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Abstract. As an analog to the Riemann hypothesis, we prove that
the real parts of all complex zeros of the Krawtchouk polynomials,
as well as of the discrete Chebyshev polynomials, of order N = −1
are equal to − 1

2
. For these polynomials, we also derive a functional

equation analogous to that for the Riemann zeta function.

§1. Introduction

We recommend to consult [10] as a general reference on the Riemann
zeta function, which is defined as a series or as an Euler product

ζ(s) =

∞
∑

n=1

1

ns
=

∏

p∈P

1

1− 1
ps

, (1.1)

which both converge in the half-plane Re(s) > 1. There are many ways to
extend the domain of (1.1), one way of doing so is the functional equation

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1 − s), (1.2)

which extends ζ to the complex plane, except at s = 1 where ζ has a simple
pole with residue 1.

The famous Riemann hypothesis is closely associated to the distribution
of prime numbers, and asserts that all the nontrivial zeros of the Riemann
ζ-function have real part 1

2 . The hypothesis being true would have a great
impact on understanding the distribution of prime numbers.

The Riemann hypothesis is generally considered as one of the most
important open mathematical problems. It was highlighted by D. Hilbert
at the 1900 International Congress of Mathematicians, and one century

1A preliminary version of the article was presented at PCA 2021, St. Petersburg.
Key words and phrases: zeta function property, orthogonal polynomials, discrete

Chebyshev polynomials, Krawtchouk polynomials, functional equation.
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later, the Clay Mathematics Institute offered a million dollar prize for the
proof of the Riemann hypothesis [12].

Consequently, there have been many attempts to prove the Riemann hy-
pothesis true. One interesting approach originates from the Hilbert–Pólya
conjecture, which states that the nontrivial zeros of the Riemann ζ-function
are of the form ρk = 1

2 + itk where tk are the eigenvalues of a Hermitian
operator, and hence real [11]. Berry and Keating suggested explicitly that
such a self-adjoint operator could be a Hamiltonian xp. See [1] for the
references and further (still quite speculative) progress.

In this article, we study not the Riemann hypothesis, but families of
orthogonal polynomials which have a property similar to the Riemann hy-
pothesis: all the zeros lie on a line with a fixed real part. Our approach
is parallel to the Hilbert–Pólya conjecture, only with a technical differ-
ence that we associate the zeros under study to the eigenvalues of skew-
Hermitian operators.

§2. Preliminaries

2.1. On Hermitian operators. If H is a complex inner product space
and A is a linear mapping A : H → H , then the adjoint mapping A∗ is
defined as (x, Ay) = (A∗x,y). An operator is called self-adjoint, or Her-
mitian, if A∗ = A. In the matrix presentation, being Hermitian means
that the transpose of the complex conjugate of A coincides with A. Self-
adjoint mappings play a very special role in quantum mechanics, since
the states of quantum systems are described by unit-trace, self-adjoint
mappings having nonnegative spectrum. Also, (sharp) observables are de-
scribed as self-adjoint mappings [6].

An operator A is called skew-Hermitian if A∗ = −A. It is a well-known
fact that the eigenvalues of Hermitian operators are real [6], and it eas-
ily follows that the eigenvalues of skew-Hermitian operators are purely
imaginary, that is, of the form iλ where λ ∈ R.

2.2. On discrete orthogonal polynomials. Discrete orthogonal poly-
nomials are widely used in mathematics. Applications include combina-
torics, information theory, and numerical analysis. For a general treatise
on orthogonal polynomials, one can see [9].

Let N be a fixed integer. The set of real polynomials of degree 6 N
is denoted by R6N [x], and it clearly is a vector space with respect to the
obvious addition and scalar multiplication. Then, for a weight sequence
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(w0, w1, . . . , wN ), where wk > 0, the formula

(p, q) =

N
∑

k=0

wkp(k)q(k) (2.1)

defines an inner product on R6N [x].1 It is a well-known fact that the
polynomials {1, x, x2, . . . , xN} form a basis of R6N [x], and then the Gram–
Schmidt ortogonalization process guarantees that there is a sequence of
polynomials p0, p1, . . ., pN orthogonal with respect to (2.1) such that
deg(pi) = i [9].

However, it is good to note that an orthogonal sequence of polynomials is
not unique. Uniqueness cannot be reached by requiring the orthonormality,
meaning that the norms are all equal to 1. Uniqueness, if desired, can be
obtained, for example, by requiring the polynomials to be monic. However,
for many purposes there is no such need.

For any fixed N > 0, formula (2.1) defines some sequence of orthogonal
polynomials, which we call polynomials of order N . On the other hand,
formula (2.1) is meaningless for N < 0, but there is a way of defining
orthogonal polynomials for N < 0 as well. In fact, the orthogonality prop-
erty implies that the orthogonal polynomials satisfy a depth two recurrence
relation:

pn(x) = (αnx+ βn)pn−1(x)− γnpn−2(x), (2.2)

where αn, γn > 0. Descriptions of αn and γn are given in [9], and we will
see in the sequel how to use the recurrence to extend the definition to
values N < 0.

2.3. On tridiagonal matrices. For a more general treatise on tridiag-
onal matrices, we advise to consult [7, 13]. Here we mention their basic
properties.

Definition 1. An n× n matrix is called tridiagonal if it is of the form

1It is not necessary for the evaluation points to be {0, 1, 2, . . . , N}, any set of N + 1
numbers will do.
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An =





















m1 u1 0 0 · · · 0
l1 m2 u2 0 · · · 0
0 l2 m3 u3 · · · 0
...

...
. . .

. . .
. . .

...

0 0 0
. . . mn−1 un−1

0 0 0 · · · ln−1 mn





















. (2.3)

A tridiagonal matrix can be more compactly written as

An =





∗ u1 u2 . . . un−1

m1 m2 . . . mn−1 mn

l1 l2 . . . ln−1 ∗



 , (2.4)

or even more compactly as An = [u,m, l], where

m=(m1,m2, . . . ,mn−1,mn), u=(u1, u2, . . . , un−1), l=(l1, l2, . . . , ln−1)

represent the main diagonal and the upper and lower subdiagonals in An.
It is easy to see that the determinants det(An) = |An| of tridiagonal

matrices obey the recurrence

|An| = mn|An−1| − un−1ln−1|An−2| (2.5)

if we define |A−1| = 0, |A0| = 1 [7, 13].
The recurrence (2.5) is a direct link to orthogonal polynomials: letting

p−1(x) = 0, p0(x) = 1, mn = αnx + βn, un = 1, ln = γn+1, and pn(x) =
|An|, we have

pn(x) = (αnx+ βn)pn−1(x)− γnpn−2(x). (2.6)

This consideration is summarized in the following theorem.

Theorem 1. Let p−1 = 0, p0 = 1, and

pn(x) = (αnx+ βn)pn−1(x)− γnpn−2(x).

Then pn(x) can be represented as

pn(x) = det

















α1x+ β1 1 0 · · · 0
γ2 α2x+ β2 1 · · · 0

0 γ3
. . .

. . . 0
...

...
. . .

. . .
...

0 0 · · · γn αnx+ βn

















. (2.7)



RIEMANN HYPOTHESIS 177

Remark 1. As the tridiagonal matrix in (2.7) was chosen to satisfy the
relation un−1ln−1 = γn, it is clear that there are many other choices as
well. This can be understood in the sense that (infinitely many) similar
matrices share the same determinant and characteristic polynomial.

One very important property of tridiagonal matrices, used in the main
results of this study, is given by the Jacobi theorem.

Theorem 2 (Jacobi). If a (real) tridiagonal matrix A = [u,m, l] has
m = 0 and uklk < 0 for 1 6 k 6 n− 1, then A is diagonally similar to a
skew-Hermitian matrix S = D−1AD, where

D = diag(dk), d1 = 1,

dk = sgn(uk)

√

√

√

√

i=k−1
∏

i=1

abs
( li
ui

)

, 2 6 k 6 n− 1.
(2.8)

§3. On the Krawtchouk polynomials

The Krawtchouk polynomials have their combinatorial meanings only
for N > 0, but they can be as well defined for values N < 0. For general
information about the Krawtchouk polynomials, we refer to [8, 3], but here
we emphasize only three facts important for our considerations:

(1) The inner product giving rise to the Krawtchouk polynomials is

(p, q) =
N
∑

i=0

(

N

i

)

p(i)q(i).

(2) The recurrence relation for the Krawtchouk polynomials is

(r + 1)K
(N)
r+1(z) = (N − 2z)K(N)

r (z)− (N − r + 1)K
(N)
r−1(z), (3.1)

with initial terms K
(N)
0 (z) = 1, K

(N)
1 (z) = N − 2z. 2

(3) The generating function of the Krawtchouk polynomials is

TN,z(t) = (1 + t)N−z(1 − t)z =

∞
∑

r=0

K(N)
r (z)tr, z ∈ C. (3.2)

2The choice of this sequence, instead of, for example, monic polynomials, is justi-
fied by the combinatorial significance of this particular sequence. Also, the generating
function of this sequence becomes very elegant.



178 N. GOGIN, M. HIRVENSALO

Remark 2. Even though the inner product is meaningful only for N > 0,
it is evident that the recurrence and the generating function can be treated
as well for N < 0. It may, however, be true that there are no important
combinatorial interpretations of Krawtchouk polynomials with negative N ,
but in this study, we show that their zeros share the same real part.

By applying (2.7) to the recurrence (3.1), we obtain the following rep-
resentation:

K
(N)
k (z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2z +N 1 0 0 · · · 0
N
2

−2z+N
2 1 0 · · · 0

0 N−1
3

−2z+N
3 1 · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · −2z+N
k−1 1

0 0 0 · · · N−k
k

−2z+N
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

k!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2z +N 1 0 · · · 0
N −2z +N 2 · · · 0
...

...
. . .

. . .
...

0 0 · · · −2z +N k − 1
0 0 · · · N − k −2z +N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.3)

i.e, the diagonals of this tridiagonal matrix are, ignoring the factor 1
k! , as

follows: u = (j), m = (−2z + N), l = (N − j + 1), where j runs from 1
to k − 1.

3.1. An analog of the Riemann hypothesis for the Krawtchouk

polynomials.

Theorem 3. For N = −1, the zeros of the Krawtchouk polynomials lie
on the line Re(z) = − 1

2 .

Proof. For N = −1, formula (3.3) becomes

K
(−1)
k (z) =

1

k!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2z − 1 1 0 0 . . . 0
−1 −2z − 1 2 0 . . . 0
0 −2 −2z − 1 3 . . . 0
0 0 −3 −2z − 1 . . . 0
. . . . . . . . . . . . . . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(3.4)
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and upon substituting w = 2z + 1 the equality K
(−1)
k (z) = 0 becomes

equivalent to

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−w 1 0 0 0 . . . 0
−1 −w 2 0 0 . . . 0
0 −2 −w 3 0 . . . 0
0 0 −3 −w 4 . . . 0
. . . . . . . . . . . . . . . . . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (3.5)

But (3.5) is, in fact, the eigenvalue equation of a tridiagonal matrix [u,0, l].
By the Jacobi theorem, the above matrix is similar to some skew-symmetric
matrix, and hence all its eigenvalues are purely imaginary. It follows that
each w which satisfies the above equation is of the form iλ where λ ∈ R.
Hence, z = 1

2 (w − 1) = − 1
2 + iλ2 . �

§4. On the discrete Chebyshev polynomials

For the definition and properties of the discrete Chebyshev polynomials

D
(N)
r , we refer to [3]. Here again we point out three facts important for

our considerations:

(1) The inner product giving rise to the discrete Chebyshev polyno-
mials is

(p, q) =

N
∑

i=0

p(i)q(i).

(2) The recurrence relation for the discrete Chebyshev polynomials is

r2D(N)
r (z) = (2r−1)(N−2z)D

(N)
r−1(z)− (N+r)(N−r+2)D

(N)
r−2(z), (4.1)

with initial terms D
(N)
0 (z) = 1, D

(N)
1 (z) = N − 2z.

(3) The generating function is known and can be represented in two
equivalent forms [4]:

TN,z(t) = (1 + t)N−2z
∑

k

(

z

k

)(

z −N − 1

k

)

t2k (4.2)

and

TN,z(t) = (1− t)2z−N
∑

k

(

N − z

k

)(

−z − 1

k

)

t2k. (4.3)
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4.1. An analog of the Riemann hypothesis for the discrete Cheby-
shev polynomials. By applying (2.7) to the recurrence (4.1), we obtain
the following representation:

D
(N)
k

(z)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2z +N 1 0 · · · 0
N+2

4
N 3

4
(−2z +N) 1 · · · 0

..

.
..
.

. . .
. . .

..

.

0 0 · · · 2k−3
(k−1)2

(−2z +N) 1

0 0 · · · N+k

k2
(N − k − 2) 2k−1

k2
(−2z +N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

(k!2)
×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2z +N 1 0 · · · 0
(N + 2)N 3(−2z +N) 4 · · · 0

...
...

. . .
. . .

...
0 0 · · · (2k − 3)(−2z +N) (k − 1)2

0 0 · · · (N + k)(N − k − 2) (2k − 1)(−2z +N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(4.4)

Theorem 4. For N = −1, the zeros of the discrete Chebyschev polyno-
mials lie on the line Re(z) = − 1

2 .

Proof. For N = −1, formula (4.4) becomes

(k!)2D
(−1)
k

(z)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(2z + 1) 1 0 · · · 0
−1 · 3 −3(2z + 1) 4 · · · 0

.

..
.
..

. . .
. . .

.

..
0 0 · · · −(2k − 3)(2z + 1) (k − 1)2

0 0 · · · (1− k)(k + 3) −(2k − 1)(2z + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 3 · . . . · (2k − 3) · (2k − 1)×
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(2z + 1) 1 0 · · · 0

−1 −(2z + 1) 4
3

· · · 0
..
.

..

.
. . .

. . .
..
.

0 0 · · · −(2z + 1)
(k−1)2

2k−3

0 0 · · ·
(1−k)(k+3)

2k−1
−(2z + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.5)

By substituting w = 2z + 1, we see, as in the case of the Krawtchouk

polynomials, that the equality D
(−1)
k (z) = 0 is equivalent to the eigenvalue
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equation of a tridiagonal matrix satisfying the conditions of the Jacobi
theorem. Hence, the eigenvalues are purely imaginary, and the conclusion
follows exactly as in the case of the Krawtchouk polynomials. �

§5. Functional equations

Letting M(s) = 2sπs−1 sin(πs2 )Γ(s), we can rewrite the functional equa-
tion (1.2) again in the form

ζ(s) = M(s)ζ(1 − s).

Here we demonstrate that the Krawtchouk polynomials and discrete Cheby-
shev polynomials also satisfy a functional equation.

Theorem 5. The Krawtchouck polynomials K
(−1)
n (s) satisfy the func-

tional equation

K(−1)
n (−

1

2
+ σ) = (−1)nK(−1)

n (−
1

2
− σ).

Proof. For N = −1, the generating function of the Krawtchouk polyno-
mials becomes

T−1,z(t) = (1 + t)−1−z(1− t)z =
∞
∑

r=0

K(−1)
r (z)tr,

and, clearly,

T−1,1−z(t) = (1 + t)−1−(1−z)(1 − t)1−z = (1 + t)−2+z(1− t)1−z.

Also,

T−1,z−2(−t) = (1− t)−1−(z−2)(1 + t)z−2 = (1 + t)−2+z(1 − t)−z+1,

hence T−1,1−z(t) = T−1,z−2(−t), meaning that
∞
∑

r=0

K(−1)
r (1− z)tr =

∞
∑

r=0

K(−1)
r (z − 2)(−t)r.

Therefore, we have K
(−1)
r (1− z) = (−1)rK

(−1)
r (z − 2). Letting z = 3

2 − σ
yields the claim. �

Theorem 6. The discrete Chebyshev polynomials D
(−1)
n (s) satisfy the

functional equation

D(−1)
n (−

1

2
+ σ) = (−1)nD(−1)

n (−
1

2
− σ).

Proof. Similar to the proof for the Krawtchouk polynomials. �
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Conclusion

We have shown that a family of mathematically interesting polynomi-
als satisfies the Riemann hypothesis property. Analogous results have been
presented earlier (see, e.g., [2]), but our methods are far more straightfor-
ward and hence of larger interest.

The extension of the method is, evidently, applicable to other values
of N < 0 and also to other orthogonal polynomials for which βn/αn in
the recurrence (2.2) is constant. Studying the literature, we learn that this
condition is true for quite interesting families of orthogonal polynomials:
in fact, the Hahn, Meixner, and Charlier polynomials are included.
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