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Abstract. The paper is devoted to the prediction problem for
discrete-time singular stationary processes with spectral density f

and related topics in the case where f vanishes on a set of posi-
tive Lebesgue measure. We first discuss the Fekete theorem and its
extension due to Robinson on the transfinite diameters of related
sets, and prove an extension of Robinson’s theorem. For some spe-
cial sets the transfinite diameters are calculated explicitly by using
Robinson’s theorem. The obtained results are applied to describe

the asymptotic behavior of the prediction error. Then we discuss
the Davisson theorem concerning upper bound for the prediction
error, and prove its extension. As an application, we obtain esti-
mates for the minimal eigenvalue of a Toeplitz matrix associated
with spectral density f .

Dedicated to our teacher Academician Il’dar Abdullovich

Ibragimov on the occasion of his 90th birthday.

§1. Introduction

One of the fundamental result of geometric complex analysis is the
classical theorem by Fekete and Szegő, stating that for any closed bounded
set F in the complex plane C the transfinite diameter, the Chebyshev
constant and the capacity of F coincide, although they are defined from
very different points of view. Namely, the transfinite diameter of the set
F characterizes the asymptotic size of F , the Chebyshev constant of F
characterizes the minimal uniform deviation of a monic polynomial on F ,
and the capacity of F describes the asymptotic behavior of the Green
function at infinity.

Key words and phrases: Prediction error, singular stationary process, transfinite
diameter, Robinson’s theorem, Davisson’s theorem, eigenvalues of truncated Toeplitz
matrices.
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It is worth to note that in only very few cases can the transfinite di-
ameter (and hence, the capacity and the Chebyshev constant) be exactly
calculated.

In 1930, Fekete [9] proved that if F is a bounded closed set in the com-
plex w-plane Cw and F ∗ is the preimage of F in the z-plane Cz under the
mapping w = p(z), where p(z) = zn+ . . . is an arbitrary monic polynomial
of degree n (n ∈ N := {1, 2, . . .}), then the transfinite diameters τ(F ) and

τ(F ∗) of the sets F and F ∗ are related by the formula: τ(F ∗) = n

√

τ(F ).
In 1969, Robinson [17] has extended Fekete’s result to the case where

the mapping is carried out by a rational function w = ϕ(z) instead of a
polynomial, and proved that if F is a bounded closed set of the complex
plane Cw lying on the unit circle T and symmetric with respect to real axis,
and if F x is the projection of F onto the real axis, then τ(F ) =

√

2τ(F x).
The notion of the transfinite diameter plays an important role in the pre-

diction theory of second-order stationary processes. This issue goes back to
the classical paper of Rosenblatt [18], where he proved that if the spectral
density f of a discrete-time stationary process X(t) is positive and contin-
uous on a segment of length 2α and is zero elsewhere, then the best linear
one-step ahead prediction error σn(f) of X(0) based on the finite past of
length n of the process X(t) approaches zero exponentially as n → ∞.
More precisely, using the technique of orthogonal polynomials and Szegő’s
results, Rosenblatt proved in [18] that the following asymptotic relation
holds:

lim
n→∞

n

√

σn(f) = sin(α/2).

Later in Babayan [1, 2] and Babayan et al. [5] Rosenblatt’s result was
extended to the case of several segments, without having to stipulate conti-
nuity of the spectral density f(λ). Using constructive methods, Davisson [7]
obtained an upper bound (rather than an asymptote) for the prediction
error σn(f).

In this paper we prove extensions of the above quoted Robinson’s and
Davisson’s theorems. Then using Robinson’s theorem and some properties
of the transfinite diameter, we explicitly calculate the transfinite diameter
for some special sets. For these special cases, we obtain asymptotic formu-
las and upper bounds for the prediction error σn(f), extending the above
mentioned Rosenblatt’s relation and Davisson’s bound. Finally, as an ap-
plication, we obtain estimates for the minimal eigenvalue of a Toeplitz
matrix generated by the spectral density f .
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§2. Preliminaries

In this section we introduce some metric characteristics of bounded
closed sets in the plane, such as, the transfinite diameter, the Chebyshev
constant and the capacity, and briefly discuss some properties of these
characteristics. For the definitions and results stated below we refer the
reader to the following references: Fekete [9], Goluzin [12], Chapter 7, and
Tsuji [22], Chapter III (see also Babayan et al. [5]).

Transfinite diameter. Let F be an infinite bounded closed (compact) set
in the complex plane C. Given any natural number n > 2, choose n points
z1, . . . , zn ∈ F so as to maximize the product of the distances between
them. Then the geometric mean of these distances, denoted by dn(F ), is
called the nth transfinite diameter of the set F . Note that d2(F ) is the
diameter of F . Fekete [8] (see also Goluzin [12, p. 294]) proved that the
sequence dn(F ) is non-increasing and does not exceed the diameter d2(F )
of F , implying that dn(F ) has a finite limit as n → ∞. This limit, denoted
by d∞(F ), is called the transfinite diameter of the set F . Thus,

d∞(F ) := lim
n→∞

dn(F ). (2.1)

If F is empty or consists of a finite number of points, then we put
d∞(F ) = 0.

Chebyshev constant. Let F be as before, we put mn(F ) := inf max
z∈F

|qn(z)|,

where the infimum is taken over all monic polynomials qn(z) from the
class:

Qn :=
{

qn : qn(z) = zn + c1z
n−1 + · · ·+ cn

}

. (2.2)

Then there exists a unique monic polynomial Tn(z) := Tn(z, F ) form the
class Qn, called the Chebyshev polynomial of F of order n, such that
mn(F ) = max

z∈F
|Tn(z, F )|. Fekete [9] proved that lim

n→∞
(mn(F ))1/n exists.

This limit, denoted by τ(F ), is called the Chebyshev constant for the set F .
Thus,

τ(F ) := lim
n→∞

(mn(F ))1/n. (2.3)

Along with the polynomial Tn(z) we also consider the Chebyshev auxiliary
polynomial tn(z) := tn(z, F ), which deviates least from zero on the set F
in the uniform metric, among all the monic polynomials, having roots
only on F . We set µn(F ) = max

z∈F
|tn(z, F )|. Then, as it is known (see
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Goluzin [12, Section 7.1, p. 295]), we have

lim
n→∞

(µn(F ))1/n = τ(F ). (2.4)

Capacity. Let F be as above, and let DF denote the complementary domain
to F , containing the point z = ∞. If the boundary Γ := ∂DF of the domain
DF consists of a finite number of rectifiable Jordan curves, then for the
domain DF can be constructed a Green function GF (z,∞) := GDF

(z,∞)
with a pole at infinity. This function is harmonic everywhere in DF , except
at the point z = ∞, is continuous including the boundary Γ and vanishes
on Γ. It is known that in a vicinity of the point z = ∞ the function
GF (z,∞) admits the representation (see, e.g., Goluzin [12, pp. 309–310]):

GF (z,∞) = ln |z|+ γ + O(z−1) as z → ∞. (2.5)

The number γ in (2.5) is called the Robin’s constant of the domain DF ,
and the number

C(F ) := e−γ (2.6)

is called the capacity (or the logarithmic capacity) of the set F .

Now we are in position to state the above mentioned fundamental result
of geometric complex analysis, due to M. Fekete and G. Szegő (see, e.g.,
Goluzin [12, p. 197], or Tsuji [22, p. 73]).

Proposition 1 (Fekete - Szegő’s theorem). For any compact set F ⊂ C,

the transfinite diameter d∞(F ) defined by (2.1), the Chebyshev constant

τ(F ) defined by (2.3), and the capacity C(F ) defined by (2.6) coincide,

that is,

d∞(F ) = C(F ) = τ(F ). (2.7)

It what follows, we will use the term “transfinite diameter” and the
notation τ(F ) for (2.7).

In the next proposition we list some properties of the transfinite diam-
eter (and hence, of the capacity and the Chebyshev constant), which will
be used later (see, e.g., Tsuji [22, pp. 56, 84] and Babayan et al. [5]).

Proposition 2. The transfinite diameter possesses the following proper-

ties.

(a) The transfinite diameter is monotone, that is, for any closed sets

F1 and F2 with F1 ⊂ F2, we have τ(F1) 6 τ(F2).
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(b) If a set F1 is obtained from a compact set F ⊂ C by a linear

transformation, that is, F1 := aF + b = {az + b : z ∈ F}, then

τ(F1) = |a|τ(F ). In particular, the transfinite diameter τ(F ) is

invariant with respect to parallel translation and rotation of F .

(c) The transfinite diameter of an arbitrary circle of radius R is equal

to its radius R. In particular, the transfinite diameter of the unit

circle T is equal to 1.

(d) The transfinite diameter of an arc Γα of a circle of radius R with

central angle α is equal to R sin(α/4). In particular, for the unit

circle T, we have τ(Γα) = sin(α/4).
(e) The transfinite diameter of an arbitrary line segment F is equal to

one-fourth its length, that is, if F := [a, b], then τ(F ) = τ([a, b]) =
(b − a)/4.

§3. Transfinite diameters of related sets

In this section we state the theorems of Fekete and Robinson on the
transfinite diameters of related sets, calculate transfinite diameters of some
special sets, and prove an extension of Robinson’s theorem.

3.1. Fekete’s and Robinson’s theorems. The following classical the-
orem about the relationship between transfinite diameters of a compact
set and its preimage under a mapping given by a polynomial was proved
by Fekete [9] (see also Goluzin [12, pp. 299–300]).

Theorem A (Fekete [9]). Let F be a bounded closed set in the complex
w-plane Cw, and let p(z) := pn(z) = zn + c1z

n−1 · · ·+ cn be an arbitrary
monic polynomial of degree n. Let F ∗ be the preimage of F in the z-plane
Cz under the mapping w = p(z), that is, F ∗ is the set of all points z ∈ Cz

such that w := p(z) ∈ F . Then

τ(F ∗) = [τ(F )]1/n, (3.1)

where τ(F ) and τ(F ∗) stand for the transfinite diameters of the sets F
and F ∗, respectively.

In 1969, Robinson [17], developing the idea of Fekete’s proof of Theorem
A, extends Theorem A to the case where the mapping is carried out by a
rational function instead of a polynomial. More precisely, in Robinson [17]
the following theorem was proved.
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Theorem B (Robinson [17]). Let p(z) := pn(z) = zn + a1z
n−1 · · · + an

and q(z) := qk(z) be arbitrary relatively prime polynomials of degrees n
and k, respectively, with k < n. Let F be a bounded closed set in the
complex w-plane Cw, and let F ∗ be the preimage of F in the z-plane Cz

under the mapping w = ϕ(z) := p(z)/q(z). Assume that |q(z)| = 1 for all
z ∈ F ∗. Then

τ(F ∗) = [τ(F )]1/n. (3.2)

Remark 1. It is clear that the condition |q(z)| = 1 for all z ∈ F ∗ in The-
orem B can be replaced by the condition |q(z)| = C for all z ∈ F ∗ with an
arbitrary positive constant C, and, in this case, in view of Proposition 2(b),
the relation (3.2) becomes

τ(F ∗) = [Cτ(F )]1/n. (3.3)

Observe that in the special case where q(z) ≡ 1, Theorem B reduces to
the Fekete theorem (Theorem A). A special interest represents the other
special case where p(z) = z2 + 1 and q(z) = 2z. In this case, the mapping
given by the rational function

ϕ(z) :=
p(z)

q(z)
=

1

2

(

z +
1

z

)

projects the subsets of the unit circle T := {z ∈ C : |z| = 1} onto the real
axis R, and, in view of Remark 1, Theorem B reads as follows.

Theorem C (Robinson [17]). Let F be a bounded closed subset of the
complex plane C lying on the unit circle T and symmetric with respect to
real axis, and let F x be the projection of F onto the real axis. Then

τ(F ) = [2τ(F x)]1/2. (3.4)

3.2. Calculation of transfinite diameters of some sets. Examples.

In this section we give examples of calculation of transfinite diameters
of some specific subsets of the unit circle, using formula (3.4) and the
properties of the transfinite diameter listed in Proposition 2.

We will use the following notation: given 0 < β < 2π and z0 = eiθ0 ,
θ0 ∈ (−π, π], we denote by Γβ(θ0) an arc of the unit circle of length β
which is symmetric with respect to the point z0 = eiθ0 , that is,

Γβ(θ0) := {eiθ : |θ − θ0| 6 β/2} = {eiθ : θ ∈ [θ0 − β/2, θ0 + β/2]}. (3.5)
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Example 1. Let Γ2α := Γ2α(0). Then the projection Γx
2α of Γ2α onto the

real axis is the segment [cosα, 1] (see Fig. 1a)), and by Proposition 2(e)
for the transfinite diameter τ(Γx

2α) we have

τ(Γx
2α) =

1− cosα

4
=

sin2(α/2)

2
.

Hence, according to formula (3.4), we obtain

τ(Γ2α) = [2τ(Γx
2α)]

1/2 =

[

2
sin2(α/2)

2

]1/2

= sin(α/2). (3.6)

Taking into account that the transfinite diameter is invariant with respect
to rotation (see Proposition 2(b)), from (3.6) for any θ0 ∈ (−π, π] we have

τ(Γ2α(θ0)) = sin(α/2). (3.7)

Figure 1. a) The sets Γ2α and Γx
2α. b) The set Γ(k, α)

with k = 2.

Remark 2. Notice that the expression sin(α/2) in (3.6) was first obtained
by Szegő [21], where he calculated it as the Chebyshev constant of the
arc Γ2α(π/2), then it was deduced by Rosenblatt [18], as the capacity of
Γ2α(π/2).

Example 2. Let Γ2α(α) be an arc of length 2α, defined by (3.5): Γ2α(α) =
{eiθ : θ ∈ [0, 2α]}, and let Γ(2, α) be the preimage of the arc Γ2α(α) under
the mapping p(z) = z2. It can be shown that the set Γ(2, α) is the union
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of two closed arcs of equal lengths α, symmetrically located with respect
to the center of the unit circle (see Fig. 1b):

Γ(2, α) = {eiω : ω ∈ [−π,−π + α] ∪ [0, α]}. (3.8)

Then, by the Fekete theorem (Theorem A) and formula (3.7), for the trans-
finite diameter τ(Γ(2, α)) we have

τ(Γ(2, α)) = [τ(Γ2α(α))]
1/2 = (sin(α/2))

1/2
. (3.9)

The above result can easily be extended to the case of k (k > 2) arcs. Let
Γ(k, α) be the union of k (k ∈ N, k > 2) closed arcs of equal lengths α,
which are symmetrically located on the unit circle (the arcs are assumed
to be equidistant). It can be shown that the set Γ(k, α) is the preimage
(to within rotation) under the mapping p(z) = zk of the arc Γkα(kα/2) of
length kα defined by (3.5). Therefore, by (3.1) and the invariance property
of the transfinite diameter with respect to rotation (see Proposition 2(b)),
for the transfinite diameter τ(Γ(k, α)), we have

τ(Γ(k, α)) = (sin(kα/4))1/k . (3.10)

Example 3. Let α > 0, δ > 0 and α+ δ 6 π. Consider the set

Γα,δ(θ0) := Γα+δ(θ0) \ Γδ(θ0) (3.11)

consisting of the union of two arcs of the unit circle of lengths α, the
distance of which (over the circle) is equal to 2δ. Define (see Fig. 2a)):

Γα,δ := Γα,δ(0) = {eiθ : θ ∈ [−(δ + α),−δ] ∪ [δ, δ + α]}. (3.12)

Then the projection Γx
α,δ of Γα,δ onto the real axis is the segment Γx

α,δ =

[cos(α + δ), cos δ], and by Proposition 2(e) for the transfinite diameter
τ(Γx

α,δ) we have

τ(Γx
α,δ) =

cos δ − cos(α+ δ)

4
=

sin(α/2) sin(α/2 + δ)

2
.

Hence, according to formula (3.4), for the transfinite diameter τ(Γα,δ), we
obtain

τ(Γα,δ) = [2τ(Γx
α,δ)]

1/2 = (sin(α/2) sin(α/2 + δ))
1/2

. (3.13)

In view of Proposition 2(b), from (3.13) for any θ0 ∈ (−π, π] we have

τ(Γα,δ(θ0)) = (sin(α/2) sin(α/2 + δ))
1/2

. (3.14)
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Figure 2. a) The set Γα,δ. b) The set ∆α,δ.

Observe that for δ = 0 we have Γα,δ(θ0) = Γ2α(θ0) (see (3.5) and (3.11)),
and formula (3.14) becomes (3.7).

Example 4. Let the arc Γα,δ be as in Example 3 (see (3.12)) with α, δ
satisfying α + δ 6 π/2, that is, Γα,δ is a subset of the right semicircle T.
Denote by Γ′

α,δ the symmetric to Γα,δ set with respect to y-axis, that is,

Γ′
α,δ := {eiθ : θ ∈ [−π + δ,−π + (δ + α)] ∪ [π − (δ + α), π − δ]}.

Define ∆α,δ := Γα,δ ∪ Γ′
α,δ, and observe that the set ∆α,δ consists of four

arcs of equal lengths α, which are symmetrically located with respect to
both axes (see Fig. 2b)). The set ∆α,δ is the preimage (to within rota-
tion) of the set Γ2α,2δ under the mapping p(z) = z2. Hence, according to
formulas (3.1) and (3.13), for the transfinite diameter τ(∆α,δ), we obtain

τ(∆α,δ) = (τ(Γ2α,2δ))
1/2 = (sinα sin(α+ 2δ))1/4 . (3.15)

Denote by ∆α,δ(θ0) the image of the set ∆α,δ under mapping q(z) = eiθ0z,
that is, under the rotation by the angle θ0 around the origin. Then, in view
of Proposition 2(b), from (3.15) for any θ0 ∈ (−π, π] we have

τ(∆α,δ(θ0)) = (sinα sin(α+ 2δ))1/4 . (3.16)

3.3. An extension of Robinson’s theorem. Returning to the Robin-
son theorem (Theorem B), observe that the condition |q(z)| = C for all
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z ∈ F ∗ (see Remark 1) is too restrictive, and it essentially reduces the
range of applicability of the theorem into the following two cases:

(a) q(z) ≡ 1, and Theorem B reduces to the Fekete theorem (Theo-
rem A);

(b) p(z) = z2 +1 and q(z) = 2z, and, in this case, the rational function
ϕ(z) = (z2 +1)/(2z) projects the subsets of the unit circle T onto the real
axis R.

Therefore, the question of extending Robinson’s theorem to the case
where the condition |q(z)| = C is replaced by a weaker condition becomes
topical. The next theorem provides such an extension.

Theorem 1. Let the polynomials p(z), q(z), the sets F , F ∗, and the

mapping w = ϕ(z) := p(z)/q(z) be as in Theorem B, and let m :=
minz∈F∗ |q(z)| and M := max

z∈F∗

|q(z)|. Then the following inequalities hold:

[mτ(F )]1/n 6 τ(F ∗) 6 [Mτ(F )]1/n. (3.17)

Proof. Observe first that the polynomials p(z) and q(z) have no common
zeros because by assumption the fraction ϕ(z) = p(z)/q(z) is noncan-
cellable. Also, the polynomial q(z) has no roots on the set F ∗, because
otherwise the function ϕ(z) would have a pole on the set F ∗, making the
set F unbounded. Therefore, ϕ(z) is continuous on F ∗ and F ∗ is a closed
set. Next, since ϕ(z) ∼ zn−k as z → ∞ and n > k from the boundedness of
F follows boundedness of F ∗. Thus, F ∗ also is a bounded closed set, and
hence minz∈F∗ |q(z)| = m and max

z∈F∗

|q(z)| = M are attained, and m > 0.

We first prove the second inequality in (3.17). To this end, for an ar-
bitrary ν ∈ N by Tν(w) = wν + c1w

ν−1 + . . . and T ∗
ν (z) = zν + . . . we

denote the Chebyshev polynomials for sets F and F ∗, respectively, and set
mν := mν(F ) = max

w∈F
|Tν(w)| and m∗

ν := mν(F
∗) = max

z∈F∗

|T ∗
ν (z)|. Accord-

ing to the definition of the preimage ϕ−1(F ) = F ∗, we have the equivalence
relation: z ∈ F ∗ ⇔ w = ϕ(z) ∈ F . Therefore for the polynomial snν(z) of
degree nν:

snν(z) := qν(z)Tν(ϕ(z)) = pν(z) + c1p
ν−1(z)q(z) + . . . (3.18)

we have

max
z∈F∗

|snν(z)| = max
z∈F∗

|qν(z)Tν(ϕ(z))| 6 Mν max
z∈F∗

|Tν(ϕ(z))|

= Mν max
w∈F

|Tν(w)| = Mνmν .
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From (3.18) and the condition n > k, we conclude that the leading term
of the polynomial snν(z) is equal to 1, that is, snν(z) ∈ Qn. Therefore

m∗
nν = max

z∈F∗

|T ∗
nν(z)| 6 max

z∈F∗

|snν(z))| 6 Mνmν ,

implying that

(m∗
nν)

1/(nν)
6

(

M (mν)
1/ν

)1/n

. (3.19)

Passing to the limit in (3.19) as ν → ∞ and using (2.3), we obtain the
second inequality in (3.17).

To prove the first inequality in (3.17), we choose an arbitrary point w ∈
F and consider the parametric monic polynomial pw(z) := p(z) − wq(z),
the roots of which we denote by zi = zi(w) (i = 1, . . . , n):

pw(z) = p(z)− wq(z) = (ϕ(z)− w)q(z) =

n
∏

i=1

(z − zi). (3.20)

Observe that q(zi) 6= 0 (i = 1, . . . , n) because otherwise by (3.20) we would
have p(zi) = 0 for some i = 1, . . . , n, which contradicts the assumptions
that p(z) and q(z) are relatively prime polynomials. Therefore setting z =
zi in (3.20) we get

ϕ(zi) =
p(zi)

q(zi)
= w ∈ F, i = 1, . . . , n,

implying that all the roots zi belong to the set F ∗.
Let t∗ν(z) := t∗ν(z, F

∗) be the Chebyshev auxiliary polynomial for the
set F ∗ and let µ∗

ν := µν(F
∗) = max

z∈F∗

|t∗ν(z)|. Denote by z∗j (j = 1, . . . , ν)

the roots of the polynomial t∗ν(z):

t∗ν(z) =

ν
∏

j=1

(z − z∗j ). (3.21)

Setting z = zi (i = 1, . . . , n) in (3.21) and multiplying all the obtained
equalities, we get

n
∏

i=1

t∗ν(zi) =
n
∏

i=1

ν
∏

j=1

(zi − z∗j ) =
ν
∏

j=1

n
∏

i=1

(zi − z∗j ). (3.22)
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Similarly, setting z = z∗j (j = 1, . . . , ν) in (3.20) and multiplying all the
obtained equalities, we get

ν
∏

j=1

pw(z
∗
j ) =

ν
∏

j=1

(p(z∗j )− wq(z∗j )) =

ν
∏

j=1

n
∏

i=1

(z∗j − zi)

or, equivalently,

ν
∏

j=1

(

ϕ(z∗j )− w
)

=
ν
∏

j=1

1

q(z∗j )

n
∏

i=1

(z∗j − zi) (3.23)

Hence, taking into account that zi, z
∗
j ∈ F ∗, from (3.22) and (3.23), for

all w ∈ F , we obtain
∣

∣

∣

∣

∣

∣

ν
∏

j=1

(

w − ϕ(z∗j )
)

∣

∣

∣

∣

∣

∣

6
1

mν

ν
∏

j=1

n
∏

i=1

|zi−z∗j | =
1

mν

n
∏

i=1

|t∗ν(zi)| 6
(µ∗

ν)
n

mν
. (3.24)

Now observe that the product under the modulus on the left-hand side of
(3.24) is a polynomial rν(w) of degree ν of the variable w with leading term
equal to 1. Therefore, in view of the definition of the polynomial Tν(w),
we have

mν = mν(F ) = max
w∈F

|Tν(w)| 6 max
w∈F

|rν(w))| 6
(µ∗

ν)
n

mν
,

implying that
(

m (mν)
1/ν

)1/n

6 (µ∗
ν)

1/ν
. (3.25)

Passing to the limit in (3.25) as ν → ∞ and using (2.3) and (2.4), we obtain
the first inequality in (3.17). This completes the proof of Theorem 1. �

Remark 3. If the condition |q(z)| = C is satisfied for all z ∈ F ∗, then we
have m = M = C, and Theorem 1 reduces to Robinson’s Theorem B (see
Remark 1).

Remark 4. Theorem 1 can easily be extended to more general case where
p(z) := pn(z) is an arbitrary (not necessarily monic) polynomial of degree
n: p(z) = azn + a1z

n−1 · · ·+ an, a 6= 0. Indeed, in this case, canceling the
fraction ϕ(z) := p(z)/q(z) by a, we get ϕ(z) := p1(z)/q1(z), where now
p1(z) = p(z)/a = zn + lower order terms, is a monic polynomial. Also, we
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have minz∈F∗ |q1(z)| = m/|a| and max
z∈F∗

|q1(z)| = M/|a|, where m and M

are as in Theorem 1. Hence we can apply the inequality (3.17) to obtain

[

m

|a|
τ(F )

]1/n

6 τ(F ∗) 6

[

M

|a|
τ(F )

]1/n

. (3.26)

§4. Asymptotic behavior and estimation of the

prediction error for singular stationary processes

4.1. The prediction problem. Let X(t), t ∈ Z := {0,±1, . . .}, be a
second-order stationary stochastic sequence possessing a spectral density
function f(λ), λ ∈ Λ := [−π, π]. The "finite" linear prediction problem

is as follows. Suppose we observe a finite realization of the process X(t):
{X(t), −n 6 t 6 −1}, n ∈ N. We want to predict the random vari-
able X(0), which is the unobserved one-step ahead value of the process

X(t), using the linear predictor Y =
n
∑

k=1

ckX(−k). The coefficients ck,

k = 1, 2, . . . , n, are chosen so as to minimize the mean-squared error:

IE |X(0)−Y|
2
, where IE[·] stands for the expectation operator. If such

minimizing constants pck := pck,n can be found, then the random vari-

able pXn(0) :=
n
∑

k=1

pckX(−k) is called the best linear one-step ahead pre-

dictor of the random variable X(0) based on the observed finite past:
X(−n), . . . , X(−1). The minimum mean-squared error:

σ2
n(f) := IE

∣

∣

∣
X(0)− pXn(0)

∣

∣

∣

2

> 0

is called the best linear one-step ahead prediction error of X(0) based on
the finite past of length n of the process X(t).

One of the main problem in prediction theory of second-order stationary
processes is to describe the asymptotic behavior of the prediction error
σ2
n(f) as n → ∞. This behavior depends on the regularity (deterministic

or nondeterministic) of the observed process X(t).
Observe that σ2

n+1(f) 6 σ2
n(f), n ∈ N, and hence the limit of σ2

n(f)

as n → ∞ exists. Denote by σ2(f) := σ2
∞(f) the prediction error by the

entire infinite past: {X(t), t 6 −1}.
From the prediction point of view it is natural to distinguish the class

of processes for which we have error-free prediction by the entire infinite
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past, that is, σ2(f) = 0. Such processes are called singular or deterministic.
Processes for which σ2(f) > 0 are called nondeterministic.

The well-known Kolmogorov–Szegő theorem gives a spectral characteri-
zation of deterministic and nondeterministic processes, and states that the
following limiting relation hold (see, e.g., Grenander and Szegő [13, p. 44]):

lim
n→∞

σ2
n(f) = σ2(f) = 2πG(f), (4.1)

where G(f) is the geometric mean of f(λ), namely

G(f) =











exp

{

1
2π

π
∫

−π

ln f(λ) dλ

}

if ln f ∈ L1(Λ)

0, otherwise.

(4.2)

The condition ln f ∈ L1(Λ) in (4.2) is equivalent to the Szegő condition:

π
∫

−π

ln f(λ) dλ > −∞ (4.3)

(this equivalence follows because ln f(λ) 6 f(λ) and f(λ) ∈ L1(Λ)). The
Szegő condition (4.3) is also called the non-determinism condition.

Observe that the Szegő condition is related to the character of the sin-
gularities (zeroes and poles) of the spectral density f , and does not depend
on the differential properties of f (see, e.g., Babayan et al. [5]).

Define the relative prediction error δn(f) := σ2
n(f)−σ2(f), and observe

that δn(f) is nonnegative and tends to zero as n → ∞. But what about
the speed of convergence of δn(f) to zero as n → ∞? The prediction
problem we are interested in is to describe the rate of decrease of δn(f)
to zero as n → ∞, depending on the regularity nature (deterministic or
nondeterministic) of the observed process X(t).

The prediction problem stated above goes back to classical works of A.
Kolmogorov, G. Szegő and N. Wiener. It was then considered by many
authors for different classes of nondeterministic processes (see, e.g., the
survey papers Bingham [6] and Ginovyan [11], and references therein).

We focus in this paper on singular processes, that is, when σ2(f) = 0,
and hence δn(f) = σ2

n(f). This case is not only of theoretical interest,
but is also important from the point of view of applications. For example,
as pointed out by Rosenblatt [18] (see also Pierson [15]), situations of this
type arise in Neumann’s theoretical model of storm-generated ocean waves.
Such models are also of interest in meteorology (see, e.g., Fortus [10]).
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Only few works are devoted to the study of the speed of convergence of
σ2
n(f) to zero as n → ∞, that is, the asymptotic behavior of the prediction

error for deterministic processes. One needs to go back to the classical work
of M. Rosenblatt [18]. Using the technique of orthogonal polynomials on
the unit circle and Szegő’s results, M. Rosenblatt investigated the asymp-
totic behavior of the prediction error σ2

n(f) for discrete-time deterministic
processes in the following two cases:

(a) the spectral density f(λ) is continuous and positive on a segment of
[−π, π] and is zero elsewhere,

(b) the spectral density f(λ) has a very high order of contact with zero
at points λ = 0,±π, and is strictly positive otherwise.

Later the problems (a) and (b) were studied by Babayan [1,2], Babayan
and Ginovyan [3, 4], Babayan et al. [5], (see also Davisson [7] and For-
tus [10]), where some generalizations and extensions of Rosenblatt’s results
have been obtained.

In this paper we discuss the case (a).

4.2. Asymptotic behavior of the prediction error. Taking into ac-
count that the formula z = eiλ establishes a bijection between the interval
(−π, π] and the unit circle T, the spectral density f can also be considered
as a function defined on T.

For the case (a) above, that is, when the spectral density f(λ) is con-
tinuous and positive on a segment of [−π, π] and is zero elsewhere, M.
Rosenblatt proved in [18] that the prediction error σ2

n(f) decreases to zero
exponentially as n → ∞. More precisely, M. Rosenblatt proved the follow-
ing theorem.

Theorem D (Rosenblatt [18]). Let the spectral density f(λ) of a discrete-
time stationary process X(t) be positive and continuous on the segment
[π/2 − α, π/2 + α], 0 < α < π, and zero elsewhere. Then the prediction
error σ2

n(f) approaches zero exponentially as n → ∞. More precisely, the
following asymptotic relation holds:

σ2
n(f) ≃ (sin(α/2))

2n+1
as n → ∞. (4.4)

Notice that the relation (4.4) implies that

lim
n→∞

n

√

σn(f) = sin(α/2). (4.5)

In what follows, by Ef we denote the spectrum of the process X(t),
that is, Ef := {eiλ : f(λ) > 0}. Thus, the closure sEf of Ef is the support
of the spectral density f .
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The next result, which was proved in Babayan et al. [5] (see also Babayan
[1,2]) extends Rosenblatt’s theorem (Theorem D). More precisely, the theo-
rem that follows extends the asymptotic relation (4.5) to the case of several
arcs, without having to stipulate continuity of the spectral density f .

Theorem E (Babayan et al. [5]). Let the support sEf of the spectral
density f of the process X(t) consist of a finite number of closed arcs of

the unit circle T, and let f > 0 a.e. on sEf . Then the sequence n

√

σn(f)
converges, and

lim
n→∞

n

√

σn(f) = τf , (4.6)

where τf := τ( sEf ) is the transfinite diameter of sEf .

Remark 5. Theorem E shows that the question of exponential decay of
the prediction error σn(f) as n → ∞ in fact does not depend on the form
of the spectral density f(λ) and is determined solely by the value of the
transfinite diameter of the support sEf of the spectral density f .

Remark 6. In Theorem D we have sEf := {eiλ : λ ∈ [π/2− α, π/2 + α]},
which represents a closed arc of length 2α, and, according to Proposition
2(d), we have τ( sEf ) = sin(α/2). Thus, the asymptotic relation (4.5) is a
special case of (4.6).

Now we apply Theorem E to obtain the asymptotic behavior of the pre-
diction error σn(f) in the cases where the spectrum of a stationary process
X(t) is as in Examples 1–4. Specifically, putting together Theorem E and
Examples 1–4, we obtain the following result.

Theorem 2. Let sEf be the support of the spectral density f of a stationary

process X(t), and let f > 0 a.e. on sEf . Then for the prediction error σn(f)
the following assertions hold.

(a) If sEf = Γ2α(θ0), where Γ2α(θ0) is as in Example 1, then

lim
n→∞

n

√

σn(f) = sin(α/2).

(b) If sEf = Γ(k, α), where Γ(k, α) is as in Example 2, then

lim
n→∞

n

√

σn(f) = (sin(kα/4))
1/k

.

(c) If sEf = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 3, then

lim
n→∞

n

√

σn(f) = (sin(α/2) sin(α/2 + δ))
1/2

.

(d) If sEf = ∆α,δ(θ0), where ∆α,δ(θ0), is as in Example 4, then

lim
n→∞

n

√

σn(f) = (sinα sin(α+ 2δ))
1/4

.
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Remark 7. The assertion (a) is a slight extension of Rosenblatt’s relation
(4.5). The assertion (c) is an extension of assertion (a), which reduces to
assertion (a) if δ = 0.

4.3. Davisson’s theorem and its extension. Using constructive meth-
ods, Davisson [7] obtained an upper bound (rather than an asymptote) for
the prediction error σ2

n(f) without imposing continuity requirement on the
spectral density f(λ). Specifically, in Davisson [7] the following result was
proved:

Theorem F (Davisson [7]). Let the spectral density f(λ), λ ∈ [−π, π] of
the process X(t) be identically zero on a closed interval of length 2π− 2α,
0 < α < π. Then for the prediction error σ2

n(f) the following inequality
holds:

σ2
n(f) 6 4c (sin(α/2))

2n−2
, where c =

π
∫

−π

f(λ) dλ. (4.7)

Here we extend Davisson’s theorem to the case where the spectrum of
the process X(t) consists of a union of two equal arcs.

Let α > 0, δ > 0 and α+δ 6 π, and let Γα,δ be the set defined by (3.12).
Recall that Γα,δ is the union of two arcs of the unit circle of lengths α, the
distance between which (over the circle) is equal to 2δ (see Example 3 and
Figure 2a)).

Theorem 3. Let the spectral density f(λ), λ ∈ [−π, π] of the process X(t)
be nonnegative on the set Γα,δ (α > 0, δ > 0, α + δ 6 π) and vanishes

outside Γα,δ. Then for the prediction error σ2
n(f) the following inequality

holds:

σ2
n(f) 6 4c (sin(α/2))

n−1
(sin(α/2 + δ))

n−1
, (4.8)

where c is as in Theorem F.

Proof. According to the definition of the prediction error σ2
n(f) (see, e.g.,

Babayan et al. [5, formulas (3.1), (3.2), (3.11)]), we have

σ2
n(f) = min

{qn∈Qn}

π
∫

−π

|qn(e
iλ)|2f(λ) dλ =

π
∫

−π

|pn(e
iλ)|2f(λ) dλ, (4.9)
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where pn(z) := pn(z, f) is the optimal polynomial for spectral density f(λ)
in the class Qn given by (2.2). Thus, for any polynomial qn ∈ Qn we have

σ2
n(f) 6

π
∫

−π

|qn(e
iλ)|2f(λ) dλ =

∫

δ6|λ|6δ+α

|qn(e
iλ)|2f(λ) dλ

6 max
δ6|λ|6δ+α

|qn(e
iλ)|2

π
∫

−π

|f(λ) dλ = c max
δ6|λ|6δ+α

|qn(e
iλ)|2.

(4.10)

To obtain the upper bound for σ2
n(f), we construct a special sequence of

polynomials qn(z), n ∈ N as follows. If n is even n = 2m, m ∈ N, then we
choose m values λk with δ 6 λk 6 δ + α, k = 1, 2, . . . ,m, and the corre-
sponding points zk = eiλk on the unit circle, and difine the polynomials
qn ∈ Qn with zeros zk and z̄k:

qn(z) = q2m(z) :=

m
∏

k=1

(z − zk)(z − z̄k), z = eiλ. (4.11)

If n is odd n = 2m+ 1, m ∈ N, then we set

qn(z) = q2m+1(z) := zq2m(z) =

m
∏

k=1

z(z − zk)(z − z̄k), z = eiλ. (4.12)

Thus, for z = eiλ we have

|q2m+1(z)| = |q2m(z)|. (4.13)

The next step is to choose the zeros zk in (4.11) and (4.12) so as to minimize
the factor max

δ6|λ|6δ+α
|qn(e

iλ)|2 in (4.10) among all polynomials qn ∈ Qn.

To do this, observe first that in view of equality |z| = |zk| = 1 (k =
1, 2, . . . ,m), we can write

|(z − zk)(z − z̄k)|
2 = |(eiλ − eiλk)(eiλ − e−iλk)|2

= |(e2iλ − eiλ(eiλk + e−iλk) + 1|2

= |e2iλ + 1− 2eiλ cosλk)|
2 = |eiλ(eiλ + e−iλ − 2 cosλk)|

2

= |2 cosλ− 2 cosλk|
2 = 4(cosλ− cosλk)

2.

(4.14)

In view of relations (4.11)–(4.14), the inequality (4.10) becomes

σ2
n(f) 6 4mc · max

δ6|λ|6δ+α

m
∏

k=1

(cosλ− cosλk)
2. (4.15)
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Denote a := cos(δ + α), b := cos δ (a < b), and consider the mapping
y = y(x) given by formula

y =
b − a

2
x+

b+ a

2
. (4.16)

Observe that this mapping is bijection and maps [−1, 1] to [a, b]: y(−1) = a
and y(1) = b.

Next, since δ 6 λ 6 δ+α and δ 6 λk 6 δ+α, we have cosλ ∈ [a, b] and
cosλk ∈ [a, b]. Therefore, there are x ∈ [−1, 1] and xk ∈ [−1, 1] such that
y(x) = cosλ and y(xk) = cosλk, k = 1, 2, . . . ,m. So, in view of (4.16), we
have

b− a

2
x+

b+ a

2
= cosλ,

b− a

2
xk +

b+ a

2
= cosλk, k = 1, 2, . . . ,m.

(4.17)

In view of relations in (4.17), we have

cosλ− cosλk =
b− a

2
(x− xk) =

cos δ − cos(δ + α)

2
(x − xk)

= sin(α/2) sin(α/2 + δ)(x− xk).
(4.18)

Substituting (4.18) into (4.15) we obtain

σ2
n(f) 6 4mc · sin2m(α/2) sin2m(α/2 + δ) max

x∈[−1,1]

m
∏

k=1

(x− xk)
2. (4.19)

Consider the sequence of Chebyshev polynomials Tm(x) which have least
deviation from the zero in the segment [−1, 1] in the uniform metric among
all polynomials rm(x) of degree at most m:

max
x∈[−1,1]

|Tm(x)| 6 max
x∈[−1,1]

|rm(x)|.

It is known that the polynomials Tm(x) are given by formula (see, e.g.,
Goluzin [12, p. 298]):

Tm(x) = cos(m arccosx), x ∈ [−1, 1], (4.20)

from which it follows that

max
x∈[−1,1]

|Tm(x)| = 1. (4.21)

Besides, Chebyshev polynomials Tm(x) satisfy the recurrence relations:

T0(x) ≡ 1, T1(x) = x, Tm+1(x) = 2xTm(x)− Tm−1(x), (4.22)
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from which it follows that the leading coefficient of Tm(x) is equal to

2m−1. Therefore, the normed Chebyshev polynomial pTm(x) = 21−mTm(x)
has the least maximum modulus on the segment [−1, 1] in the uniform
metric among all monic polynomials of degree m, and this maximum is

equal to 21−m. Thus, setting
∏m

k=1(x− xk) ≡ pTm(x) in (4.19) we obtain

σ2
n(f) 6 4mc · sin2m(α/2) sin2m(α/2 + δ) max

x∈[−1,1]
| pTm(x)|2

= 4m · 41−mc · sin2m(α/2) sin2m(α/2 + δ) max
x∈[−1,1]

|Tm(x)|2,
(4.23)

or, in view of (4.21),

σ2
n(f) 6 4c · sin2m(α/2) sin2m(α/2 + δ). (4.24)

From the relations (4.11) and (4.12) we have

m =

{

n/2 for n even,
(n− 1)/2 for n odd.

(4.25)

Thus, m > (n−1)/2, or 2m > n−1, and from (4.24) we obtain the desired
inequality (4.8):

σ2
n(f) 6 4c · sin2m(α/2) sin2m(α/2+ δ) 6 4c · sinn−1(α/2) sinn−1(α/2+ δ).

This completes the proof of the theorem. �

Remark 8. The procedure of definition of the sequence of polynomials
qn(z) is as follows. For given n we first specify m by formula (4.25) and
the roots xk of the Chebyshev polynomial Tm(x) by formula:

xk = cos
2k + 1

2m
π, k = 0, 1, . . . ,m− 1.

Then, we use xk and the second relation in (4.17) to specify λk and zk =
eiλk . Finally, we define the polynomials qn(z) by formulas (4.11) and (4.12).

Remark 9. For δ = 0 the set Γα,δ defined by (3.12) is an arc of length 2α,
and, in this case, the inequality (4.8) becomes Davisson’s inequality (4.7).

§5. Estimates for the minimal eigenvalue of truncated

Toeplitz matrices

The problem of asymptotic behavior of the extreme eigenvalues of trun-
cated (finite sections) Toeplitz matrices goes back to the classical work by
Kac, Murdoch and Szegö [14] (see also Grenander and Szegő [13, p. 72]),
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where the asymptotic behavior of extreme eigenvalues was studied for trun-
cated Toeplitz matrices generated by continuous and continuously differ-
entiable functions (symbols). Since then the problem for different classes
of symbols, which are not (necessarily) continuous nor differentiable, was
studied by many authors (see, e.g., Pourahmadi [16], Serra [19, 20] and
references therein).

In this section we analyze the relationship between the the minimal
eigenvalue of a truncated Toeplitz matrix and the finite prediction error
for a stationary process, by showing how it is possible to obtain information
about the minimal eigenvalue from that of the prediction error.

We use the notation. Let f(λ) be a real-valued Lebesgue integrable
function defined on Λ := [−π, π], Tn(f) := ||rk−j ||j,k=0,1,...,n be the trun-
cated Toeplitz matrix generated by the Fourier coefficients of f , and let
λ1,n(f) 6 λ2,n(f) 6 . . . λn+1,n(f) be the eigenvalues of Tn(f). We denote
by mf := ess inff and Mf := ess supf the essential minimum and the
essential maximum of f , respectively. In the following we consider the case
where f(λ) is a spectral density, that is, f(λ) > 0. Also, without loos of
generality, we assume that mf := ess inff = 0.

The next proposition provides a relationship between the minimal eigen-
value λ1,n(f) of a truncated Toeplitz matrix Tn(f) generated by spec-
tral density f and the prediction error σ2

n(f) (see Pourahmadi [16] and
Serra [19]).

Proposition 3. Let f , λ1,n(f) and σ2
n(f) be as above. Then for any n ∈ N

the following inequalities hold:

λ1,n(f) 6 σ2
n(f) 6 Mf

λ1,n(f)

λ1,n−1(f)
. (5.1)

The first inequality in (5.1) was proved in Pourahmadi [16], while the
proof of the second inequality in (5.1) can be found in Serra [19].

Now we can apply Theorem 2 and Proposition 3 to obtain asymptotic
estimates for the minimal eigenvalue λ1,n(f) of the matrix Tn(f) in the
cases where the support sEf of the generating function f is as in Exam-
ples 1–4. In the next theorem we state the corresponding result when sEf is
as in Examples 1 and 3, similar estimates can be stated in the cases where
sEf is as in Examples 2 and 4.

Theorem 4. Let f , sEf and λ1,n(f) be as above. Then the following as-

ymptotic estimates hold.
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(a) If sEf = Γ2α(θ0), where Γ2α(θ0) is as in Example 1, then

λ1,n(f) = O
(

sin2n (α/2)
)

as n → ∞. (5.2)

(b) If sEf = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 3, then

λ1,n(f) = O ((sin(α/2) sin(α/2 + δ))
n
) as n → ∞. (5.3)

Using Davisson’s theorem (Theorem F), its extension (Theorem 3) and
Proposition 3 we obtain exact upper bounds for the minimal eigenvalue
λ1,n(f) rather than the asymptotic estimates (5.2) and (5.3). Specifically,
we have the following result.

Theorem 5. Let f , sEf and λ1,n(f) be as above. Then the following esti-

mates hold.

(a) If sEf = Γ2α(θ0), where Γ2α(θ0) is as in Example 1, then

λ1,n(f) 6 4c (sin(α/2))
2n−2

. (5.4)

(b) If sEf = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 3, then

λ1,n(f) 6 4c (sin(α/2))
n−1

(sin(α/2 + δ))
n−1

, (5.5)

where the constant c is as in Theorem F.
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