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ON THE ASYMPTOTICS OF MULTIPLICITIES FOR

LARGE TENSOR PRODUCT OF REPRESENTATIONS

OF SIMPLE LIE ALGEBRAS

Abstract. The asymptotics of multiplicities of irreducible repre-
sentations in large tensor products of finite dimensional represen-
tations of simple Lie algebras are computed for all, including non-
generic, highest weights.

§1. Introduction

1.1. The study of the statistics of irreducible components in “large” rep-
resentations is a natural problem in representation theory that goes back
to works [5, 10, 11]. An example of such large representation is the left
regular representation of the symmetric group SN for large N where a
natural probability measure is the Plancherel measure. The statistics of ir-
reducible components in the left regular representation of SN with respect
to the Plancherel measure was exactly the focus of [5, 10, 11].

Let V be an irreducible finite dimensional representation of a finite di-
mensional simple Lie algebra g. In [1] the asymptotics of the multiplicity of
an irreducible subrepresentation in V ⊗N was computed for when N → ∞
for subrepresentations with generic highest weight(see below). These re-
sults were extended in [9] where the asymptotics of the Plancherel measure
on irreducible components of V ⊗N was computed when N → ∞. In [7] we
derived the asymptotic formula for the character probability measure in
this setting. This is a family of measures deforming the Plancherel mea-
sure where the deformation parameter is t ∈ hR. In [7] we compute the
asymptotics for generic values of the deformation parameter t.

In this paper we prove the asymptotic formula for the multiplicity of
an irreducible subrepresentation in V ⊗N when N → ∞ and λ/N → ξ
with ξ not necessary generic as in [1] and [9]. In the follow up paper [8]
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we compute the asymptotics of the character measure for all values of the
deformation parameter t.

1.2. To state main results of the paper we need a few definitions.
In a finite dimensional complex simple Lie algebra g choose a Borel

subalgebra b ⊂ g and let h ⊂ b be the corresponding Cartan subalgebra.
Fix the Killing form on g with the standard normalization. This gives
a bilinear form ( · , · ) on h which identifies vector spaces h and h∗ and
induces the corresponding bilinear form on h∗. We choose a basis of coroots
α∨
a = 2αa

(αa,αa)
in h (after the identification h ≃ h∗ via Killing form). Let

∆+ ⊂ h∗ be the set of positive roots. Denote simple roots by α1, . . . , αr,
here r is the rank of g. Simple roots form a basis in h∗ and generate the
root lattice Λ = ⊕aZαa in h∗. We assume that g is the complexification
of its compact real form k and that t ∈ k is the corresponding Cartan
subalgebra. Denote by ωa ∈ h∗ fundamental weights of g, (ωa, α

∨
b ) = δa,b.

We denote by L = ⊕Zωa ∈ h∗ the weight lattice. The Cartan matrix of
the root system ∆ is Cab = (α∨

a , αb).

1.3. Let Vν be an irreducible finite dimensional g-module with highest
weight ν.

Because the Lie algebra g is simple

V ⊗N
ν ≃ ⊕λ∈D(Vν ,N)V

⊕mλ(Vν ,N)
λ . (1)

Here mλ(Vν , N) is the multiplicity of the irreducible subrepresentation Vλ.
The multiplicity mλ(Vν , N) is non-zero only if λ is dominant integral and
if it is inside the Weyl group orbit through ν. This describes the domain
D(Vν , N).

Let χν = trVν
(πν(g)) be the character of Vν . Throughout this paper we

will use notations h ⊂ g for the Cartan subalgebra in the complex sinple
Lie algebra g and hR ⊂ gR ⊂ g for the Cartan subalgebra of the split real
form gR of g and t ⊂ k ⊂ g for the Cartan subalgebra in the compact real
form of g.

Define the function

f(x, ξ) = ln(χν(e
x))− (x, ξ).

Here x ∈ h, ξ ∈ h∗ ≃ h, we identified hR ≃ hR∗ using the Killing form
(x, ξ) ≡ ξ(x). In the basis of simple coroots x =

∑

a
xaα

∨
a , ξ =

∑

a
ξaαa and

(x, ξ) =
∑

a,b

xaCabξb where Cab = (α∨
a , αb) is the Cartan matrix. Recall that
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ξ belongs to a wall of the principal Weyl chamber if (ξ, α) = 0 when α
belongs to ∆+

0 and (ξ, α) > 0 when α belongs to ∆+
1 . Here ∆+

0 are positive
roots of a Lie subalgebra g0 ⊂ g and ∆+

1 are other positive roots of g. The
Dynkin diagram of g0 is a subdiagram of Dynkin diagram of g.

Our main result is the following theorem.

Theorem 1. If ξ = λ/N remain regular as N → ∞ and stays strictly
inside the region D(Vν , N), the asymptotics of the multiplicity of Vλ in (1)
has the following form:

mλ(Vν , N) = N− r
2−|∆+

0 |eNf(η,ξ)−(η,ρ1)∆(1)(eη)
κ− dim g0

2

√

det(f (2)(η))

×
det(B)|W0|

∏

α∈∆+
0

(ρ, α)

(2π)
r
2 2|∆

+
0 |
√

det(Bg0)

(

1 + O

(

1

N

))

.

Here det(B) is the determinant of the symmetrized Cartan matrix of
g and det(Bg0) is the determinant of symmetrized Cartan matrix for g0,
|W0| is the order of the Weyl group of g0, f

(2)(η) is the matrix of the second
derivatives of f(x, ξ) when x = η in the root basis and ∆(1)(ex) and κ are
given by the formulas:

∆(1)(ex) =
∏

α∈∆+
1

(e
(x,α)

2 − e−
(x,α)

2 ).

κ =
1

dim g0

∑

µ
trWµ

(eη)cg0

2 (µ)dim(V g0
µ )

∑

µ
trWµ

(eη) dim(V g0
µ )

.

Here the summation over µ corresponds to the decomposition of the g-
module V into irreducible g0 components, V ≃

⊕

µ Wµ ⊗ V g0
µ .

In particular, in the extreme case ξ = 0 this formula yields:

m0(Vν , N) = N
− dim(g)

2 dim(Vν)
N

√

det(B)|W |
(2π)

r
2

∏

α∈∆+

(ρ, α)

2|∆+|

(

dim g

c2(Vν)

)
dimg

2

×
(

1 +O

(

1

N

))

.
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We call ξ generic if (ξ, α) > 0. In this case g0 = {0} and g1 = g and we
recover [1, 7, 9]:

mλ(Vν , N) = N− r
2 eNf(η,ξ)−(η,ρ)∆(eη)

det(B)

(2π)
r
2

√

det(f (2)(η))

×
(

1 +O

(

1

N

))

.

The proof of this theorem is given in Section 2.

§2. Proof of the theorem

2.1. The integral formula for the multiplicity. Let G be a complex
simple connected Lie group with Lie algebra g and K ⊂ G be its compact
real form. Denote by T ⊂ K the Cartan subgroup and by eiθ ⊂ T its
elements. Here iθ ⊂ t ⊂ k. The decomposition of V ⊗N

ν into the direct sum
of irreducibles gives the identity

χν(g)
N =

∑

λ∈D(Vν ,N)

mλ(Vν , N)χλ(g),

Recall that characters of irreducible finite dimensional representations are
orthogonal with respect to the Haar measure on K.

∫

K

χν(g)χλ(g)dg =

∫

T⊂K

χν(e
iθ)χλ(e

−iθ)|∆(eiθ)|2dθ1 . . . dθr

=

∫

T

∑

w

σ(w)ei(θ,w(ν+ρ))
∑

u

σ(u)e−i(θ,u(λ+ρ))dθ1 . . . dθr

=

∫

T

∑

u,w

σ(w)σ(u)ei(θ,w(ν+ρ))−(θ,u(λ+ρ))dθ1 . . . dθr = δνλ|T ||W | (2)

where |T | = (2π)r, |W | is the order of the Weyl group and θa are the
coordinates of θ in the basis corresponding to simple coroots α∨

a = 2αa

(αa,αa)
.

Only terms with u = w give nonzero contribution and only if ν = λ. Here
we used the Weyl character formula

χλ(e
iθ) =

∑

w
σ(w)ei(θ,w(λ+ρ))

∆(eiθ)
,
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where

∆(eiθ) = ei(θ,ρ)
∏

α∈∆+

(1− e−i(θ,α))

is the Weyl denominator, and ρ is a half sum of positive roots. Here (θ, λ) ≡
λ(θ) =

∑

a
θaλa and λa are the coordinates in the basis of fundamental

weights. The torus T corresponds to 0 6 θa < 2π, i.e. we have a natural
identification T ≃ h/2πΛ∨, where Λ∨ is the lattice of coroots.

Due to the orthogonality of characters the multiplicity mλ(V,N) can
be written as the following integral

mλ(Vν , N) =

∫

K

χν(g)
Nχλ(g)dg

=
1

|W ||T |

∫

T

χν(e
iθ)Nχλ(e

−iθ)|∆(eiθ)|2dθ1 . . . dθr,
(3)

Using the Weyl character formula we can further simplify this formula:

mλ(Vν , N) =
1

|T |

∫

T

χν(e
iθ)Ne−i(θ,λ+ρ)∆(eiθ)dθ1 . . . dθr. (4)

Lemma 1. Let γ ∈ h be such that eiα(γ) = 1 for all roots α ∈ ∆. Then

F (θ + γ) = F (θ),

where

F (θ) = χν(e
iθ)Ne−i(θ,λ+ρ)∆(eiθ).

is the integrand in (4).

Proof. Because eiα(γ) = 1 for each root α we have:

∆(eiθ+iγ) = eiρ(γ)∆(eiθ).

Now let us show that χν(e
iθ+iγ) = eiν(γ)χν(e

iθ). First, let us show that
all terms in the numerator of the Weyl formula change by the same factor.
If sa is a simple reflection

exp (isα(ν + ρ)(γ)) = exp

(

i(ν + ρ− 2(α, ν + ρ)

(α, α)
α)(γ)

)

,

but 2(α,ν+ρ)
(α,α) is an integer and because eiα(γ) = 1 we have

exp (isα(ν + ρ)(γ)) = exp (i(ν + ρ)(γ)) .
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Therefore exp(iw(ν + ρ)(γ)) = 1 for any w ∈ W . From this and the Weyl
character formula we conclude that

χν(e
iθ+iγ) = eiν(γ)χν(e

iθ).

Thus we have

F (θ + γ) = ei(νN−λ)(γ))F (θ).

But because λ is the highest weight in the tensor product decomposition of
V ⊗N
ν , Nν−λ is in the root lattice and therefore exp(i(νN−λ)(γ)) = 1. �

Now let Λ be the root lattice Λ =
⊕

a Zαa and α, and Λ∨ =
⊕

a Zα
∨
a

be the lattice of coroots α∨
a = 2αa

(αa,αa)
. Also, denote by L the lattice of

weights L =
⊕

a Zωa, (ωa, α
∨
b ) = δab, and by L∨ the lattice of coweights

L∨ =
⊕

a Zω
∨
a , ω∨

a = (αa,αa)
2 ωa. The condition eiα(γ) = 1 holds for all α

if and only if eiαa(γ) = 1 for simple roots αa. Writing γ in the basis of
fundamental coweights γ =

∑

a
γaω∨

a we have eiα(γ) = 1, i.e γ ∈ h satisfies

conditions of Lemma 1 if and only if γ ∈ 2πL∨. In the basis of coroots
θ =

∑

a
θaα

∨
a we have 0 6 θa < 2π. Therefore we can naturally identify

T ≃ R
r/2πΛ∨. Thus vectors γ with the condition eiα(γ) = 1 for all α are

in bijection with L∨/Λ∨. Thus we have proved the following

Lemma 2. Vectors γ ∈ h satisfying eiα(γ) = 1 for all roots α are in
bijection with L∨/Λ∨. Since |L∨/Λ∨| = det(Cab) (where Cab is the Cartan
matrix of g) we have that many such vectors.

2.2. The steepest descent method for generic ξ. The character func-
tion χν(z) is holomorphic for all z 6= 0 and therefore we can deform the
integration contour.

mλ(Vν , N) = (−i)r
1

|T |

∫

C⊂G

χν(z)
Nz−λ−ρ∆(z)

dz1
z1

. . .
dzr
zr

, (5)

where C is a deformation of the torus T = {|zj| = 1, zj = eiθj} in the
complexification G of K.

Now let us use the steepest descent method to compute the asymptotics
of this integral when N → ∞ and λ = Nξ, where ξ ∈ h∗ is fixed and we
assume that it is generic, i.e. (ξ, α) > 0 for all α ∈ ∆+. For this we should
deform the contour C so that it would pass through critical points in the
direction of the steepest descent and we should choose critical points where
the absolute value of the integrant is maximal. Here D(Vν , N) is the set
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of dominant integral weights λ in the convex hull of W -orbit of Vν . Note
that for any λ in this tensor product decomposition Nν − λ ∈ Λ.

Lemma 3. For x ∈ hR and θ in t we have:

|χν(e
x+iθ)| 6 |χν(e

x)| (6)

The number of points for which both expressions are equal is detCab.

Proof. Let Q(ν) be the set of weights of Vν and c(ν, β) is the multiplicity
of weight ν − β ∈ Q(ν), β ∈ Λ. The characters

|χν(e
x)| = |e(ν,x)||1 +

∑

β∈Q(ν)

c(ν;β)e−(ν−β,y)|,

|χν(e
x+iθ)| = |e(ν,x)||ei(ν,θ)||1 +

∑

β∈Q(ν)

c(ν;β)e−(ν−β,x)−i(ν−β,θ)|.

The inequality is due to Cauchy Schwarz inequality. It is clear that both
characters have the same modulus only if (ν − β, θ) ∈ 2πZ. Thus the
equality sign holds when x ∈ hR and θ ∈ 2πL∨/Λ∨ as in Lemmas 1, 2. �

This lemma implies that asymptotically, as N → ∞, the critical points
giving the leading contribution to the asymptotic of the form ex+iγ , where
x =

∑

a
xaα

∨
a ∈ hR, i.e. xa ∈ R and γ as in Lemma 1. Thus, our integral is

mλ(Vν , N) = (−i)r
1

(2π)r

∫

C⊂G

eNf(x,ξ)e−(x,ρ)∆(ex)dx1 . . . dxr, (7)

where f(x, ξ) = ln(χν(e
x)) − (x, ξ) and C is the steepest descent path

through critical point of f(x, ξ).
The character function χν(e

x) is strictly convex for real x, therefore the
function f(x, ξ) is strictly convex. Therefore the equation

∂

∂xa
f(x, ξ) =

∑

b

Babξb (8)

has unique real solution η.
If ξ is generic this unique solution is also generic. If ξ is not generic, i.e.

if it is on a wall of the principal Weyl chamber, the real critical point η
is on the same wall, in particular, it has the same stabilizer in the Weyl
group. We will consider nongeneric cases in the next section.
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We can either count contributions from all relevant critical points eη+iγ ,
γ ∈ 2πL∨/Λ∨ when integrating over T or from the only relevant critical
point eη if we integrate over T/Π, where Π = L∨/Λ∨ Both ways we have:

mλ(Vν , N) = (−i)reNf(η,ξ)e−(η,ρ)∆(eη)
det(B)

(2π)r

×
∫

C0⊂G

e
N 1

2

∑

ab

ya
∂2f(x,ξ)
∂xz∂xb

|x=ηyb

dy1 . . . dyr(1 +O(1/N)).

Here C0 is a small interval near the real critical point in the direction of
the steepest descent (which is imaginary direction), ya are the coordinates
in the root basis. The factor det(B) had appeared with the account of the
Jacobian. After the change of variables ya = i sa√

N
we obtain the leading

terms of the asymptotic as the Gaussian integral:

mλ(Vν , N) = eNf(η,ξ)e−(η,ρ)∆(eη)
det(B)N−r/2

(2π)r

×
∫

Rr

e
− 1

2

∑

ab

sa
∂2f(x,ξ)
∂xa∂xb

|x=ηsb
ds1 . . . dsr(1 +O(1/N)).

Computing this Gaussian integral we obtain the asymptotics of the mul-
tiplicity from [1, 7, 9]1

mλ(Vν , N) = N− r
2 eNf(η,ξ)−(η,ρ)∆(eη)

det(B)

(2π)
r
2

√

det(f (2)(η))

×
(

1 +O

(

1

N

))

.

(9)

2.3. The steepest descent method for nongeneric ξ. In this section
we identify g ≃ g∗ using the Killing form. Recall that ξ in the principal
Weyl chamber of h is called generic if (αa, ξ) > 0 for all simple roots αa.
When ξ be non generic (αa, ξ) = 0 for some simple roots. These roots are
simple roots for a Lie subalgebra g0 ⊂ g.

The root system of g0 is the root subsystem of the one for g. In par-
ticular, we have ∆+ = ∆+

0 ⊔ ∆+
1 where ∆+

0 are positive roots of g0 and
∆+

1 are other positive roots of g. We also have orthogonal decomposition
g = g0 ⊕ g1 with respect to the Killing form. Here g1 = g⊥0 .

1In [7] we have det(B) instead of det(C) because we used root coordinates xa instead
of the coroots as we use here.
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If ξ ∈ h1, i.e. when it is orthogonal to h0, the critical point η is in h1.

Lemma 4. Let f(y) = ln(χν(e
y)), where {ya}a=1...r are coordinates in

Cartan subalgebra in a the root basis and η be a point on the wall of the
principal Weyl chamber. Then

[

∂2f(y)

∂ya∂yb
|y=η

]r

a,b=1

=

[

κBg0

ab 0

0 f (2)(η)

]

,

where in the first diagonal block αa and αb are in ∆+
0 , Bg0

ab is the sym-

metrized Cartan matrix for g0 and f (2)(y) is the matrix of second deriva-
tives in ya corresponding to αa ∈ ∆+

1 .

κ =
1

dim g0

∑

µ
trWµ

(eη)cg0

2 (µ)dim(V g0
µ )

∑

µ
trWµ

(eη) dim(V g0
µ )

.

Here the summation over µ corresponds to the decomposition of the g-
module V into irreducible g0 components, V ≃⊕µ Wµ ⊗ V g0

µ .

Proof. Let us compute the matrix of second derivatives of f(y) when y is
in the Cartan subalgebra h ⊂ g. Straightforward computation gives:

∂2f

∂ya∂yb
|y=η =

∂

∂ya

∂
∂yb

trVν
(ey)

trVν
(ey)

|y=η

=

∂2

∂ya∂yb
(trVν

(ey)) trVν
(ey)− ∂

∂ya
(trVν

(ey)) ∂
∂yb

(trVν
(ey))

(trVν
(ey))

2 |y=η

=
trVν

(HaHbe
η) trVν

(eη)− trVν
(Hae

η) trVν
(Hbe

η)

(trVν
(eη))2

.

Here Ha is the basis of simple roots in h.
Now let us specialize this formula to the case when y = η ∈ h0 ⊂ g0.

Let ∆+
0 ⊂ ∆+ be subset of positive g0-roots in the set of positive g-roots.

• If αa, αb ∈ ∆+
0 we have (αa, η) = 0 and (αb, η) = 0 and we have

trVν
(HaHbe

η) =
∑

µ

trWµ
(eη) trV g0

µ
(HaHb).

Here Ha, Hb ∈ h0 ⊂ g0 and V g0
µ is an irreducible g0-module, so by

Schur’s lemma [7] we have:

trV g0
µ

(HaHb) =
cg0

2 (µ)dim(V g0
µ )

dim g0
Bg0

ab .
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The identities

trVν
(eη) =

∑

µ

trWν
µ
(eη) dim(V g0

µ )

and

trVν
(Hae

η) =
∑

µ

trWν
µ
(eη) tr(Ha) = 0

are clear. Thus, if αa, αb ∈ ∆+
0 we have

∂2f(y)

∂ya∂yb
|y=η =

∑

µ
trWµ

(eη)cg0

2 (µ)dim(V g0
µ )

dim g0
∑

µ
trWµ

(eη) dim(V g0
µ )

Bg0

ab .

Note that in case η = 0, i.e g0 = g we have

∂2f(y)

∂ya∂yb
|y=0 =

c2(ν)

dim g
Bab.

• If only αa ∈ g0 and αa is not in g0 we have(αa, η) = 0 and (αb, η) 6=
0 and therefore

trVν
(HaHbe

η) =
∑

µ

trWν
µ
(Hbe

η) trV g0
µ

(Ha) = 0,

trVν
(Hae

η) = 0,

So in this case

∂2f(y)

∂ya∂yb
|y=η = 0 �

Now we can use this lemma to split the integration in the neighborhood
t of the critical point η into the integral over orthogonal components t0 =
h0 ∩ t and t1 = h1 ∩ t. Introducing coordinates s, t we change variables in
(7) as

x = η +
is√
κN

s+
it√
N

,
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where s ∈ h0, t ∈ h1. As N → ∞ we have

e−(x,ρ)∆(ex) =

(

1

κN

)

|∆
+
0

|

2

e−(η,ρ1)
∏

α∈∆+
1

(e
(η,α)

2 − e−
(η,α)

2 )

×
∏

α∈∆+
0

(

i(α, s) +
(α, s)2

2
√
κN

)

,

where ρ1 = 1
2

∑

α∈∆+
1

α. Note that the contribution from a monomial con-

taining linear terms (α, s) vanishes after the integration over s because it
is odd with respect to the reflection sα. Thus, the leading term is given by
the integral

mλ(Vν , N) = N− r
2−|∆+

0 |eNf(η,ξ)−(η,ρ1)κ−dim g0
2

×
∏

α∈∆+
1

(e
(η,α)

2 − e−
(η,α)

2 )
|Π|

(2π)r2|∆
+
0 |

×
∫

Rr0

e−
1
2 (s,s)g0

∏

α∈∆+
0

(α, s)2dr0s

∫

Rr−r0

e−
1
2 (t,f

(2)t)dr−r0t

(

1 +O

(

1

N

))

= N− r
2−|∆+

0 |eNf(η,ξ)−(η,ρ1)
∏

α∈∆+
1

(e
(η,α)

2 − e−
(η,α)

2 )
κ−dim g0

2

√

det(f (2)(η))
·

×
det(B)|W0|

∏

α∈∆+
0

(ρ, α)

(2π)
r
2 2|∆

+
0 |
√

det(Bg0)

(

1 +O

(

1

N

))

. (10)

Here we used the formula

∫

Rr

e−
1
2 (s,s)

∏

α∈∆+

(α, s)2drs = (2π)
r
2

|W0|
∏

α∈∆+

(ρ, α)

√

det(B)
,

where s =
r
∑

a=1
αasa, (s, s) =

r
∑

a,b=1

sasb(αa, αb) =
r
∑

a,b=1

sasbBab,

drs = (
r
∏

i=1

di)ds1 . . . dsr and di is the length of the root αi, |Π| = det(C)

is the determinant of the Cartan matrix of g.
In particular, in the extreme case ξ = 0 we have
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m0(Vν , N) = N
− dim(g)

2 dim(Vν)
N

√

det(B)|W |
(2π)

r
2

∏

α∈∆+

(ρ, α)

2|∆+|

(

dim g

c2(Vν)

)
dimg

2

(

1 +O

(

1

N

))

.

For the fundamental representation of sl2 we have c2(ν) = 3
2 , |Π| =

2, |W | = 2, (ρ, α) = 1, det(B) = 2 and this formula gives the multiplicity
of the trivial subrepresentation in V (ω)⊗N :

m0(N) = N− 3
2 2N

4√
2π

(

1 +O

(

1

N

))

. (11)

When g0 = {0}, i.e. when ξ is generic, formula (10) gives (9).

2.4. Example: powers of fundamental module of sl2. For g = sl2
there is only one positive root α, α∨ = α, the fundamental weight is
ω = α

2 . When V = Vω is the fundamental 2-dimensional representation

the character χν(e
iθ) = χω(e

iθ) = eiθ + e−iθ and for the multiplicity of
Vλ ⊂ V ⊗N

ω , λ = lα
2 we have:

mλ(N) =

∫

G

χν(g)
Nχλ(g)dg =

1

2 · 2π

2π
∫

0

χω(e
iθ)Nχl(e

−iθ)|eiθ − e−iθ|2dθ

=
1

4π

2π
∫

0

χω(e
iθ)N

e−iθ(l+1) − eiθ(l+1)

e−iθ − eiθ
|eiθ − e−iθ|2dθ

=
1

2π

2π
∫

0

χω(e
iθ)Ne−iθ(l+1)(eiθ − e−iθ)dθ

=
2

2π

π
2
∫

−π
2

χω(e
iθ)Ne−iθ(l+1)(eiθ − e−iθ)dθ.

As N → ∞ and ξ = l
N is fixed

mλ(N) =
2

2π

π
2
∫

−π
2

eN [ln(eiθ+e−iθ)−2iθξ] (e
iθ − e−iθ)

eiθ
dθ.
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2.4.1. Consider first generic values of ξ, i.e. 0, ξ < 1
2 . We can now apply the

steepest descent method. It is easy to find points θ where ln(eiθ + e−iθ)−
2iθξ attains its maximum, they are solutions to

ieiθ − ie−iθ

eiθ + e−iθ
= 2iξ.

This will give us two points η and η + iπ

eη = ±
√

1
2 + ξ
1
2 − ξ

.

These points are located on the real axis and outside S1. If we integrate
over the whole circle S1 the contour |eiθ| = 1 should be deformed to the
steepest descent contour through critical points η and η + iπ (Figure 1).
If we integrate over the fundamental domain T/Π i.e. π/2 6 θ 6 π/2 the
steepest descent contour passes through η only (Figure 2).

Figure 1. Deforming unit circle z = eiθ into the steep-
est descent contour(dashed line) passing through critical
points η and η = iπ.
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Figure 2. Deforming semicircle integration contour in
the fundamental domain into the steepest descent con-
tour(dashed line) passing through critical point η.

It is easy to compute the critical value of our function:

f(η, ξ) = ln(eη + e−η)− 2ηξ=ln





1
√

(12 + ξ)(12 − ξ)



− 2ξ ln

(
√

1
2 + ξ
1
2 − ξ

)

= −
((

1

2
+ ξ

)

ln

(

1

2
+ ξ

)

+

(

1

2
− ξ

)

ln

(

1

2
− ξ

))

.

Near the critical point iθ = η we change coordinates to iθ = η +
is√

Nf(2)(η)
. This results in the asymptotic integral:

mλ(N) =
2

2π

ǫN
∫

−ǫN

eNf(η,ξ)− s2

2

(

1− e−2η
) ds
√

Nf (2)(η)
.
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Computing the Gaussian integral and taking into account that f (2)(η) =

1− 4ξ2 and 1− e2η = 4ξ
1+4ξ we have

mλ(N) = N− 1
2 eNf(η,ξ) 4ξ

√
π (1 + 2ξ)

3
2 (1− 2ξ)

1
2

(

1 +O

(

1

N

))

.

This expression agrees with the asymptotics of the binomial coefficients.

2.4.2. Now assume that ξ = 0. In this case we have two critical points
θ = 0 and θ = π on S1 and

m0(N) =
2

2π

ǫ
∫

−ǫ

eN ln(eiθ+e−iθ)
(

1− e−2iθ
)

dθ.

Taking into account that ln(eiθ + e−iθ) = ln 2− θ2/2+ . . . and 1− e−2iθ =
2iθ+ 2θ2 + . . . and changing variables on the steepest descent contour as
θ = s√

N
we obtain

m0 =
N− 3

2

π
2N

∞
∫

−∞

e−
s2

2 2s2ds

(

1 +O

(

1

N

))

= N− 3
2 2N

2

π

√
2π

(

1 +O

(

1

N

))

= N− 3
2 2N

4√
2π

(

1 +O

(

1

N

))

.

Here we took into account that
∞
∫

−∞
e−

s2

2 sds = 0 and that
∞
∫

−∞
e−

s2

2 s2ds =

√
2π. This formula agrees with (11).
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