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Abstract. We consider the four-vertex model on a finite domain
of the square lattice with the so-called scalar-product boundary con-
ditions. It can be described in terms of non-intersecting lattice paths
which are additionally restricted in their propagation in one of the
two spacial directions. We compute the one-point function measur-
ing the probability to obtain a path on a given lattice edge. We also
relate this function with another one-point function which can be
regarded as a local anti-ferroelectric order parameter.

§1. Introduction

The four-vertex model is a special case of the six-vertex model in which
two vertex configurations are frozen out. It was originally introduced in
relation with a random tiling model on a cylinder and an infinite strip
with free boundary conditions [1, 2]. In the case of finite-size lattices with
special choice of fixed boundary conditions it can be related to boxed plane
partitions with additional restrictions [3–5].

It is well-known, that the boxed plane partitions exhibit phase separa-
tion or “Arctic Circle” phenomena [6]. In more general settings, the same
problem can be formulated in terms of the five-vertex model [7]. At its free-
fermion point, this model is equivalent to the boxed plane partitions [8].
The four-vertex model can be seen as another special case of the five-vertex
model. This case is very interesting, since due to the fixed boundary con-
ditions it corresponds to maximizing the number of vertices typical for an
anti-ferroelectric order.

In the present paper, motivated by this observation, we compute the
one-point function in the four-vertex model on the finite lattice. Specifi-
cally, we consider the boundary conditions such that the partition function
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can be given in terms of a scalar product of the off-shell Bethe states. For
this reason we call them “scalar product” boundary conditions (in [7] they
are referred to as “boxed plane partitions” ones). We consider the homo-
geneous model and compute the one-point function which corresponds to
a local density operator. Equivalently, it can be defined as the probability
of obtaining a path on the given edge, in the language of non-intersecting
lattice paths. We show that for the four-vertex model this one-point func-
tion can be related with another one-point function, which can be used as
a local anti-ferroelectric order parameter.

The paper is organized as follows. In Sec. 2 we define the model and
compute the partition function. In Sec. 3 we compute the one-point func-
tion. In Sec. 4 we apply our results to study the anti-ferroelectric order in
the model.

§2. The partition function

We define the four-vertex model as the six-vertex model in which the
second and fourth vertices are frozen out, see Fig. 1.

We consider the model on an M × 2N square lattice with the fixed
boundary conditions defined as follows. Using the standard arrow language,
we require that all arrows on the external edges are right or up arrows,
except on the last N vertical lines at the top boundary and the first N
vertical lines of the bottom boundary, where all arrows must be down
arrows, see Fig. 2a.

In the equivalent description of local states in terms of solid lines (the
edge has the solid line if it contains the left or down arrow, and empty
otherwise), the configurations of the four-vertex model are represented
in terms of non-intersecting lattice paths with the additional condition
that they cannot propagate freely along the horizontal direction (since the
fourth type of vertices are forbidden), see Fig. 2b. It can be easily seen
that nontrivial configurations exist only if M > 2N − 1.

As usual for a vertex model, the partition function of the four-vertex
model is defined as the sum over all possible arrow configurations,

Z =
∑

C

aνa(C)bνb(C)cνc(C),

where νw(C), w = a, b, c, denotes the number of vertices with the Boltz-
mann weight w in the configuration C. A peculiar feature of the four-vertex
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a 0 b 0 c c

Fig. 1. The six types of vertex configurations in terms of
arrows, lines, and their Boltzmann weights in the four-
vertex model.

N

M

N
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Fig. 2. An M × 2N lattice with scalar-product boundary
conditions.

model with arbitrary fixed boundary conditions (in opposite to open or pe-
riodic ones), is that all νw(C) are independent of C. This follows from the
rather general property of the six-vertex model that if the boundary con-
ditions are fixed, then its first and second, third and fourth, fifth and sixth
vertices can appear in configurations only in pairs, see, e.g., a detailed
discussion in [9]. Specifically, in our case we have

νa = νb = (M −N)N, νc = 2N2.
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Fig. 3. Graphical interpretation of the functions

Ψ̃3(r1, r2, r3) and Ψ3(r1, r2, r3), respectively. The sum-
mation over all admissible path configurations on the
dashed edges is assumed.

This means that we can completely ignore values of the Boltzmann weights,
e.g., setting them all equal to one, a = b = c = 1, and focus on counting
path configurations.

To indicate the fact that the partition function depends on geometric
parameters of the lattice, we will denote in ZM,N . It can be written as a
scalar product:

ZM,N =
∑

16r1<...<rN6M

Ψ̃N (r1, . . . , rN )ΨN (r1, . . . , rN ).

Here, Ψ̃N (r1, . . . , rN ) and ΨN (r1, . . . , rN ) are N -paths “wave functions”,
and r1, . . . , rN are coordinates of the paths on the right and left boundaries
of the left and right M × N lattices, respectively, see Fig. 3. The two
functions are related by

Ψ̃N(r1, . . . , rN ) = ΨN (M − rN + 1, . . . ,M − r1 + 1).

Note that we count horizontal lines from the top to bottom and that the
arguments of the functions are strictly ordered.

More generally, one can write the partition function by dividing the
lattice on two unequal portions, having N − s and N + s vertical lines,
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r1

r2

Fig. 4. Graphical interpretation of the function Ψ1,3(r1, r2).

respectively. In this way, we have

ZM,N =
∑

16r1<...<rN−s6M

Ψ̃N−s(r1, . . . , rN−s)Ψs,N (r1, . . . , rN−s), (1)

where Ψ̃N−s(r1, . . . , rN−s) is defined as above, and Ψs,N(r1, . . . , rN−s) is
a generalized ‘wave function’ corresponding to the M × (N + s) lattice
with N paths exiting at left boundary and s paths exiting at the bottom
boundary, see Fig. 4.

We have the following explicit formulas.

Proposition 1. The ‘wave function’ of the four-vertex model is given by

Ψs(r1, . . . , rs) =
1

∏s−1
k=1 k!

∏

16i<j6s

(rj − ri − j + i). (2)

Proposition 2. The modified wave function admits the following repre-

sentation

Ψs,N(r1, . . . , rN−s) =

∏s−1
k=1 k!∏N

k=1(s+ k − 1)!

s∏

i,j=1

(M −N + 1 + i− j)

×

N−s∏

j=1

s∏

k=1

(rj − j − s+ k)(M −N + k − rj + j)

×

∏

16i<j6N−s

(rj − ri − j + i). (3)
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In order not to interrupt out considerations, we give proofs of these two
propositions in appendix A.

It is to be mentioned that these expressions for wave-functions can also
be obtained as special homogeneous limits from the Schur functions [10],
and, even more generally, in the context of the Quantum Inverse Scattering
Method [11], from the off-shell Bethe states [5, 12].

As a simple corollary of Prop. 2, we have the following result for the
partition function

ZM,N = ΨN,N(·) =

∏N−1
k=1 k!

∏N

k=1(N + k − 1)!

N∏

i,j=1

(M −N + 1 + i− j)

= B(N,N,M + 1− 2N). (4)

Here, B(a, b, c) denotes the number of boxed plane partition in the a×b×c
box (see, e.g., [13] and references therein).

§3. The one-point function

Now we turn to calculation of the one-point function. We denote it
GM,N (m,n) and define as the probability to obtain a path on the edge
located on the mth horizontal line, between the nth and (n+1)th vertical
lines, see Fig. 5.

Clearly, the path on the given edge is one out of n paths located between
the nth and (n+1)th vertical lines. Therefore, the one-point function can
be given as a sum [12] over ℓ = 1, . . . , n, where ℓ is the number of the path
which appear at the mth horizontal line, among these n paths,

GM,N (m,n) =
1

ZM,N

n∑

ℓ=1

ZM,N ;m,n;ℓ,

where ZM,N ;m,n;ℓ denote the sum over positions of the remaining n − 1
paths.

Let us focus on computing ZM,N ;m,n;ℓ. Exploiting the decomposition
(1), we have

ZM,N ;m,n;ℓ =
∑

16r1<...<rℓ−1<m
m<rℓ+1<...<rn6M

Ψ̃n(r1, . . . , rn)ΨN−n,N (r1, . . . , rn)

∣∣∣∣
rℓ=m

.
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n

m

Fig. 5. Definition of the one-point function GM,N (m,n).

Substituting here explicit expressions for the involved functions, see (2)
and (3), we get

ZM,N ;m,n;ℓ =

∏N−n−1
k=1 k!

∏N

k=1(k +N − n− 1)!
∏n−1

k=1 k!

N−n∏

i,j=1

(M −N + 1 + i− j)

×

∑

16r1<...<rℓ−1<m
m<rℓ+1<...<rn6M

n∏

j=1

N−n∏

k=1

(rj − j −N + n+ k)

× (M −N + k − rj + j)
∏

16i<j6n

(rj − ri − j + i)2
∣∣∣∣
rℓ=m

. (5)

Let us introduce new summation variables pj , j = 1, . . . , n − 1, defining
them as follows:

pj =

{
rj −m− j + ℓ, j = 1, . . . , ℓ− 1,

rj+1 −m− j − 1 + ℓ, j = ℓ, . . . , n− 1.

An important point need to be taken into account is that the summand
in (5) vanishes whenever rj+1 = rj + 1. Therefore in terms of the new
variables, the sum is performed over the following values:

−m+ ℓ 6 p1 < . . . < pℓ−1 < 0,

0 < pℓ < . . . < pn−1 6 M − n−m+ ℓ.
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As a result, we arrive at the following expression for the quantity (5):

ZM,N ;m,n;ℓ =

∏N−n−1
k=1 k!

∏N

k=1(N − n+ k − 1)!
∏n−1

k=1 k!

N−n∏

i,j=1

(M −N + 1 + i− j)

× µℓ(0)
∑

−m+ℓ6p1<...<pℓ−1<0
0<pℓ<...<pn−16M−n−m+ℓ

n−1∏

j=1

µℓ(pj)p
2
j

∏

16i<j6n−1

(pj − pi)
2. (6)

Here µℓ(p) ≡ µM,N ;m,n;ℓ(p) is following function:

µℓ(p) =

N−n∏

k=1

(p+m− ℓ −N + n+ k)(M −N + k − p−m+ ℓ). (7)

The final step in obtaining a closed expression for the one-point function
consists in observation that the sum in (6) is nothing but the sum over
minors in an expansion of a determinant of the sum of two matrices, namely

∑

p1<...<pℓ−1∈D
−

pℓ<...<pn−1∈D+

n−1∏

j=1

f(pj)
∏

16i<j6n−1

(pj − pi)
2

=
1

(ℓ − 1)!
∂ℓ−1
z det

16i,j6n−1

[(
z
∑

p∈D
−

+
∑

p∈D+

)
f(p)pi+j−2

]∣∣∣∣∣
z=0

.

Here, f(p) is a trial function and D± are two domains of values of the
integer variables. This is a rather well-known relation in the random matrix
theory, see, e.g. [14].

Summarizing, we formulate our main result concerning the one-point
function as follows.

Theorem 1. The one-point function GM,N (m,n) for the values m =
1, . . . ,M and n = 1, . . . , N , is given by the following expression

GM,N (m,n) =
CM,N ;n

CM,N ;0

n∑

ℓ=1

µℓ(0)

(ℓ− 1)!

× ∂ℓ−1
z det

16i,j6n−1

[(
z

−1∑

p=−m+ℓ

+

M−n−m+ℓ∑

p=1

)
µℓ(p)p

i+j

]∣∣∣∣∣
z=0

, (8)
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where

CM,N ;n =

∏N−n−1
k=1 k!

∏N

k=1(N − n+ k − 1)!
∏n−1

k=1 k!

N−n∏

i,j=1

(M −N + 1 + i− j),

and the function µℓ(p) = µM,N ;m,n;ℓ(p) is given by (7). The sums defining

entries of the determinant in (8) are assumed to be equal to zero whenever

the final value of the summation variable is less than the starting one.

Note that the quantity CM,N ;0 is equal to the partition function ZM,N ,
see (4).

§4. The c-weight vertex probability

To study distribution of the vertices of the fifth and sixth types (see
Fig. 1) in the configurations, it is useful to introduce the corresponding
correlation function. We will call it c-weight vertex probability and denote
HM,N(m,n). We define the function HM,N(m,n) as the probability of
having a c-weight vertex at the intersection of mth horizontal and nth
vertical lines of the M × 2N lattice (as usual, we focus on its left-hand
size part, m = 1, . . . ,M and n = 1, . . . , N), analogously to the one-point
function GM,N (m,n), see Fig 5.

In the general six-vertex model, the c-weight vertex probability requires
calculation of the two-point correlation function which measures states of
arrows on two horizontal (or vertical) edges attached to the same vertex.
The c-weight vertices are characterized by opposite directions of arrows on
these edges. However, in the case of the four-vertex model, since the vertex
of the fourth type is excluded (see Fig. 1), it is just sufficient to require
that a path must be present on either of the two horizontal edges of the
vertex. In other words, for the four-vertex model the following relation is
valid:

HM,N (m,n) = GM,N (m,n) +GM,N (m,n− 1). (9)

Here, we assume that GM,N (m, 0) ≡ 0 by construction.
Using formula (8), one can study the anti-ferroelectric order in the

model by making plots of these functions. We give an example of M = 55
and N = 20 in Fig. 6.

As for the function GM,N (m,n), see Fig. 6a, we find that it has strong
oscillating behavior, varying significantly from site to site almost every-
where. It implies that this function is not a proper order parameter for
the four-vertex model, contrary to the case of the free-fermion six-vertex
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Fig. 6. Density plots of the functions GM,N (m,n) and
HM,N (m,n) for M = 55, N = 20.

model, where the disordered phase dominates in the interior of the domain.
In that case the one-point function is smooth almost everywhere [15–19].

As for the function HM,N (m,n), see Fig. 6b, we find that it demon-
strates a smooth behavior almost everywhere. This can be easily seen es-
pecially when this function is 3D plotted, see Fig. 7. Thus, it is this function
that can be used as a proper order parameter to study configurations of
the four-vertex model.

Inspecting various cases, we find that the value of HM,N (m,n) in the
middle of the lattice (m ≈ M/2, n ≈ N) depends on the ratio M/N :
it decreases as M increases, and tends to 1 as M approaches the limit-
ing case M = 2N − 1, at which there exists just only one configuration,
demonstrating the total anti-ferroelectric order.

From the plots it is obvious that the model demonstrates phase sepa-
ration phenomena: the whole M × 2N lattice is divided on four regions
of the ferroelectric order and one region of the anti-ferroelectric order. As
Fig. 6b suggests, the curve separating these regions definitely is neither
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Fig. 7. Plot of the function HM,N (m,n), M = 55, N = 20.

an ellipse nor consists of any portions of it. Indeed, in the scaling limit
where M,N → ∞ with the ratio M/N kept fixed, this curve must tend,
as M/N → 2, to a square.

The plots also shows (see Fig. 7) that the function HM,N (m,n) has a
singular behavior near the curve separating phases. Presumably, it has a
step-wise behavior in the scaling limit, rather than the square root singu-
larity typical for the phase separation of order and disorder observed in
the six-vertex model (see, e.g., [18]). To obtain more detailed and precise
information one has to study expressions (8) and (9) in the scaling limit
(M,N,m, n are all large, with their ratios kept fixed).

Appendix §A. The wave functions

Here we will outline proofs of Prop. 1 and Prop. 2.
We start with noting that given the function Ψs(r1, . . . , rs), one can

obtain the function Ψs+1(r1, . . . , rs+1) by means of the relation

r2−1∑

l1=r1+1

. . .

rs+1−1∑

ls=rs+1

Ψs(l1, . . . , ls) = Ψs+1(r1, . . . , rs+1). (A.1)
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Graphically this corresponds to adding a column from the left to the s×
M lattice, see Fig. 8. The initial step assumes that Ψ1(r1) ≡ 1. Hence,
Ψ2(r1, r2) = r2 − r1 − 1. The remaining part is to show that the wave
function (2) is reproduced after applying (A.1).

An important property of the wave function Ψs(r1, . . . , rs) is that it
vanishes whenever rj+1 = rj + 1, j = 1, . . . , s− 1. This means that if we
introduce the variables

r̃j = rj + j,

then the new variables again form strictly increasing sequences, 0 6 r̃1 <
. . . < r̃s 6 M−s. Furthermore, we note that in the new variables the wave
function reads

Ψs(r1, . . . , rs) =
1

∏s−1
k=1 k!

∏

16i<j6s

(r̃j − r̃i).

Rewriting it as the Vandermonde determinant and manipulating with the
rows, we can bring it, among other ways, in the following form:

Ψs(r1, . . . , rs) = det
16i,j6s

[(
r̃j + i− 1

i− 1

)]
.

Using the well-known relation

n∑

l=0

(
l + i

i

)
=

(
n+ i+ 1

i+ 1

)
, (A.2)

we can now perform the sums in (A.1),

r̃2∑

l̃1=r̃1+1

. . .

r̃s+1∑

l̃s=r̃s+1

det
16i,j6s

[(
l̃j + i− 1

i− 1

)]

= det
16i,j6s

[(
r̃j+1 + i

i

)
−

(
r̃j + i

i

)]
= det

16i,j6s+1

[(
r̃j + i − 1

i− 1

)]
.

The last equality produces exactly the function Ψs+1(r1, . . . , rs+1), that
proves (A.1).

To prove Prop. 2, one has to show that (3) satisfies the relation

r1−1∑

l1=1

. . .

M∑

lN−s=rN−s−1+1

Ψs,N (l1, . . . , lN−s) = Ψs+1,N (r1, . . . , rN−s−1).
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r1
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r2

r3

=

Fig. 8. Graphical interpretation of obtaining the function
Ψ3(r1, r2, r3) from Ψ2(l1, l2); the summation over allowed
values of l1, l2 is assumed.

Calculations in this case are slightly more involved. We first write the
function Ψs,N (r1, . . . , rN−s) as a determinant. It is convenient to introduce
the following function of N variables:

ΦN (z1, . . . , zN ) = det
16i,j6N

[(
zj + i− 1

s+ i− 1

)]
. (A.3)

It is fairly easy to see that

Ψs,N(r1, . . . , rN−s) = ΦN (r̃1, . . . , r̃N−s, u1, . . . , us), (A.4)

where the variables with tildes are defined as usual, r̃j ≡ rj + j, and
uk ≡ M − N + k. Next, we perform summations, which in terms of the
variables with tildes reads

r̃1−1∑

l̃1=s

r̃2−1∑

l̃2=r̃1+1

. . .

M−N∑

l̃N−s=r̃N−s−1+1

.

Note that the first sum starts from s (and not 0) and the last sum ends
with M −N (and not M −N+s) since, as it follows from (A.3) and (A.4),
the function Ψs,N (r1, . . . , rN−s) vanishes at the values r̃1 = 0, 1, . . . , s− 1
and, independently, at r̃N−s = M − N + 1, . . . ,M − N + s. After per-
forming the sums using (A.2), the last step in obtaining the function
Ψs+1,N(r1, . . . , rN−s−1) can be achieved with the use of the identity

(
a

i+ 1

)
+

(
a

i

)
=

(
a+ 1

i+ 1

)
,
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applied to the last s columns of the determinant, in order to retain the
proper polynomial structure of all its N columns.
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