD) of the sample co-
variance matrix W = XX*:

1

J

where I{ A} stands for the event A indicator.
Note that F,,(z) is the ESD of the block matrix

0, X
v=| %o

where Oy, is k x k matrix with zero elements.

Denote by R = R(z) the resolvent matrix of V:

R=(V-:I)"1

Let y = y(n) = = and Gy(x) — the symmetrized Marchenko-Pastur
distribution function with the density
1
- 2my|a

(H{sj <z} +I{-s; < x}),

n

9y() V(@2 —a?)(b? - 2?) {a® < 2® < b},
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wherea = 1—,/y, b= 1+,/y. We shall assume that y < yo < 1forn,m >
1. Denote by Sy(z) the Stieltjes transform of the distribution function
Gy(x) and s,(z) the Stieltjes transform of the distribution function £, (z).
We have

2+ (2 - )2 4y
2y ’

O TPV RO B DI

= J

Sy(z) =

= Z Ryj.
The last equality follows from Schur complement (see [7, Section 3]). Put
1
Sy(z)

In this paper we prove so called Marchenko—Pastur law for sparse sample
covariance matrices. Let

Ay = A (2) = sp(2) — Sy(2).

For constant § > 0 define the value s = () := 2(4;;5) and consider the
following conditions:

1

b(z) =z — 1—724 +2ySy(z) = — + ySy(2). (2.1)

e the condition (C0): for some ¢y > 0 and all n > 1 we have np,, >
co log% n

e the condition (C'1): for some § > 0 we have s = E | X114 <

005

e the condition (C2): there exists a constant ¢; > 0 such that for all

1<j<n,1<k<mwehave | Xj;| < cl(npn)%_" almost surely.

Introduce the quantity vy = vg(ag) := agn~* log* n with some positive
constant ag, and define the region

D(ag) ={z=u+iv: (1 -y—v)+ <|ju/ <1+ y+0v,V=v=>v}.

Let . )
—2Cologn( +mm{np|b )|’—np})’
Imb(z)
d(Z) - 9
|b(2)]
and
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)

AR S
+ﬂ{|b<z>|<rn}<(a) +rn<m+m>>.

In the paper [7], assuming that the conditions (C0)—(C2) are satisfied, the
next theorem was proved:

Theorem 2.1. Assume that the conditions (C0)—(C2) are satisfied. Then
for any Q > 1 there exist positive constants C = C(Q, 0, ptats,co,c1), K =
K(Q7 55 Ha+s, Co, Cl)) ag = aO(Qa 67 H4a+5, Co, Cl) such that fOT S D(ao)

Pr{ A, > K7;,} <on Q.

Put
1

(nv)3

_l’_
9
Sl

T =1{{b()| > T} (dn<z> T+ i)

This work is devoted to the case, when the elements X are not trun-
cated, and only the conditions (C0)—(C1) are fulfilled. Let

Dy={z=uv+iw: 1—-y+p<|u<l+/y—pV=v>uv},
for some g > 0. Note that |b(z)| are bounded in domain D,,, therefore

1 1
I, =0Co logn(— + —) (2.2)
nv  np
Without assumption (C2) we get the following result.
Theorem 2.2. Assume that the conditions (C0)—(C1) are satisfied. Then
for any p > 0 and Q > 1 there exist constants K = K(Q,0, ptats, 1),
ap = ao(Q, J, ats, 1) depending on Q, 6, patrs and p such that

Pr{|A,| < KT,} >1-n"9,
for all z € D, and T, defined in (2.2).

Organization. The proof of the theorem is based on papers [8] and [7].
In Sect. 3 we follow [7]. In our case the domain D,, is separated from the
ends of the spectrum. This makes it possible to significantly simplify the
estimates obtained there and so to prove Theorem 2.2. In Sect. 4, we show
that the elements R, of the resolvent are bounded. For this, following [8],
we introduce the so-called admissible and inadmissible configurations. As-
suming that the configuration is admissible, we obtain conditional esti-
mates for R;j. Further, taking into account the small probability of inad-
missible configurations, we obtain the estimate for the resolvent elements.
In the Sect. 5 we state and prove some auxiliary results.
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Notation. We use C for large universal constants which maybe differ-
ent from line by line. S,(z) and s,(z) denote the Stieltjes transforms of
the symmetrized Marchenko—Pastur distribution and the spectral distri-
bution function correspondingly. R(z) denotes the resolvent matrix. Let
T={l,....,n},J € Tand TV = {1,...,m}, K ¢ T®. Consider o-
algebras MUK generated by the elements of X with the exception of
the rows with number from J and the columns with number from K. We
will write for brevity SJIE-J’K) instead of MUIVIHE) and zml(ﬂ‘? instead of
MEKAL) | By symbol XUK) we denote the matrix X which rows with
numbers in J are deleted, and which columns with numbers in K are deleted
too. In a similar way, we will denote all objects defined via XK such
that the resolvent matrix R(JVK), the ESD Stieltjes transform SSLK), AQ’K)
and so on. The symbol E; denotes the conditional expectation with re-
spect to the o-algebra 9;, and E;y,, — with respect to o-algebra ;4.
Let J¢ =T\ J, K¢ = TV \ K.

§3. PROOF OF THEOREM 2.2

For the diagonal elements of R we can write

K _ (I.K) p(J,K) 1K) p(J,K)
R =8,(2)(1 =y VR + yATRI R, (3.1)
for j € J¢, and
@K _ 1 JK) pTK) 1K) p(I.K)

RH—n,H—n - _m(l ~El4n Rl-i-n,l-‘rn + yASI )Rl-l-n,l-i—n)’ (32)
for | € K°. Correction terms EEJ’K) for 7 € J° and sl(ﬂ’ilf) for I € K¢ are
defined as

IK IK IK
g; ):g§_1 )++5§3 )7

0 _ 1 X o) 1 S HAu{he)
Ejl - E Z Rl-i—n,l-i—n - E ZRH-n,g—i-n )

=1 =1
1 <& ;

1K J K

55‘2 )= m_p Z(nglgjl _p)Rl(-i-L:lItgj-n )’
=1

S 1 JU{j}.K
ey’ = — S XX R
P <izh<m
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and

J.K) _ _(JK) J,K)
l+n El—i—n 1 +ee EH—n 3

I,K 1 ¢ IK I, KU{l+n
€z(+n)1=gz RUK) ZR( {4n),

g

=1

Ez(iilf)z _ L Z X3¢ — R(J KU{tn})

El(ﬂlf)g = Z leXkl@zﬁklR%’KU{Hn})-
mp1<j¢k<n

Summing the equation (3.1) (J = @, K = @), we get the self-consistent
equation
S"(Z) = SU(Z)(l + T, — yAnSn(Z))a

with the error term
1 n
= g Z EjRjj.
j=1

The proof of Theorem 2.2 is based on the following theorem.

Theorem 3.1. Under the conditions of the Theorem 2.2, for any u > 0,
there exist constants C = C(0, pa+s,¢0), ap = ag(0, ttats,co) such that

1 1
E|T,|7{Q} < C7(— + —) " log? n,
nv - np
for all z € D,,.

Proof. The proof repeats [7, Theorem 3|, taking into account that 0 < & <
Im b(z) for some € > 0 and Im b(2), |b(z)| are bounded in domain D,,. The
arguments of |7, Theorem 3] also require that the condition Pr{B} < Cn~%
be satisfied (see [7, p. 17]). But Lemma 4.1 implies Pr{3; Q} < Cn=©?. O

Proof of Theorem 2.2. First of all, we note that |7, Lemma 8] gives the
bound
[An| < C|Tn|
in domain D,,. We have
Pr{|A,| > KT,,} < Pr{|A,| > KT,; Q} + Pr{Q°}.
[7, Corollary 3| implies
Pr{Q} >1- Cn=@
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Applying Markov inequality and combining the last inequality and Theo-
rem 3.1, we get

E|T,]91{Q} —Q C\a
By choosing a sufficiently large K value and ¢ ~ logn, we obtained the
proof. O

§4. ESTIMATE OF Rjj

We shall use the notations of [7].
Let sp > 1 be some positive constant depending on §, V. For any 0 <
v <V we define k, as

ky = ko(V) :=min{l > 0: shv > V1.
For given v > 0 consider the event
Q4 (v) := {|An(u+iv)| <, for all u}

and the event i
—~ iy l
Q= Q,(v) =[] Q(s0v).
1=0
For the proof of main result it is enough to estimate the entries of the

resolvent matrix. We prove the next Lemma.

Lemma 4.1. Under conditions of Theorem 2.2 there exists a constant H
such that for z € D,

Pr{ max |Rj|> H;Q} < Cn—c¢losnlosn,
1<j,k<sn+m

Following the work of Aggarwal (see [8]), we introduce the configuration
matrix L = (Lj;). Set events

Ajr = {|X| = Clnp)z =},
Define the matrix L with elements
Lijk = §rl{Aji}.
Note that

4+9
E Ly, < B2,
nep

Introduce the configuration matrix Ly:
O L
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Definition. We call j and k linked (with respect to Lv), if Lz = 1.
Otherwise we call them unlinked.

Definition. If there exists a sequence j = ji, j2,...,Jr = k such that j,
is linked to j,41 for each v € [1,7 — 1], then j and k are called connected.

Definition. We call an index j dewviant if there exists some index k such
that j and k are linked. Otherwise we call j typical.

Let
Dy ={j€[l,n+m]:jisdeviant}, T ={j€[l,n+m]:jis typical}.

Definition. We call Ly deviant-inadmissible if there exist at least %,

deviant indices. We call Ly, connected-inadmissible if there exist distinct
indices ji,j2,...,4r, 7 = [logn|, that are pairwise connected. We call
the configuration Lv inadmissible, if it is either deviant-inadmissible or
connected-inadmissible. Otherwise, the configuration is called admissible.

Define A as the set of all admissible configurations of size n + m. Let
C = C1 UC3 be the event that the configuration Ly is inadmissible, C; be
the event that the configuration Ly is deviant-inadmissible, and C; be the
event that the configuration Ly is connected-inadmissible.

Lemma 4.2. Under the conditions of Theorem 2.2 the bound
Pr{C} < Cn—cloglogn
1s valid.
Proof. First, we estimate Pr{C;}. The event C; implies that there are at

n

least % deviant indices, which in turn gives that there is at least m

pairs {j, k} such that j € [1,n], k € [1,m] and Lj; = 1. Hence
= nm c\
e £ (7))
SV

By Stirling’s formula, we have

(7) () < ()
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for \/% < j < n. This yields

0

Pr{C)} < c<\/%_p) "

The estimate Pr{C,} almost repeats the proof of the bound for Pr{As}
in Lemma 3.11 of [8]. The event Co implies that there exists a sequence of
indices & = {i1,12,...,%,} such that at least r — 1 pair (¢;,x) are linked.

We have )
n+m r2 C\"
< —_— .
Pr{C2) < ( r ) (T - 1) (n2p>

Applying Stirling’s formula, we get
PF{CQ} < n—Clog logn' O

Now we fix the admissible configuration Ly . Let R < \/% denotes the
number of the deviant indices. Consider the matrix Vi, = (VL(4, k)) with
entries

0,ifl<jk<norn+1<jk<n+m,
Eirajr, f1<j<n,n+1<k<n+mand Lj, =0,
Einbjr, f1<j<n,n+1<k<n+mand Lj; =1,
VkJ, ifn+1<j<n+m, 1 <k<n

VL(j7 k) =

Here aji (resp. bjx) are independent random variables with the distribu-
tions
Priar € G} = Pr{X; € G| A5}
and
Pr{bjr € G} = Pr{X;; € G| A1}
The permutation of rows and columns gives the matrix

Vll V12
V= .
{ Vi VzJ

The Hermitian matrix V11 of size R X R consists of type b elements and

has the form
B; 0... 0...
0... B
V=] =

0... 0... Bp
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where B, are Hermitian matrices of order r, < r,v = 1,..., L. The matrix
V12 of size R x (m +n — R) consists of type a elements and has the form

Vio= [0 A,

where O is a matrix of size R x m with zero elements, the matrix Ay is
R x (n — R) with elements distributed by type a. The Hermitian matrix
Va2 of size (n +m — R) X (n +m — R) has the form

On A,
Voo = .
22 |: A; ()22
Here the square matrices O1; and Q9o have zero elements and the orders

m and n — R respectively, and the matrix Ag is m x (n — R) with elements
distributed by type a. The resolvent R(z) = (V —2zI)~! can be represented

as
Ri1 R
R= ,
[ R, Rzz]
where

Rii = (Vi1 — 21— Vi3(Vap — 2I) 71V, 1,
Riz = (Vi2(Va2 — 2I) 7' Viy = Vg + 21) 7'V (Vo — 21) 7,
Roo = (Voo — 2I) 71 4 (Vg — 21) 71V,

X (Vi = 21 = Via(Vag = 21)71V,) 71 Vip(Vay — 21) 71

We will be primarily interested in estimating the spectral norm of the
matrix Rj; since it majorizes all elements of the matrix Ry;. Note that

the dimension of the matrix Ri; is equal to R x R, where R < \/%.

Introduce a random matrix
Y = V12(V22 — 21)71V1‘2.
Note that

(@) (@)
R(J) _ (V22 _ ZI)_l _ [ R11 R12‘| )

nT J
Ry Ry
Given the form of the matrices V1o and Voo, we find that

Y = A;R{AL
In these notation
R11 = (Vll — ZI — Y)il.
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In what follows we shall assume that Ly is admissible. We prove that
for the resolvent matrix R all entries are bounded conditioning by admis-
sible Ly .

Lemma 4.3. Let Ly be admissible. Under conditions of Theorem 2.2 there
exists a constant H such that for z € D,

Pr{ max |[Rj|> H;Q} < Cn closlos™,
1<), k<n+m

Note that 7, UDy, = [1,n+m], J C [1,n+m]. We introduce the events
o) = () { o D i) < 1}

and

J .
C2(U7k) N ﬂ {jEDL,r{lgl);n+m|R§l)(u+lv)| S H2}
1I1<k

The following lemma holds.
Lemma 4.4. Under the conditions of the Theorem 2.2, the inequalities

Pr {Cl(v, k—1);Ci(sv, k) NCa(sv, k)N Q} >1—Cnclosloen  (47)
and

Pr {Cg(v, k —1);Ci(sv, k) NCa(sv, k)N Q} >1—Cpnclosloen (4 9)
are valid.

Proof. For simplicity, we assume that £ = 1. We begin by proving the
inequality (4.1). Since both indices are typical, the corresponding matrix
elements in the rows (and columns) with numbers j, k are of type a. Con-
sider the diagonal elements. For j € T1, N [1,n] the equality

Rjj = yS’U(z) (1 + EjRjj + AnRjj)
holds. For w € Q we have

|An] <

N =

Hence,
[R5 I{Q} < 2v/y(1 + el Ry;[)I{ @}
Let
gj=¢&j1tE2téE;s
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with

1 o0) 1 -
€1 = ; 1: RyYntin = - ; 1 Rin,i4n,

m

1 2 ()
€52 :_mp ;Zl(ajﬁjz - p)Rl+n,l+n’
1 m
_ § : (4)
€43 _mp ajlajté.jlgthlin,t—i-n'
It=1

Note that for admissible configurations

|DL| < \/?
p

C

leji] < —

By [7, Lemma 1],

Next, note that
% Zm: IR, o PH{C (50, 1) }I{Ca(s0, 1)}I{Q} < H3s® + Hs®
=1
and
% zm: R, 9{Cx (50, 1) JI{Ca(sv, 1)I{Q} < HEs? + HIst.
=1

We used here the so-called multiplicative inequality: for any s > 1
[Rjj(u+ )| < s|Rjj(u + isv)].
Given the above, get

9,2 qp7d qq,L 174
E |e 2] 1{C, (sv, 1)}I{Co(s0, 1)}1{ @) < L L5 Hz | 57" Hy

(np)= (np)?z
Clq1His®1 (C1q1H]s?
()BT T ()BT
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Similarly,
Elejs|?|R;;["I{C1(sv, 1) H{Ca(sv, 1) I{ Q}
Clg? ¢ C’qq%s%HQ% qu%s%ng
S )T ) Fap) et () (np) et
Cig21s29HY Qg2 29 H
(np)?a+? (np)?a+?

Here we used the fact that

[Rji(u+ iv)| < [Rjk(u+iv)| + (s — 1v[[R(u + wv)R(u + sv)]jx|
< |Rji(u +isv)| + (s — 1)y/Im R;; Im Ry, < sHy
for j, k € T, and
|Rjr(u+iv)| < sHa

in the case j € Dy, or k € Dr,.
If (np)?*|b(z)| = Cq*sH; and (np)* > CqsHi, then H; and Hs can be
chosen so that

E|R;;|T{C1 (sv, 1) I{Ca(sv,1)}[{Q} < HY.

Now consider the case of deviant indices. Let j € Dy, and k be arbitrary.
Consider the matrix

Y = Vi(Vay — 2I)71VE, = A;RD AL

We estimate the matrix Y elementwise. We start with off-diagonal ele-
ments. Consider Y75. The equality

1 7 RO
Yio = — aa R 1
2= El)t 12t (R Jut
holds. Note that {a1;} and {a2:} are independent. We can apply Lemma

5.1 with A = R%). By the assumption C; NCa N Q we get

nap(z r
NGRS

v
and
n % 9 % g
q H3 sz Hpszn
‘Cj S —3 7 T T -
D T AT

j=
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Finally,
q—2 q—2
D1, 19 M o
Z |[R22]U| < |b(2)|q72’0 (7 n(Z)+ nv)'
1,J€T\J
Further, we have
pe? D < pnp) 2
T+s 2
/(np)?

W< puits

for g >4+ 6, and
ne?, b
4. Combining all the estimates, we obtain
1 q? )

q? N
3% (np)? (np)e*

(n

for ¢ <
a2
4, <20 (5
nd \gz  (np)2
quBTq
AQ g q
nz* (np)o
Cq%e
As gnQ(np)2%q+2'
Finally we get, for np > Clogn>
qu% a rs
E Vi HC I Q) < iy (ad () + —— )
(nv)z2 (nv)z
n CqHQ%s%q%q C1 qTqu 2
(nv)2 (np)+Hb(z)[z  (nv)2 (np)?
Cig*1H{s1 N CIH]s1
(np)?at2  [b(z)]9(np)>at3’
Applying Chebyshev’s inequality with ¢ ~ logn, we conclude that
3
an(z) log? n log®n
|Y12|>Clogn( + + )}
Pry Vo o(np)<lb(=)]z - (np)?[b(2)]

Cnfclog logn' (43)

Now consider the diagonal elements
Y = Zallalt[R%]
Lt

Represent Y71 as
Yin= Za%z RS + Zallalt[R%)] =Y +¥Yn
1#£t

l
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Applying the inequality for quadratic forms, we obtain
E V11 |"1{C: (sv, 1) }{Ca(s0, 1) }I{Q}
<l (qq(lE jan[*)? E [RD1I{Ca(sv, 1) }I{Q}

+ g% D (E an|?) ZE Z|R§; z%
G2 ()2 Z' R, )]I{Cl(sv 1)}{Ca(sv, 1)}I{ Q}.

From here it is easy to get

E | Y11 |9T{C; (sv, 1) }I{Ca(sv, 1) I{ Q}
girdal(2) g#" Cig* c1 )

0)E ) 2B PR ()

<ci(

This yields

1 5
~ logZ nlogl z log?
Pr{|Y11|>C( og” nloglogna (z)+ 0og2n
Vv Vnu(np)*+/1b(2)]

log®n

W);Cl(sv, 1) N CQ(S’U, 1) N Q} < Cn~ loglogn'

Now consider 3711. We have
> Y J J
Yin = - Z Rl(l) + Z(a%l - Ea%l)Rl(l)
l l
-y J
:wm%—7+w<H;+ZMZ&WMW

By Rosenthal’s inequality,

E| S (et - Bad) R | T{C (v, 1)} T{Calsv, 1)} {Q}
l

g4 g2 4 sq4
<O T+ + .
((np)f (np)a|b(z)[7 (np)z”q”lb(Z)lq)
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The obtained bounds give

Pr{|7u - (- L +15,(2))| > ¢ (ran(2) +

3 3 2
logz n log? log“n

S E O]

Summing up the estimates for 3711 and l~/11, we conclude that

Pr{ |V~ (s5,()-2) |26 + G nan @} <onen,

)icinean @} < Cnlostesn,

where
G1 = yan(2),
3 3
r log2 n log2 n log®n
Go = (_ s Tt d + 2g%
o (np)z  (np)[b(z)]  (np)**[b(2)|
n log? nloglog naé (2) log% n n log®n )
NZD] Vau(np)=y/b(z)]  (np)?*[b(z)|/”
It is easy to show that if
: 1 1
b(z)| > Clogn%n<— + —),
Ve NERRTE

then

Pr{ [y (45,(2) - 1—7;/)‘ <)l CiNC N Q) < Cnelosn

with an arbitrarily small constant . From this and the inequality (4.3) it
follows that

1—
Pr{HY - (ySy(z) - Ty)IH > 4[b(2)|;C1 N Ca Q} >1- Cnclogn,
Since the matrix Vy; is Hermitian (the eigenvalues are real), and

LY ys,(2) = 2l

Im (2—

z
we find that

PY{H(VM - (2_ % +ySy(2)) _Y)ilH < ﬂ;CH NCa N Q}

C
b(z
> 1— Cnfcloglogn'
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This, in particular, implies that
Pr{|Rjk| < Ho;Cq(sv,1) N Ca(sv, 1) N Q} >1— Cpcloslosn
for 7 € D. The last statement completes the proof of Lemma 4.4. O
Proof of Lemma 4.3. Let k = |J|. Lemma 4.4 and inequality
max R} (V)| < V™!

imply

Pr {Cl (v, k —1); Q} >1— Cpcloslosn

Pr {Cg(v, kE—1); Q} >1— Cp—closlosn

for V/sp < v < V. We may repeat this procedure L(vp,sp) times and
obtain

j ; < —cloglogn
Pr{,_max_|Ry(v) > H;Q} < Cn |
for v > V/sb = wvo. _
Proof of Lemma 4.1. We recall that Lemma 4.2 gives
Pr{LV ¢ A} g Cn—CIOglogn.

It implies Lemma 4.1. 0

§5. APPENDIX

Let &,...,&, and 1y, ..., n, be mutually independent random variables,
A = (aij)} j—; - Define

n
£ =3 layl
i=1
Note that

A7 =" L3,
j=1

Lemma 5.1. For any q > 2 the inequality

E| Y aiiémy|? < CUA AT+ A (YD LD + As( D laigl?)

ij=1 j=1 ij=1
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holds, where

3

Ay = ﬁ(dﬁq +a27),
Ay = g (000 + o2yt (u) S
As =¢° u(q)u( Y
Proof. Let
A=) aigm =D &Y aim).
i,j=1 i=1  j=1
Applying Rosenthal’s inequality, we get

A< ngE (Z Zma” _i_qM(Q)ZE}ZaUnJ )

i=1

=: qufogAl + qu ”E ) As.

Using the triangle inequality, we obtain

(ZZQU%) —|—22E(me Zazlalj)

i=1 j=1 i#j
28 (A1 + Ap).
Further,
A11\2%((22a] %Jq—I—IE(Z Zafj))é).
=1 j=1 Jj=1 =1



LOCAL LAWS FOR SPARSE SAMPLE COVARIANCE MATRICES 83

To estimate Ajo, we use the inequality for quadratic forms from [9]. We
have

Angqu%ag(Z(Zailaljf)%—l—C’qq 1 Ly )0;721 (Z Zailalj)Q)
=1

itj  1=1 =1 i=1

—i—C'q( ( (Z Zazlalj %).

i#£j  1=1

Summing up the above inequalities, we find that

NP

Ay C"U‘I(iiafj)% + O ()i gh (zn: (zn:a?j)Q)%
im1 j=1 =1 =1
+Oq(q%03( (iaualj)z)%
it =1

+Cq ( ( ))QZ(ZazlalJ) )+qu /L(q) Za’?g)%'

For A,, by Rosenthal’s inequality, we have

q
As < an%q2 ZE? + quq,u%q) Z lai;]9. (5.1)
i—1 i=1
Further note that

(X () < (La) ™ aam,
j=1 =1 =
(Z (Zn:aizau)Q)% <1419,

ity =1
n n (g—4)

Z (Z(Zaualj) ) (ZE‘I) 2= 2) (Il Al )2<q 2l

i=1  j#i =1

(Teh)'< (icg)”*_”(nAHQ)ﬁ.
.

K2



84 F. GOTZE, A. N. TIKHOMIROV, D. A. TIMUSHEV

For A we get the estimate
AL CYBy +---+ By),
where
B = ¢2olod]| Al

n

B = o2t (3 £1) ™ ()=,
By =d'ofo (Zﬁqj)“(mnq)"%
By = ¥l ff%(Zﬁ) 7 () ™
Bs = g0 (ZEQ) (g,
—qw“’Z o
Br=q* o 2}63,
£

By = ¢l " a7,

ij=1

Applying Young’s inequality, we obtain the bounds
n
< Cq¥ ()3 Y L1+ o3 A]),
n =
B; < Clqlaia] Z L9+ quqaqogHAHq),
: n
q+02q YAl + ( ))2(;’:42) (Ug = _,_Ugg%i) ZE(JZ')’

ot (o
¥ (o

2(g—2)
A+ o (uD) Zﬁq)
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The last inequalities give

A< oA +A2(i£?) +4s( > )

j=1 i,j=1
where
3
A = QTQ(U?Z +op0),
3q q9—6 2y, 2(g=2)
Ao =% (o + o) ()
Ag = ¢* ' ).
Thus lemma is proved. (I
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