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Abstract. We consider the five-vertex model on a regular square
lattice of the size L×M with boundary conditions fixed in such a way
that configurations of the model are in one-to-one correspondence
with the lozenge tilings of the hexagon with a dent. We obtain two
determinant representations for the partition function. In the free-
fermionic limit, this result implies some summation formulae for
Schur functions.

§1. Introduction

Exactly solvable lattice models of statistical mechanics are of interest
from the point of view of both theoretical and mathematical physics. One
of the peculiar features of such models is that in the limit of large domains,
thermodynamic properties in the bulk may strongly depend on boundary
conditions. This was first recognized in [1] for the dimer model on a square
lattice. As an important example, we should mention the famous “Arctic
Circle phenomenon” proven rigorously for the dimer model on the Aztec
Diamond region [2]. Another reason to study exactly solvable lattice mod-
els lies in its connection with problems of enumerative combinatorics [3].
The famous example is Kuperberg’s proof [4] of Mills, Robbins and Rum-
sey conjecture on the number of alternating sign matrices [5].

One of the most well-studied examples of exactly solvable lattice models
is the so-called six-vertex model [6–9]. This model in its simplest form was
introduced by Pauling in [10] to calculate the residual entropy of water ice.

The five-vertex model is a special case of the six-vertex model with one
vertex being frozen out. It first appeared in the context of two-dimensional
crystal growth [11, 12]. This model can be interpreted as a model of the
interacting dimers on a honeycomb lattice [13] or as a generalization of
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lozenge tilings. Recent interest in the study of the five-vertex model is due
to its close connection with some families of symmetric functions [14, 15].

In this paper, we consider the five-vertex model on a square lattice with
boundary conditions fixed in such a way that the configurations of the
model are in one-to-one correspondence with lozenge tilings of a hexagon
with a dent. These boundary conditions are a natural generalization of
ones considered in [16].

We obtain several determinant representations for the partition function
of the model (Theorem 1). The proof is based on the technique of Quantum
Inverse Scattering Method (QISM) [17]. Actually, our results hold for any
integrable model with the same R-matrix. Two particular examples are
the four-vertex model [18] and the non-Hermitian phase model [19].

Since the five-vertex model at the free-fermion point can be used for the
definition of the Schur functions (see e.g. [20]), the determinant represen-
tations provided by Theorem 1 implies some summation formulae for the
Schur functions.

In Section 2 we properly define the model and the boundary conditions.
In Section 3 we obtain determinant representation for the partition func-
tion of the inhomogeneous five-vertex model. In Section 4 we discuss the
model at free-fermion point.

§2. The model

Consider a regular square lattice with an arrow pointing along each
edge. If we impose the arrow conservation low at each lattice site (number
of incoming arrows is equal to the number of outgoing arrows) then only six
out of the sixteen vertex configurations are possible (see Fig 1). This is the
so-called six-vertex model (ice model). We follow the convention of [8] and
use another equivalent graphical representation in terms of paths flowing
through the lattice. Namely, we draw a line on each edge with an arrow
pointing down or left.

The five-vertex model is a special case of the six-vertex model with one
vertex configuration (second in the standard order) being frozen out. In
this paper we consider the five-vertex model on a square lattice of the
size L×M . The boundary conditions are fixed as follows: there are n+m
paths flowing through the lattice entering it in the left corner of the bottom
boundary and exiting on the top boundary at the edges from 1 to n and
from n + l + 1 to n + m + l (we count lines from right to left). For an
example of such boundary conditions see Fig. 2.
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Figure 1. The vertices of the six-vertex model in terms of
arrows (first row) or lines (second row) and their Boltz-
mann weights in the five-vertex model (third row).

Figure 2. Boundary conditions (left) and one of the con-
figurations (right) with M = 12, n = 3, m = 4, l = 5
(L = 2n+m+ l = 15).

The configurations of the five-vertex model with considered boundary
conditions can be interpreted as a pile of cubes fitting in a box without an
L-shaped part (see Fig 3). In this correspondence, the lines of the vertex
model play the role of gradient lines. There is also natural one-to-one
correspondence between the configurations of the model and the lozenge
tilings of the hexagon with a dent (see Fig 4).

The partition function of the model is defined in the usual manner by

Z =
∑

conf

M
∏

k=1

L
∏

µ=1

Wk,µ(conf),
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Figure 3. The configuration of the five-vertex model
shown in Fig 2 as a pile of cubes fitting in a box with-
out an L-shaped part (left) and the rule for the vertex
transformation (right).

Figure 4. Lozenge tiling corresponding to the configura-
tion of the five-vertex model shown in Fig 2.

where we perform summation over all possible configurations of the model
and Wk,µ(conf) stands for the Boltzmann weight of the vertex at the in-
tersection of kth horizontal and µth vertical line, Wk,µ(conf) = wi (i =
1, 3, 4, 5, 6 depending on the configuration). We are interested in the case of
the inhomogeneous model when Boltzmann weights are site dependent. We
associate the parameter uµ, where µ = 1, . . . , L to each vertical line and
parameter ξk, where k = 1, . . . ,M to each horizontal line (we count lines
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from right to left and from top to bottom) and set Wk,µ(conf) = wi(uµ/ξk),
where the value of i is determined by the configuration. We consider the
model with functions wi(u) defined by

w1(u) =
α

∆

(

u−
1

u

)

, w3(u) =
u

α
, w4(u) = αu, w5(u) = w6(u) = 1.

(2.1)

§3. Determinant representations for the partition

function

Let us recall some basics of the Quantum Inverse Scattering Method
(QISM) [17] and show how to utilize it to obtain determinant representa-
tions for the partition function of the inhomogeneous five-vertex model.

We first assign a copy of the vector space C2 to each vertical and hori-
zontal line of the lattice. Depending on wheter the edge is empty or there
is a path flowing through it, we denote the corresponding state by the
vectors |0〉 (empty edge) or |1〉 (edge with path) defined in a standard way
as

|0〉 =

(

1
0

)

, |1〉 =

(

0
1

)

.

The Boltzmann weight of the vertex at the intersection of the µth vertical
and kth horizontal line can be represented as a matrix element of the
operator Lµ,k, which acts non-trivially on the direct product of two spaces:
“vertical” space Vµ and “horizontal” space Hk. The operator Lµ,k has the
form

Lµ,k = w1

(

1 + τzµ
2

)(

1 + σz
k

2

)

+ w3

(

1− τzµ
2

)(

1 + σz
k

2

)

+ w4

(

1 + τzµ
2

)(

1− σz
k

2

)

+ w5 τ
−
µ σ+

k + w6 τ
+
µ σ−

k ,

where τkµ and σi
k (i = +,−, z) denote operators acting as Pauli matrices

in Vµ and Hk respectively. The explicit form of the operator Lµ,k in the
standard tensor product basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉 reads

Lµ,k =









w1 0 0 0
0 w4 w6 0
0 w5 w3 0
0 0 0 0









[Vµ⊗Hk]

.
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Recall that the Boltzmann weights wi depend on the ratio of two param-
eters: uµ (associated with µth vertical line) and ξk (associated with kth
horizontal line).

The integrability of the model is based on the fact that the L-operator
satisfies the intertwining relation (RLL-relation), that is

Rµ,ν(u, v)Lµ,k(u, ξ)Lν,k(v, ξ) = Lµ,k(v, ξ)Lν,k(u, ξ)Rµ,ν(u, v), (3.1)

where Rµ,ν(u, v) is an operator acting non-trivially in Vµ ⊗ Vν . In the
tensor product basis this operator reads

Rµ,ν(u, v) =









f(v, u) 0 0 0
0 g(v, u) 1 0
0 0 g(v, u) 0
0 0 0 f(v, u)









[Vµ⊗Vν ]

, (3.2)

where

f(v, u) =
∆v2

v2 − u2
, g(v, u) =

∆vu

v2 − u2
. (3.3)

Next we define the quantum monodromy matrix as an ordered product
of L-operators over auxiliary space (in our case this is the space associated
with the vertical line)

Tµ(uµ; ξ1, . . . , ξM ) = Lµ,M (uµ, ξM ) · · · , Lµ,2(uµ, ξ2)Lµ,1(u, ξ1), (3.4)

or as a matrix in the space Vµ

Tµ(uµ; ξ1, . . . , ξM ) =

(

A(uµ; ξ1, . . . , ξM ) B(uµ; ξ1, . . . , ξM )
C(uµ; ξ1, . . . , ξM ) D(uµ; ξ1, . . . , ξM )

)

[Vµ]

.

The entries A, . . . , D are operators acting in the space H =
⊗M

k=1 Hk =
(

C2
)⊗M

. For the graphical representation of this operators see Fig 5.
Applying (3.1) to (3.4) M times we find that the monodromy matrix

also satisfies the intertwining relation

Rµ,ν(u, v)Tµ,k(u)Tν,k(v) = Tµ,k(v)Tν,k(u)Rµ,ν(u, v). (3.5)

To shorten the notation here and subsequently in this section we omit the
arguments ξ1, . . . , ξM . The equation (3.5) defines commutation relations
between the A-, B-, C- and D-operators. The most important are

X(u)X(v) = X(v)X(u), X ∈ {A,B,C,D}, (3.6a)
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Figure 5. The graphical representation of the entries of
the quantum monodromy matrix.

and

C(v)D(u) = f(v, u)D(u)C(v) + g(u, v)D(v)C(u), (3.6b)

C(v)A(u) = f(u, v)A(u)C(v) + g(v, u)A(v)C(u), (3.6c)

A(u)B(v) = f(u, v)B(v)A(u) + g(v, u)B(u)A(v), (3.6d)

D(u)B(v) = f(v, u)B(v)D(u) + g(u, v)B(u)D(v). (3.6e)

With the help of (3.6) we find how A- and D-operators acts on an off-shell
Bethe state. We formulate this result as the following Lemma.

Lemma 1. Let a(u) and d(u) be vacuum eigenvalues of the A- and D-
operators respectively, i.e.,

A(u) |Ω〉 = a(u) |Ω〉 , 〈Ω|A(u) = 〈Ω| a(u),

D(u) |Ω〉 = d(u) |Ω〉 , 〈Ω|D(u) = 〈Ω| d(u).

Then the following relations are valid:

A(un+1)

n
∏

j=1

B(uj) |Ω〉

=

n+1
∑

i=1

a(ui)
g(ui, un+1)

f(ui, un+1)

n+1
∏

j=1
j 6=i

f(ui, uj)

n+1
∏

j=1
j 6=i

B(uj) |Ω〉 (3.7a)
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and

〈Ω|

n
∏

j=1

C(uj)D(un+1)

=

n+1
∑

i=1

d(ui)
g(un+1, ui)

f(un+1, ui)

n+1
∏

j=1
j 6=i

f(uj, ui) 〈Ω|

n+1
∏

j=1
j 6=i

C(uj). (3.7b)

Proof. Let us consider relation (3.7a). The commutation relation (3.6d)
allows us to “move” the A-operator through the B-operators, and after
using the standard technique of algebraic Bethe Ansatz we get

A(un+1)

n
∏

j=1

B(uj) |Ω〉 = a(un+1)

n
∏

j=1

f(un+1, uj)

n
∏

j=1

B(uj) |Ω〉

+

n
∑

i=1

a(ui)g(ui, un+1)

n
∏

j=1
j 6=n

f(ui, uj)B(un+1)

n
∏

j=1
j 6=i

B(uj) |Ω〉 .

Then we note that f(u, v)/g(u, v) = u/v and hence f(u, u)/g(u, u) = 1.
Thus the terms on the right hand side can be combined into a single sum,
which is exactly (3.7a).

The relation (3.7b) follows from (3.6b) in a similar way. �

Let us now state the main result.

Theorem 1. Let A(u), B(u), C(u) and D(u) be operators satisfying com-
mutation relations (3.6) and a(u) and d(u) be vacuum eigenvalues of the
operators A(u) and D(u) respectively,

A(u) |Ω〉 = a(u) |Ω〉 , D(u) |Ω〉 = d(u) |Ω〉 ,

then the matrix element Sn,m,l defined by

Sn,m,l(u1, . . . , uL)

= 〈Ω|

n
∏

j=1

C(un+l+m+j)

m
∏

j=1

D(un+l+j)

l
∏

j=1

A(un+j)

n
∏

j=1

B(uj) |Ω〉 (3.8)
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admits two equivalent determinant representations. The first one reads

Sn,m,l(u1, . . . , uL) = ∆(n+m+l)n
l

∏

j=1

un+j

m
∏

j=1

u−1
n+l+j

×

n+l
∏

j=1

u−2m
j

∏

16i<j6L

1

u2
j − u2

i

detVn,m,l, (3.9)

where Vn,m,l is an L× L matrix, L = 2n+m+ l, with entries

(Vn,m,l)ij =



















d(uj)u
2i−1
j

n+l
∏

k=1

(

u2
k − u2

j

)

, i = 1, . . . ,m,

d(uj)u
2i−1
j , i = m+ 1, . . . , n+m,

a(uj)u
2i−3
j , i = n+m+ 1, . . . , L.

(3.10)

The second representation reads

Sn,m,l(u1, . . . , uL) = ∆(n+m+l)n
l

∏

j=1

un+j

m
∏

j=1

u−1
n+l+j

×

n+m
∏

j=1

u2l
n+l+j

∏

16i<j6L

1

u−2
j − u−2

i

detWn,m,l, (3.11)

where Wn,m,l is an L× L matrix, L = 2n+m+ l, with entries

(Wn,m,l)ij=



















a(uj)u
−2i+1
j

n+m
∏

k=1

(

u−2
n+l+k−u−2

j

)

, i = 1, . . ., l,

a(uj)u
−2i+1
j , i= l + 1, . . ., n+ l,

d(uj)u
−2i+3
j , i=n+l+1, . . ., L.

(3.12)

Before proceeding with the proof we note (see Fig. 5) that the partition
function of the five-vertex model with considered boundary conditions (see
Fig 2) can be represented as

Z(u1, . . . , uL; ξ1, . . . , ξM ) = Sn,m,l(u1, . . . , uL),

with functions a(u) and d(u) defined in accordance with (2.1) as

a(u) =
αM

∆M

M
∏

j=1

(

u

ξj
−

ξj
u

)

, d(u) =
1

αM

M
∏

j=1

u

ξj
.
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We emphasize that Theorem 1 holds for any operators satisfying the
algebra defined by (3.5) with R-matrix (3.2). For example the same de-
terminant representations are valid for the four-vertex model [18] and the
non-Hermitian phase model [19] (for more examples of such models we
refer the reader to [21]).

The rest of the section is devoted to the proof.
We first recall the results of [16] where determinant representations for

the matrix elements Sn,m,0 and Sn,0,l were obtained. Namely

Sn,m,0 = ∆(n+m)n
m
∏

j=1

u−1
n+j

∏

16i<j6L

1

u2
j − u2

i

detQn+m,n (3.13)

and

Sn,0,l = ∆(n+l)n
l

∏

j=1

un+j

∏

16i<j6L

1

u2
j − u2

i

detQn,n+l, (3.14)

where

(Qab)ij =

{

d(uj)u
2i−1
j , i = 1, . . . , a,

a(uj)u
2i−3
j , i = a+ 1, . . . , a+ b.

To shorten the notation here and subsequently we omit the arguments of
Sn,m,l(u1, . . . , ul).

We start with the representation (3.9). The proof is by induction on m.
If m = 0 then (3.9) and (3.14) are exactly the same. Therefore the base
case is verified and we can proceed with the inductive step and prove that
(3.9) holds for some n, m, l assuming that it is valid for n, m− 1, l.

From (3.8) and (3.7b) we find that Sn,m,l satisfy the following recurrence
relation:

Sn,m,l =

L
∑

i=L−n

d(ui)
g(uL−n, ui)

f(uL−n, ui)
Sn,m−1,l(\ui)

L
∏

j=L−n
j 6=i

f(uj, ui). (3.15)

Here Sn,m−1,l(\ui) stands for the matrix element (3.8) with the operator
D(ui) being excluded.
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Now we need to prove that (3.9) is a solution of (3.15). Substituting
(3.9) into (3.15) yields

Sn,m,l = ∆(n+m+l−1)n
l

∏

j=1

un+j

m−1
∏

j=1

u−1
n+l+j

n+l
∏

j=1

u
−2(m−1)
j

×

L
∑

i=L−n

d(ui)
g(uL−n, ui)

f(uL−n, ui)

L
∏

j=L−n
j 6=i

f(uj, ui)
∏

16k<j6L
j,k 6=i

1

u2
j − u2

k

detVn,m−1,l(\ui).

(3.16)

where Vn,m−1,l(\ui) is the (L − 1) × (L − 1) matrix obtained from the
matrix Vn,m,l by dividing every column by u2

j , where j = 1, . . . , L denote
the column number, and then removing the first row and the ith column.

Substituting the explicit formulae for the functions f(u, v) and g(u, v)
(3.3) into (3.16) we get

Sn,m,l = ∆(n+m+l)n
l

∏

j=1

un+j

m
∏

j=1

u−1
n+l+j

n+l
∏

j=1

u
−2(m−1)
j

×

L
∑

i=L−n

uid(ui)

L
∏

j=L−n
j 6=i

u2
j

u2
j − u2

i

∏

16k<j6L
j,k 6=i

1

u2
j − u2

k

detVn,m−1,l(\ui).

(3.17)

After some simple algebraic manipulations we rewrite (3.17) as

Sn,m,l = ∆(n+m+l)n
l

∏

j=1

un+j

m
∏

j=1

u−1
n+l+j

∏

16k<j6L

1

u2
j − u2

k

n+l
∏

j=1

u−2m
j

×

∏L
j=1 u

2
j

∏m−1
j=1 un+l+j

L
∑

i=L−n

(−1)i
d(ui)

ui

n+l+m−1
∏

j=1

(u2
j − u2

i ) detVn,m−1,l(\ui).

(3.18)

Note that we can add to the sum in (3.18) all terms with i < L since they
are equal to zero. Thus this sum is nothing but a minor expansion of the
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determinant Ṽn,m,l with elements

(

Ṽn,m,l

)

ij
=



































d(uj)
uj

n+l+m−1
∏

k=1

(u2
k − u2

j), i = 1,

d(uj)u
2i−3
j

n+l
∏

k=1

(u2
k − u2

j), i = 2, . . . ,m,

d(uj)u
2i−3
j , i = m+ 1, . . . , n+m,

a(uj)u
2i−5
j , i = n+m+ 1, . . . , L.

The elements of the first row are equal to d(uj)u
−1
j

n+l
∏

j=1

(u2
j − u2

k) times

polynomial of degree m − 1 with respect to u2
j . Therefore after rows sub-

stitution we can remove all terms except of the
m−1
∏

j=1

u2
n+l+j . After factoring

this term out of the determinant and then moving u2
j from the prefactor

L
∏

j=1

u2
j to the jth column of the matrix we see that

∏L
j=1 u

2
j

∏m−1
j=1 un+l+j

det Ṽn,m,l = detVn,m,l.

This completes the proof.
This method carries over to the representation (3.11) with minor changes.

The proof is by induction on l, with (3.13) being the base; the inductive
step is based on recurrent relation

Sn,m,l =

n+1
∑

i=1

a(ui)
g(ui, un+1)

f(ui, un+1)
Sn,m,l−1(\ui)

n+1
∏

j=1
j 6=i

f(ui, uj),

which follows from (3.7a). The detailed verification is left to the reader.
Finally we note that the equivalence of the representations (3.9) and

(3.11) can be verified explicitly, i.e. the identity

∏

16i<j6L

1

u2
j − u2

i

n+l
∏

j=1

u−2m
j detVn,m,l

=

n+m
∏

j=1

u−2l
n+l+j

∏

16i<j6L

1

u−2
j − u−2

i

detWn,m,l (3.19)
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holds for arbitrary functions a(u) and d(u). To see this we first note that
the both sides of (3.19) has the form

∑

σ∈Sn

Cσa(uσ(1)) . . . a(uσ(n+l))d(uσ(n+l+1)) . . . d(uσ(L)),

where summation is performed over all elements of the symmetric group
Sn, and the coefficients Cσ depend on the parameters u1, ..., uL. Then by
straightforward calculation one can show that coefficients on the RHS and
LHS of (3.19) are the same.

§4. The model at the free-fermion point

In this section we consider the special limit of the five-vertex model (the
free-fermionic limit) [22]. Namely, we introduce new parameters xj and νk
defined by

uj = exj∆/2, j = 1, . . . , L, ξk = eνk∆/2, k = 1, . . .M.

and then take a limit ∆ → 0. The Boltzman weight of the vertex at the
intersection of kth horizontal and µth vertical line now equals w∆=0

i (xµ −
νk), where the value of i is determined by the configuration (i = 1, 3, 4, 5, 6)
and the functions w∆=0

i (x) in accordance with (2.1) are given by

w∆=0
1 (x) = αx, w∆=0

3 (x) = α−1, w∆=0
4 (x) = α,

w∆=0
5 (x) = w∆=0

6 (x) = 1.
(4.1)

The model with weights (4.1) at α = 1 can be used for the definition
of Schur functions [20]. Therefore the determinant representations for the
partition function imply summation formulae for Schur functions (for the
exact result see Proposition 1). To see this we set all inhomogeneity pa-
rameters associated with horizontal lines to be zeros νk = 0, where k =
1, . . . ,M .

The partition function of the partially homogeneous model at the free-
fermion point reads

Z∆=0(x1, . . . , xL)

= lim
∆→0

Z
(

ex1∆/2, . . . , exL∆/2; eν1∆/2, . . . , eνM∆/2
)∣

∣

∣

ν1=...=νM=0
.

The “classic” way to define Schur function corresponding to the integer
partition λ = (λ1, . . . , λN ), where λ1 > λ2 > . . . > λN , is by the ratio of
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two determinants

sλ(x1, . . . , xN ) =
det16i,j6N

[

xλi+N−i
j

]

det16i,j6N

[

xN−i
j

] . (4.2)

To reproduce the “lattice” definition we recall the branching rule

sλ(x1, . . . , xN ) =
∑

µ :µ≺ℓ

sµ(x1, . . . , xN−1)x
|λ|−|µ|
N , (4.3)

where |λ| =
∑N

i=1 λi, |µ| =
∑N−1

i=1 µi and summation is performed over all
partitions µ interlaced with λ, i.e.

λ1 > µ1 > λ2 > . . . > µN−1 > λN .

Applying (4.3) N times we obtain

sλ(x1, . . . , xN ) =
∑

()=λ0≺λ1···≺λN=λ

N
∏

j=1

x
|λj |−|λj−1|
j . (4.4)

This summation can be represented graphically in terms of lozenge
tilings, which are a tilings of a domain on a regular triangular lattice
by rhombi of three different types (see Fig. 6). Given the partition λ =
(λ1, . . . , λN ) we define domain to be a trapezoid of the size N × λ1 with
N “tooths” at the left boundary, with z-coordinates λi+N − i (see Fig 7).
Note that each tiling of this domain can be encoded by the set of interlac-
ing partitions λ1 ≺ λ2 ≺ . . . ≺ λN = λ. To do this we shift all numbers
λj
k to λj

k +N − i and interpret them as a z-coordinates of the lozenges of
the first type with y-coordinate being equal to j. It can be easily seen that
∣

∣λj+1
∣

∣ −
∣

∣λj
∣

∣ is just the number of the lozenges of the third type with y-
coordinates being equal to j+1/2. Therefore by assigning to this lozenges
weight xj we reproduce the branching rule (4.3).

Figure 6. Three types of lozenges.
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Figure 7. The domain corresponding to the partition λ =
(7, 3, 1) (left) and tiling encoded by λ1 = (3), λ2 = (5, 2),
λ3 = (7, 3, 1) with the weight x3

1x
4
2x

4
3 (right).

Finally we note that one can easily generalize (4.4) and introduce skew
Schur functions

sλ/µ(xk, . . . , xN ) =
∑

µ=λk≺···≺λN=λ

N
∏

j=k

x
|λj|−|λj−1|
j ,

where µ = (µ1, . . . , µk) is a partition of the length k. In terms of lozenge
tilings this corresponds to the tilings of trapezoidal domain with “tooths”
on both sides (k on the right and N on the left).

The discussed graphical representation allows us to represent the par-
tition function of the model as a sum of Schur functions. Note that in all
configurations, the number of vertices of the first type is fixed (equal to
M(l + n) − n(l + m + n)), as well as the difference between the number
of vertices of 3th and 4th type (equal to ln− (M − n)(l + n)). Hence the
dependence of the partition function on α is reduced to the overall factor
αM(l−m). Therefore for the partition function we have

Z∆=0 = αM(l−m)
∑

µ∈M

sµ(x1, . . . , xn+l)sλ/µ(xn+l+1, . . . , xL), (4.5)

where λ = (λ1, . . . , λL) is a partition with elements

λj =

{

M −m− n, j 6 n+ l,

0, j > n+ l,
(4.6)
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and the summation is is performed over set M of all partitions µ =
(µ1, . . . , µn+l) such that first l elements of the partition µ are equal to
M − n and the rest n elements are not greater than M −m− n, i.e.

µj =

{

M − n, j 6 l,

µ̃j−l j > l,
(4.7)

where µ̃ = (µ̃1, . . . , µ̃n) is a partition with elements µ̃j 6 M − m − n.
The configuration shown in Fig 4 corresponds to the term with µ =
(9, 9, 9, 9, 9, 2, 1, 0).

On the other hand the partition function can be evaluated by taking
the limit ∆ → 0 in Theorem 1.

Proposition 1. Let λ = (λ1, . . . , λL) and be a partition with elements de-
fined by (4.6) and M be a set of all partitions µ = (µ1, . . . , µn+l) satisfying
(4.7). Then the following summation formulae are valid

∑

µ∈M

sµ(x1, . . . , xn+l)sλ/µ(xn+l+1, . . . , xL)

=
∏

16i<j6L

1

xi − xj
detVn,m,l =

∏

16i<j6L

1

xi − xj
detWn,m,l,

where Vn,m,l and Wn,m,l are L×L matrices (L = 2n+m+ l) with elements

(Vn,m,l) =



















xM+n+l−i
j , i = 1, . . . , n+ l,

xL−m−i
j , i = n+ l + 1, . . . , L−m,

xL−i
j

n+l
∏

k=1

(xk − xj), i = L−m+ 1, . . . , L,

(4.8)

and

(Wn,m,l)ij =



















xM+l−i
j

n+m
∏

k=1

(xj − xn+l+k), i = 1, . . . , l,

xM+l+n−i
j , i = l + 1, . . . , n+ l,

xL−i
j , i = n+ l + 1, . . . , L.

(4.9)

Proof. The proof is by straightforward calculation. First we expand the
entries of (3.10) in Taylor series as ∆ → 0, set all the inhomogeneity
parameters νk to be equal to 0, then perform row substitution and “reflect”
the matrix (i 7→ L− i + 1). After that transformations we find that (3.9)
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reads

Z∆=0 = αM(l−m)
∏

16i<j6L

1

xi − xj
detVn,m,l,

where the matrix Vn,m,l is exactly the one defined by (4.8).
In the similar way from (3.11) and (3.12) we obtain

Z∆=0 = αM(l−m)
∏

16i<j6L

1

xi − xj
detWn,m,l,

where the matrix Wn,m,l is defined by (4.9).
To complete the proof we use (4.5). �

Note that if m = 0 then detVn,m,l is exactly the numerator in the clas-
sical definition of the Schur function (4.2) corresponding to the partition λ
defined by (4.6). Therefore we are left with the well-known decomposition
formula

sλ(x1, . . . , xL) =
∑

µ

sµ(x1, . . . , xn+l)sλ/µ(xn+l+1, . . . , xL),

where summation is performed over all partitions µ of the size n+ l. The
condition (4.7) is satisfied automatically due to combinatoric constraints.
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