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REACTION

Abstract. The dynamics of a massive particle in a frame of a
test particle in 3+1 spacetime dimensions is considered with grav-
itational interaction taken into account. The total action (grav-
ity+particles) collapses to a boundary separating the massive par-
ticle and the test particle, and is further reduced to a finite dimen-
sional action depending only on relative particle coordinates and
momenta. It turns out that the momentum space is a coadjoint or-
bit of the Lorentz group. The momentum space is thus curved and
its curvature falls off with the particle relative distance according
to the Newton law. This defines the modified form of the Poisson
brackets. At the quantum level, this results in non-commutativity
and partial discreteness in coordinate space.

§1. Introduction

It has long been believed that quantum theory of gravity could reg-
ularize its singularities and, possibly, divergences appeared in perturba-
tion theory. The first argument for that dates back to Bronstein [1], who
showed that there could be no measurable distances smaller than the
Planck length. In the absence of a full theory of gravity there is still no
decisive answer whether this is indeed the case or not.

This question can be answered for gravity in 2+1 spacetime dimensions
which is an integrable model [2], but it is non-ivial only in the presence
of matter sources, e.g. point particles. It was first shown in [3,4] and then
studied in details in [5] that the momentum space of such particles due to
gravitational back reaction is the Lorentz group manifold. It is curved and
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has a compact dimension, which leads to non-commutativity and partial
discreteness in coordinate space.

Extending these results to 3+1 dimensional gravity is problematic be-
cause it is not an integrable model.

On the other hand one can study reduced models for General Relativity
in which all but a few degrees of freedom are removed. Of special inter-
est are those which contain black hole solutions, which are essential for
Bronstein’s argument.

The simplest model possible is a homogenous universe with a matter
field. Quantization of this model has been extensively studied, and the
overall conclusion is that quantum theory does’t cure the singularity in
this case [6], unless we include some exotic matter [7].

The second simplest model is spherically symmetric spacetime in which
matter is represented by one or more dust shells. Unlike homogenous
model, it accomodates black hole like solutions, which results in a non-
trivial phase space, with branching of the solution to the constraints.

There is a variety of works studying such models both on classical [8–10]
and quantum [11–13] level. In some of the versions of quantum theory
the central singularity is removed [12, 13]. However the above results do
not always agree with each other. Apart from quantization ambiguity, the
other possible reason for that is a complicated phase space structure of the
model. Different quantum theories could arise on different sectors of such
phase space.

In such situation the common wisdom is that the wavefunction of a
quantum theory has to be defined on all possible configurations, indepen-
dently of whether they are classically accessible or not. In a particular way
it was realized in [13] where by making use of complex coordinates differ-
ent sectors of the phase space were assembled into one Riemann surface,
the branching point identified with a horizon.

Another possibility is to try to find a real global chart for the phase space
(if it exists). The above mentioned results on 2+1 dimensional gravity
coupled to a point particle [3–5] are of this kind. Different branches of the
solution to the constraints result from different way of intersecting Lorenz
group manifold by a plane. These results were extended to a spherically
symmetric shell in [20, 21], but in 2 + 1 dimensional case.

One can try to extend the results of [20, 21] to 3 + 1 dimension, as in
spherically symmetric case there is no gravitational waves and the number
of degrees of freedom is finite. However there is an even simpler model to
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study. This is 3+1 dimensional gravity coupled to a massive point particle
and a test particle whose gravitational field can be neglected. Then the
gravitational field field can be considered spherically symmetric, centered
at the location of the massive particle. The degrees of freedom will be
the coordinates of massive particle with respect to the test particle. The
massive particle will be freely moving and thus emitting no gravitational
waves. This model is simpler than the spherical shell model, because there
is no contribution of inter shell movement of dust energy to the gravita-
tional field. There have been attempts to study this model in [22]. Here
we provide a more systematic way of deriving the symplectic structure of
the model.

In section 2, we rederive the results of [3, 4] and [5] for point particles
coupled to 2+1 dimensional gravity closely following the approach of [17]
and [18].

In section 3, we describe 3+1 dimensional gravity action coupled to
point particles and its symmetries. Gauge and diffeomorphism parameters
at the location of the particle provide its degrees or freedom.

In section 4, we find boundary conditions which lead to a well defined
variational principle and could be satisfied by a gauge choice with no re-
strictions on physical degrees of freedom. The corresponding boundary
term is also found.

In section 5, we solve the constraints and substitute the solution back
into the action. It turns out that the action in the bulk, including the
particle contribution, cancels out, and all that remains is the boundary
action. This is a 3-dimensional analog of WZW action [15,16]. Its degrees
of freedom are gauge and diffeomorphism transformation parameters on
the boundary.

In section 6, we combine the above boundary actions from inner and
outer space, and show that this combination eventually reduces to a me-
chanical model, containing a finite number of degrees of freedom.

In section 7, we study the above action in the vicinity of the horizon,
where it becomes particularly simple. We find that in this region the coor-
dinate space is linear, while the momentum space is given by a coadjoint
orbit of the Lorenz group. We show that this momentum space cover the
entire Penrose diagram of the black hole created by this particle. The cur-
vature of momentum space results in Poisson bracket structure, where the
particle coordinates are non-commutative.
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In section 8, we perform quantization in momentum representation on
ADS3. Apart from non-commutativity of the coordinates it results in dis-
creteness of the spectrum of one of them (time). The invariant distance
to the horizon has discrete spectrum inside the black hole and continuous,
but separated from zero outside.

In section 9, we discuss the possible implications of this model, its lim-
itations, and how it could possibly be extended beyond these limits.

§2. Example: 2+1 dimensional case

In this section, we consider the simplest example in which the gravita-
tional back reaction on kinetic action of a point particle were derived. This
is 2+1 dimensional case. This result is not new, it was obtained previously
in [3–5]. Here we present a derivation which closely follow [17,18] and also
used in [20, 21]. This will be a starting point for generalizing it to 3+1
dimensions.

We start with action for 2+1 gravity coupled to point particles.
The basic variables are the iad eµ = eaµγa and the connection ωab

µ γaγb,
where γa are generators of sl(2)-algebra. The action reads:

S =

∫

M

d3xǫµνρTr(eµRνρ) + Sparticles (1)

where Rνρ is the curvature of ωρ.

Sparticles =
N
∑

i

∫

li

Tr(Kieµ)dx
µ (2)

where li is i-th particle worldline and Ki = miγ0 – a fixed element of
sl(2)-algebra.

Gravity action is invariant with respect to gauge transformations:

ωµ → g−1(∂µ + ωµ)g eµ → g−1(eµ + ∂µξ)g (3)

where g is an SL(2) group element, and ξ is an sl(2) algebra element.
The shell action is not invariant. The i-th particle term transforms as

∫

li

Tr(Kieµ)dx
µ →

∫

li

Tr(K̃ieµ)dx
µ +

∫

li

Tr(K̃iξ̇)dτ (4)
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where K̃i = gKig
−1, τ is a parameter along the particle worldline and dot

is the derivative with respect to it.
In the last term in the r.h.s. of 4 one can recognize the standard particle

action as it has the form of paẋ
a, where pa = Tr(γaK̃i), x

a = Tr(γaξ), and

given the definition of K̃i p
a satisfies the constraint papa = m2. Thus the

particles degrees of freedom are represented as gauge degrees of freedom
evaluated at the location of the particles.

To obtain a reduced action for this model we have to solve the con-
straints and plug the solution back into the initial action. We choose slicing
so that particle worldlines move along the time coordinate and obtain the
constraints by varying action (1) with respect to ω0 and e0:

ǫ0µν∇µeν = 0 ǫ0µνRµν =

N
∑

i

K̃iδ
2(x, xi) (5)

where xi is the location of the i-th particle. The first constraint (5) gen-
erates the first of the transformations (3) and the second generates the
second.

By using transformations (3) one can put to zero simultaneously one
component of ω and one component of e. This automatically linearizes the
constraints (5). However, such a gauge choice cannot be made globally,
because the model has a non-trivial moduli space, containing for example
the gauge parameter evaluated at the location of one particle with respect
to another. Following [17,18] we divide the spacial slice into regions in each
of which the above gauge choice could be made. Each such region should
contain no more than one particle. Around each particle we draw a circle,
so that the circle are connected to a common origin, but have no common
boundaries. By making cuts along the circles the manifold is divided into
N discs, each containing a particle, and a polygon containing no particles,
but connected to infinity.

For the discs it is convenient to write down the solution in polar co-
ordinates with the origin at the location of the particles. We choose the
gauge in which the radial components of e and ω equal zero, solve the
constraints, and put the solution back into an arbitrary gauge:

ωr,i = g−1
i ∂rgi ωφ,i = g−1

i ∇φgi

er,i = g−1
i ∂rξigi eφ,i = g−1

i ∇φξigi (6)

where ∇φξi = ∂φξi + [ξi,Ki].



158 D. A. LYOZIN, A. N. STARODUBTSEV

And similar for polygon, for which the gauge parameters will be denoted
h and ζ.

Now this solutions have to be put back into the kinetic term of the
action which reads (for i-th disk):

SDi
=

∫

Di

d3xǫ0µνTr(eµω̇ν) +

∫

li

Tr(K̃iξ̇i)dτ. (7)

By using the identity (notice that Ki does not depend on time, so ∇φ

commutes with time derivative)

˙g−1
i ∇µgi = g−1

i ∇µ(ġig
−1
i )gi

we find that in the first term of (7) there is a δ-functional contribution
which cancels the second term, plus another term which is a total deriva-
tive. Thus the action for the disk collapses to its boundary:

SDi
=

∫

∂Di

d2xTr(∇φξiġig
−1
i ). (8)

Similar for polygon, whose boundary,however, consists of N edges Ei, and
the resulting action is a sum of contributions from every edge:

SP =

N
∑

i

∫

Ei

d2xTr(∂φζḣih
−1
i ). (9)

The next step is to assemble all the above pieces of the action together
and apply the condition of continuity of metric and connection across the
boundary between discs and polygon.

First we convert the covariant derivative in (6) into ordinary derivative
by a gauge transformation

g̃i = exp(Kφ)gi, ξ̃i = exp(Kφ)ξi exp(−Kφ).

This condition violates the periodicity, so the boundary of the disk is no
longer a circle but an interval. Then disc action (8) changes to

SDi
=

∫

∂Di

d2xTr(∂φξ̃i ˙̃igg̃
−1
i ), (10)

and continuity conditions for metric and connection (6) take a simple form:

g̃i = Cih
∣

∣

∣

Ei

ξ̃i = Ci

(

ζ
∣

∣

∣

Ei

+ χi

)

C−1
i , (11)
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where Ci and χi are functions only of time. Substituting this into (9) and
(10), and combining them one obtains

Sfull = SP +

N
∑

i

SDi
=

N
∑

i

∫

Ei

Tr(∂φζC
−1
i Ċi) = −

N
∑

i

∫

∂Di

Tr(∂φξ̃iĊiC
−1
i ).

(12)
The integrands are total derivatives, so the result contains contributions
only from the vertices of the polygon or endpoints of discs boundaries.

Sfull =
N
∑

i

∫

R

Tr((ζi+1 − ζi)C
−1
i Ċi) = −

N
∑

i

∫

R

Tr((ξ̃i(2π)− ξ̃i(0))ĊiC
−1
i ),

(13)
where ζi is the value of ζ at the i-th vertex of the polygon.

Introduce new variables

ui = C−1
i exp(2πK)Ci, and ξ̄i = C−1

i ξ̃i(0)Ci. (14)

Then taking into account that

ξ̃i(2π) = exp(2πK)ξ̃i(0) exp(−2πK)

and

u−1
i u̇i = C−1

i Ċi − C−1
i exp(−2πK)ĊiC

−1
i exp(2πK)Ci

we can rewrite the second equation in (13) as

Sfull =

N
∑

i

∫

R

Tr(ξ̄iu
−1
i u̇i). (15)

Here ξ̄i plays the role of coordinate and ui – the role of momentum of
i-th particle. ui satisfies the constraint

Tr(ui) = cos(πGmi). (16)

Because momentum space is curved, it results in coordinate non-commu-
tativity.

Below, we will try to obtain an analog of action (15) to 3+1 spacetime
dimensions. Because in 3+1 gravity the N-body problem is not solvable, we
will restrict ourselves to the case of two particles one of which is massive
and the other is a test particle, whose gravitational field is negligible.
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§3. Action principle for gravity coupled to point

particle in 3+1 dimensions

Gravity action depends on tetrad eaµ and Lorenz connection ωab
µ . We

shall write it in spinor representation using Dirac matrices, eµ = eaµγa ,

ωµ = ωab
µ γaγb.

SGR =
1

8πG

∫

M

d4xǫµναβTr(γ5eµeνR(ω)αβ), (17)

where R(ω)αβ is the curvature of connection ω. This action is invariant
with respect to local Lorentz transformation

e→ g−1eg, ω → g−1(d+ ω)g, (18)

where g ∈ SL(2, C), and four-dimensional diffeomorphism transforma-
tions, which in infinitesimal form can be written as

δeaµ = ∇µδξ
a + δξνωab

ν eµ,b

δωab
µ = δξνRab

νµ +∇µ(δξ
νωab

ν ) (19)

one can notice that the second terms in the r.h.s. of eqs. (19) represent
the infinitesimal version of gauge transformations (18) and can be com-
bined with the later. So, when transformations (19) and (18) are applied
simultaneously, the second terms in (19) can be ignored.

As the next step we include point particles in the action. Particle can
be included as a point source of metric and connection fields. A spinless
particle (in the present paper we consider only spinless case) is a source of
metric field only:

S = SGR + Sparticle, Sparticle =M

∫

γ

Tr(γ0eµ)dx
µ, (20)

where γ is the particle worldline. In the action above γ is not specified to
be whether timelike or spacelike from the beginning. This is possible only
after a specific metric of spacetime is given. Metric appears as a solution
of Einstein’s equations, in particular the spherically symmetric solution
with a point mass source is the Schwarzschild solution. With respect to
the Schwarzschild metric the worldline of the point particle in the center
is spacelike.
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The particle action in (20) is not invariant with respect to transforma-
tions (18) and (19). To restore invariance, one has to perform transforma-
tions and to include the transformation parameters in the action as extra
fields:

Sparticle =M

∫

γ

Tr(γ0g−1(eµ +∇µξ)g)dx
µ

=M

∫

γ

Tr(gγ0g−1eµ)dx
µ + Sparticlekinetic. (21)

The first term above is gauge invariant coupling of the particle to gravity
and the second term is the particle kinetic term. One can show that in
the absence of gravity the particle kinetic term reduces to the ordinary
relativistic particle action in flat space. To see this, choose γ to be in the
time direction and ω0 = 0. Then

Sparticlekinetic =M

∫

γ

Tr(gγ0g−1ξ̇)dt =

∫

γ

paξ̇
adt, (22)

where ξa = Tr(γaξ), pa = MTr(gγ0g
−1γa). The r.h.s. is the ordinary

particle action if we take into account that pa from its definition satisfies
the constraint papa =M2.

§4. Boundary term and boundary conditions

Variation of the action (17) in the presence of boundary result in both
bulk and boundary terms.

δSGR =
1

4πG

∫

M

d4xǫµναβTr(γ5(eµR(ω)αβδeν +∇α(eµeν)δωβ)) (23)

+
1

8πG

∫

∂M

d3xǫµναβnαTr(γ5eµeνδωβ),

where nα is a unit normal to the boundary. The equations following from
vanishing of the boundary variation has to be compatible with the bulk
equations. Otherwise it is said that “The action has no extremum”. In
our case the boundary equation is [eµ, eν ]

∣

∣

∂M
= 0, i.e. the metric on the

boundary has to be degenerate, which is not compatible with the most of
interesting bulk solutions.
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In order to fix the situation one has to impose boundary conditions on
the fields and add a corresponding boundary term to the action. For ex-
ample the Gibbons-Hawking term corresponds to the boundary conditions
where the metric on the boundary is fixed. For our purposes another choice
of boundary conditions is suitable. We place boundary arbitrary to divide
space into regions in each of which static gauge condition could be ap-
plied. This means that boundary conditions has to impose no restrictions
on physical degrees of freedom and could be satisfied by a gauge choice. A
boundary term resulting in such boundary conditions does exist and has
the following form:

Sboundary =
1

8πG

∫

∂M

d3xǫµνα0nαTr(γ5eµeνω0). (24)

Its variation combined with boundary term in (23) has the form

δSboundary + δSGR

∣

∣

∂M
=

1

8πG

∫

∂M

d3xǫijkniTr(γ5(eje0δωk − 2ejω0δek)).

(25)
It could be made vanishing if one fixes e0 = 0 and ω0 = 0. Such con-
ditions can be satisfied by an arbitrary field configuration after applying
transformations (19) and (18), i.e. by a gauge choice.

The resulting total action

S = SGR + Sboundary + Sparticle (26)

is now a sum of kinetic terms of gravity and particles and a linear combi-
nation of constraints

S =
1

8πG

∫

M

d4xǫijkTr(γ5(eiejω̇k + ω0∇i(ejek) (27)

+ e0(eiR(ω)jk − 8πGMγ0δ
3(x)))) + Sparticlekinetic.

§5. Reduction to the boundary

We consider a system in which gravity is coupled to a massive particle,
creating gravitational field, and a test particle, whose gravitational field
can be neglected. We cannot apply a static gauge in the entire space,
because the massive particle and the test particle can move with respect
to each other. So we divide space into two regions, each containing one
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particle. In each of the two regions we can apply static gauge, so that the
solution will be time independent.

The constraint equations following from action (27)

ǫijk∇i(ejek) = 0, ǫijkeiR(ω)jk = 8πGMγ0δ
3(x) (28)

together with requirement of spherical symmetry fixes the solution uniquely
up to a gauge choice. This is the Schwarzschild solution which in spherical
coordinates in static gauge can be written as

ē1r = 1/N, ē2θ = R, ē3φ = R sin θ, (29)

ω̄12
θ = N, ω̄13

φ = N sin θ, ω̄23
φ = cos θ,

where N =
√

1− 2GM
R

, and bar on top of e and ω denotes the background

Schwarzschild solution in static gauge. We locate in the neighborhood of
the horizon, R = 2GM , so that it could be deformed to the horizon by a
small diffeomorphism transformation with δξ ≪ 2GM , and all the calcu-
lations will be done to the first order of δξ. The test particle should be in
the outside region, so we will study the dynamics when the test particle is
near horizon.

Then we take the solution to the constraints in arbitrary gauge

ei = g−1(ēi + ∇̄iδξ)g, ωi = g−1(∂i + ω̄i + δξνR̄νi)g (30)

and plug it back into the action (27). The result is that the action collapses
to the boundary, and the bulk contribution, including that of particles,
cancels out.

This can be shown by direct calculation using the identity

∂

∂t
(g−1∇̄ig) = g−1∇̄i(ġg

−1)g, if
∂

∂t
ω̄i = 0, (31)

constraint equations and the Bianchi identity. There is also a simple ar-
gument why it should be so. If we plug the solution to the constraints in
the static gauge (29) into the action (27) it disappears identically: con-
straint terms because it is a solution and kinetic terms because it is static.
Transformations (19) and (18) do not change the action (27) except the
boundary term (24).

The resulting boundary action depends on gauge and diffeomorphism
transformation parameters.

S =
1

8πG

∫

∂M

d3xǫijTr(γ5geiejg
−1ġg−1), (32)
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where ei = g−1(ēi+∇̄iδξ)g. Here and below indices i, j label the directions
on the spacial slice of the boundary (i, j = θ, φ in spherical coordinates).

Introduce a background value of ξ, such that ēi = ∇̄iξ̄. It could be
combined with diffeomorphism transformation parameter ξ = ξ̄+δξ. Then
geig

−1 = ∇iξ. Then the action (32) can be rewritten as:

S =
1

8πG

∫

∂M

d3xǫijTr(γ5∇iξ∇jξġg
−1). (33)

Notice that while the above action contains non-linear contributions in ξ,
it was derived only in linear approximation in δξ. Whether this action is
valid beyond this approximation is an open question. In the present paper
we use it in linear approximation only.

The action (33) is a three-dimensional analog of Wess-Zumino-Witten
action obtained from Chern-Simons theory. This action is a field theory
with infinitely many degrees of freedom. On the other hand the model in
question (massive point particle in a frame of a test particle, with no grav-
itational radiation) has only finitely many degrees of freedom. To extract
relevant degrees of freedom from the action obtained one has to combine
it with the action on the same boundary, but induced by the bulk action
in the outer region (so far we considered the action in the inner region).
Then the extra degrees of freedom will cancel out. This is considered in
the next section.

§6. Further reduction

The action for entire space is a sum of two actions of the form (33),
one from inner region, Sin, and the other from outer region, Sout. The
background field, ēi, ω̄i, is the same in both pieces of the action, but the
gauge parameters are different. The gauge parameters at the location of
particles play the role of particle degrees of freedom, and they are chosen
so, that in each region the corresponding particle is at rest.

To combine the terms in the total action,

S = Sin[ξin, gin] + Sout[ξout, gout], (34)

one has to apply the condition of continuity of metric and connection
across the boundary (because there is no sources of gravitational field on
the boundary one can always choose a gauge in which both metrics and
connection are continuous there):

ei,in = ei,out, ωi,in = ωi,out. (35)
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Because the background field is the same on both sides of the boundary, the
condition (35) is a condition on gauge parameters ξ and g. This condition
written in a form

g−1
in ∇̄iξingin = g−1

out∇̄iξoutgout, g−1
in ∇̄igin = g−1

out∇̄igout, (36)

result in the following relation between gauge parameters inside and out-
side the boundary:

gout = hgin, ξout = h(ξin + ζ)h−1, (37)

where the fields ζ and h are covariantly constant on the boundary, i.e.

∇̄iζ = 0, ∇̄ih = 0. (38)

Because the connection ω̄ has non-zero curvature on the boundary, the
condition (38) results in purely algebraic conditions on ζ and h:

h−1R̄ijh = R̄ij , [R̄ij , ζ] = 0, (39)

i.e. ζ is in the direction of stability axis of Rij and h is an exponential of
algebra element which is in the same Cartan subalgebra as Rij .

Now this has to be substituted in the total action (34) with

Sin,out =
1

8πG

∫

∂M

d3xǫijTr
(

γ5∇iξ∇jξġg
−1

)

in,out
. (40)

Applying conditions (37,38), the action (34) is reduced to

S = Sin + Sout =
1

8πG

∫

∂M

d3xǫijTr
(

γ5∇iξout∇jξouth
−1ḣ

)

. (41)

It does not depend on ζ, but depends on h. h is a solution of continuity
conditions (38), which can be written as

h = hθC(φ)h
−1
θ , (42)

where hθ is a transformation which converts covariant derivative w.r.t. θ
into ordinary one, h−1

θ ∇̄θhθ = ∂θ. C is a function only on φ and satisfies the

condition ∇̃φC(φ) = 0, where ∇̃φ is a covariant derivative with connection

ω̃φ = h−1
θ ωφhθ.

The transformation hθ = exp(−ωθθ) cannot be defined globally on the
boundary, because it is a non simply connected manifold. One can di-
vide the boundary into upper and lower hemispheres and on each of them
transformation hθ can be defined:

hθ,u = exp(−ωθθ), hθ,d = exp(−ωθθ − π(1−N)γ1γ2). (43)
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In general, hθ,u and hθ,d do not coincide at the equator of the sphere,
θ = π/2. Only when N = 1 in (29), i.e. there is no mass source and
spacetime curvature is zero, hθ is continuous across the equator. Because
of this, the integral in (41) the integral has to be taken not on entire sphere
∂M , where h is not defined, but on unity (∂M)u

⋃

(∂M)d
Using Cartan equation for the connection on the boundary ǫij∇i∇jξ =

ǫij∇iej = 0 and the continuity condition ∇ih = 0 equation (41) can be
rewritten as

S =
1

8πG

∫

(∂M)u
⋃
(∂M)d

d3xǫijTr
(

γ5∇i(ξout∇jξouth
−1ḣ)

)

. (44)

There is a total derivative under the integral, so the action collapses to its
boundary, ∂(∂M)u

⋃

∂(∂M)d, the equator as a boundary of upper hemi-
sphere, and the equator as a boundary of lower hemisphere. Two above
contributions do not coincide, and the resulting action is their difference:

S =
1

8πG

∫

S1

dtdφTr
(

γ5ξu∇φξuh
−1
u ḣu

)

−
1

8πG

∫

S1

dtdφTr
(

γ5ξd∇φξdh
−1
d ḣd

)

, (45)

where ξu,d and hu,d are the values of diffeomorphism and gauge transfor-
mation parameters on upper and lower hemispheres respectively.

The next step is to apply the condition of continuity of the metric and
the connection across the equator. Before doing this, it is convenient to
perform a gauge transformation which converts covariant derivative ∇φ

into ordinary one

hφ = exp(ωφφ), h̃ = hhφ, ξ̃ = hφξh
−1
φ . (46)

Notice that this transformation is not periodic in φ on the equator. So, in
(45) one has to replace circle S1 as integration region by an interval I1,
where φ varies from 0 to 2π, but the points φ = 0 and φ = 2π are not
identified. In this gauge, the continuity condition of metric and connection
across the equator read

g̃d = Cg̃u, ξ̃d = C(ξ̃u + ζ)C−1, ∂φC = 0, ∂φζ = 0. (47)

From these conditions one can deduce that

hd = ChuC
−1. (48)
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Substituting all this into (45), one obtains

S =
1

8πG

∫

I1

dtdφTr
(

γ5(̃ξu + ζ)∂φξ̃u(ĊC
−1 − Ch−1

u C−1ĊhuC
−1)

)

+
1

8πG

∫

I1

dtdφTr
(

γ5∂̃φ(ζξ̃u)h
−1
d ḣd

)

. (49)

One can see that the first term of this action does not contain time deriv-
ative of hu, i.e. hu is not dynamical. It was obtained from the condition
that it commutes with the curvature on the sphere, Rθφ = h−1

u Rθφhu, and
being not dynamical, it could be fixed as hu = exp(R̄θφ). Then the first
term of the action can be rewritten as

S1 =
1

8πG

∫

I1

dtdφTr
(

γ5ξ̃u∂φξ̃uh
−1
d ḣd

)

, (50)

hd is now not a general Lorenz group element, but an orbit hd = ChuC
−1

with a fixed conjugacy class hu. It has four independent parameters instead
of six.

The second term in (49) is readily a total derivative, so it reduces to an
action depending only on a finite number of parameters

S1 =
1

4πG

∫

dtTr
(

γ5ξ̃ζu̇u
−1

)

, (51)

where u = h−1
d exp(πωφ)hd. In the first order, ξ̃ will play the role of the

background field, which is not dynamical, and ζ will play the role of canon-
ical coordinate.

A bit more complicated situation with the first term in (49). The form

ξ̃udξ̃u entering (49) is closed, because ξ̃u depends only on φ. Because it is
defined on a simply connected interval I1, it is also exact. There has to
exist a form Xab such that

dXab = ξ̃[au dξ̃
b]
u . (52)

Then the expression under the integral in the first term (49) is again
total derivative and it reduces to the boundary of the interval I1:

S =
1

4πG

∫

dtTr
(

γ5Xh
−1
d ḣd

)∣

∣

∣

2π

0
, (53)
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where X = Xabγaγb. Because X(2π) = exp(πωφ)X(0) exp(−πωφ), the
action (53) can be rewritten as

S =
1

4πG

∫

dtTr
(

γ5X̃u̇u
−1

)

, (54)

where u = h−1
d exp(πωφ)hd, and X̃ = hdX(0)h−1

d .

The variable X̃ is related to coordinates of the test particle ξ with
respect to the horizon by (52). To this point, we do not have an explicit

expression of X̃ in terms of ξ in general. However, throughout this paper
we are using linear approximation in variation of ξ, ξ = ξ̄ + δξ, where ξ̄ is
a background field and |δξ| ≪ |ξ̄|. In this approximation, and under the

condition that Tr(ξ̄δξ) = 0, we have an explicit expression for X̃:

Xab = ξ̄[aδξb]. (55)

This approximation we will study in the next section.
Thus, ξ will play the role of canonical coordinate. The role of momen-

tum, canonically conjugate to ξ will be played by a group valued variable
u. From its definition, and given the expression for ωφ in (29), it satisfies
the following constraint

Tr(u) = cos
(

π

√

1−
2GM

R

)

. (56)

As we will see in the subsequent, this is a deformed mass shell constraint
for a particle.

§7. Particle on a plane

From the action (54), using (55), one obtains a symplectic form:

Ω =
1

πG
ǫabcdξ̄

aδξb ∧Tr
(

γcγdu̇u−1
)

, (57)

ξ̄a is a fixed vector, whose absolute value combines with the coupling con-
stant and the direction defines the plane in which the dynamics of the
particles under study unfolds. This is not in contradiction with what one
knows from solutions of General Relativity. The relative movement of two
particles, coupled to gravity, can always be confined to a plane fixed ac-
cording to initial conditions.

The degrees of freedom of this reduced model will be coordinates ξa

satisfying ξ̄aξ
a and momenta given by a group element u, such that

u−1ξ̄aγau = ξ̄aγa, i.e. from the stability subgroup of the direction ξ̄a,
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which is SO(2, 1) or SL(2) group, as ξ̄a is spacelike. The absolute value
of ξ̄a is the areal radius R of the sphere at which the test particle is lo-
cated. To the linear approximation in δξa, this is the Schwarzschild radius
R = 2GM .

One can show that in the no-gravity limit, G → 0 or R → ∞ the
symplectic form (57) reduces to that of an ordinary particle. Take

u = exp(πGǫabcdpaξ̄bγcγd/R
2) (58)

and assume that Gpa/R≪ 1. Then

δuu−1 = πGǫabcdδpaξ̄bγcγd/R
2. (59)

Substituting this into (57) one obtains

Ω = δξa ∧ δpa. (60)

The same anzatz (58) substituted in the constraint equation (56) results
in

pap
a =M2. (61)

The last two equations contain only those components pa and ξa which
are orthogonal to ξ̄a.

The Poisson brackets resulting from (57) are:

{ξa, u} = πGǫabcd
ξ̄b

|ξ̄|2
γcγdu (62)

{u,⊗u} = 0

{ξa, ξb} = Gǫabcd
ξ̄c

|ξ̄|2
ξd.

Because of commutativity of momenta, quantization will be convenient in
momentum representation.

Momentum of the massive particle is given by holonomy around the
equator of a sphere, whose radius is specified by the test particle location.
One can show that this holonomy provides a real global parametrization
of the Penrose diagram of the black hole created by the massive particle.

Recall that the solution (29) has four distinct branches. First
√

1− 2GM
R

could be real or imaginary. Secondly, the sign in front of square root can
be “+” or “-”. The corresponding four regions are shown on Fig. 1.
U is also always real From the constraint (56) one can see that u is

elliptic when 1 − 2GM
R

> 0 and hyperbolic when 1 − 2GM
R

< 0. In elliptic
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Figure 1. Penrose diagram and its four regions.

case, u = g−1 exp([γi, γj ]φ)g, when
√

1− 2GM
R

> 0 then 0 < φ < π (region

I in Fig.1), and when
√

1− 2GM
R

< 0 then π < φ < 2π (region III in

Fig. 1). And similar for the hyperbolic case: u = g−1 exp([γi, γj ]χ)g, when

i
√

1− 2GM
R

> 0 then χ > 0 (region II in Fig.1), and when i
√

1− 2GM
R

< 0

then χ < 0 (region VI in Fig.1). In other words, u provides a real global
parametrization of the momentum space of the model.

All these four regions can be seen on Fig.2 as different ways of crossing
of the group manifold of u by Tr(u) = const plane.

Global parametrization of momentum space then will be given by the
Euler angles on SL(2)-manifold. Let γa, a = 0, 1, 2 (three directions which
are orthogonal to ξ̄) be the generators of sl(2). Then an SL(2) element
could be parameterized as

u = exp
(φ

2
γ0

)

exp
(ρ

2
γ0

)

exp
(

χγ1

)

exp
(ρ

2
γ0

)

exp
(

−
φ

2
γ0

)

. (63)

Here φ is an axial angle in spacial plane, χ is a boost parameter related
to the spatial momentum, and ρ is an angular variable related to energy.
These variables will be used for quantization in the next section.
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Figure 2. Solutions to the constraint. The momentum
space is depicted as a hyperboloid (only time and radial
directions are depicted). The solution to the constraint is
crossing of the hyperboloid by M = const plane. It re-
sults either in mass shell of ordinary particle (outside the
horizon) or that of a tachion (inside the horizon).

§8. Quantization

In this section we shall briefly describe quantization of the model using
momentum (Euler angle) representation. The exposition will closely follow
[5], but take into account that the Poisson brackets now include Newtonian
potential, and that the constraint describing dynamics is now different.

We define the kinematical states of the model as functions of u from (63)

= Ψ(u) = Ψ(ρ, χ, φ), (64)

single-valued functions on the entire momentum space. From the require-
ment of Ψ being single-valued it immediately follows the periodicity prop-
erty,

Ψ(ρ+ 2π, χ, φ) = Ψ(ρ, χ, φ), (65)

and

Ψ(ρ, χ, φ+ 2π) = Ψ(ρ, χ, φ), (66)

which will have an important consequence on the spectra of coordinates.
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Next, for defining the scalar product, we need a Lorenz-invariant mea-
sure on our momentum space. It can be inferred from the Haar measure
on SL(2):

dU =
1

π
sinh(2χ)dρdχdφ, (67)

and the scalar product is thus:

〈Φ,Ψ〉 =
1

π

∫

sinh(2χ)dρdχdφΦ(ρ, χ, φ)∗Ψ(ρ, χ, φ). (68)

Easiest of all is to calculate the spectrum of time coordinate, ξ0, which
is canonically conjugate to p0, which is related to the dimensionless pa-
rameter ρ as ρ = Gp0/R, and the corresponding operator is

ξ̂0|ρ, χ〉 = i
~G

R

∂

∂ρ
|ρ, χ〉 (69)

its eigenstates are

|t;ψ〉 =
1

π

∫

sinh(2χ)dρdχ exp(itρ)ψ(χ)|ρ, χ〉, (70)

where t is an integer. Thus, time operator has a discrete spectrum:

ξ̂0|t;ψ〉 = t
~G

R
|t;ψ〉. (71)

Notice that it is quantized not in units of the Planck length, but in units
of the Planck length squared over the black hole size. The later is the
result of the presence of Newtonian potential in the Poisson brackets. The
smaller is the black hole the scarcer is the spectrum of time operator near
its horizon.

A more interesting observable is the invariant distance to the horizon,
X2 = ξaξ

a, which is spacelike outside the horizon and timelike inside.
Because ξa in (62) is defined as the left-invariant derivative on the group,
its square is the Beltrami–Laplace operator on our momentum space:

X̂2|t;ψ〉 = 2π|t; ∆ψ〉, (72)

where

∆ = ~
2

(

1

sinh(2χ)

∂

∂χ
sinh(2χ)

∂

∂χ
+

t2

cosh2(2χ)

)

. (73)

This operator was shown in [5] to have two series of eigenvalues. One is
continuous, but separated from zero, corresponds to positive,i.e. spacelike,
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X2

X̂2|t, λ〉 = 2π(λ2 + 1)
~
2G2

R2
|t, λ〉, (74)

where λ is a real number. The other is discrete, but containing zero, cor-
responds to negative, i.e. timelike, X2

R̂2|t, l〉 = −2πl(l+ 2)
~
2G2

R2
|t, l〉, (75)

where l is a non-negative integer, subject to the condition l 6 t. This two
series of eigenvalues correspond to principle and supplementary series of
unitary representations of SL(2) [19]. Only unitary infinite-dimensional
representations of SL(2) result in normalizible states.

The discreteness of the radial variable inside the black hole provide a
chance for resolution of the central singularity, R = 0. But this point is
located far away from the horizon and not reachable within approximation
used in the present paper.

The Hamiltonian constraint in terms of the Euler angle variables has
the form

cos(ρ) cos(χ) = cos
(

π

√

1−
2GM

R

)

. (76)

It can be solved with respect to cos(ρ) and imposed on states in ξ0, χ
representation. As a result one obtains an evolution equation, which is not
differential< but a finite difference equation in ξ0

Ψ(ξ0 +
G~

R
,χ) + Ψ(ξ0 −

G~

R
,χ) =

cos
(

π
√

1− 2GM
R

)

cosh(χ)
Ψ(ξ0, χ). (77)

Due to presence of R in the hamiltonian the momenta, unlike in 2+1
dimensional gravity do not conserve. This is expectable on the physical
ground, because a test particle used as a reference frame will be attracted
by Newtonian force towards massive particle, the momentum of the later
in this frame will change. There are still conserved quantities, but they are
related to ADM momenta at infinity, which remain undeformed.

§9. Conclusion

So far we do not have the full quantum theory of the model studied in
this paper. What remains to do is to describe the dynamics, in particular
calculate the transition amplitudes between different eigenvalues of the
invariant distance to the horizon.
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What was shown is that the spectrum of the invariant distance to the
horizon is discrete inside the black hole with the eigenvalue spacing in-
creasing in the depth of the black hole. This provide a chance that the
central singularity of the black hole will be avoided in quantum theory is
avoided. However, this is not certain, because in the approximation used
in this paper, the invariant distance to the horizon is much smaller than
the black hole size, the center of the black hole is not reachable.

It is not clear how to go beyond this approximation. The problem is
that the distance to the horizon in the present approach is represented
by diffeomorphism parameters. This parameters are taken to be small,
because only in this case they act on the fields locally. We are not aware of a
well developed technique for working with non-local field transformations.

However in equation (33) small diffeomorphism parameters combined
with the background field could be viewed as finite diffeomorphism param-
eters. Whether this can lead to a consistent model is a subject of further
study.
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