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SEMIFINITE HARMONIC FUNCTIONS ON
BRANCHING GRAPHS

ABsTrRACT. We study semifinite harmonic functions on arbitrary
branching graphs. We give a detailed exposition of an algebraic
method which allows one to classify semifinite indecomposable har-
monic functions on some multiplicative branching graphs. It was
suggested by A. Wassermann in terms of operator algebras, but we
rephrase, clarify, and simplify the main arguments working only with
combinatorial objects. This work was inspired by the theory of trace-
able factor representations of the infinite symmetric group S(0).

1. INTRODUCTION

The classical character theory of finite and compact groups can be gen-
eralized to other classes of groups and algebras in different ways. For groups
and C*-algebras not of type I, the character theory deals not with irre-
ducible representations, but with normal factor representations, i.e., homo-
morphisms to von Neumann algebras with a finite or semifinite trace. For
AF-algebras, one can reformulate the character theory in a combinatorial-
algebraic language, speaking about nonnegative harmonic functions on in-
finite graded graphs of a special type. Equivalently, one can treat these
harmonic functions as central measures on the space of monotone paths in
the graph. This approach was developed by A. M. Vershik and S. V. Kerov
in the late 70s — early 80s. Harmonic functions that take finite values only
lead to probability measures on the path space and correspond to factor
representations of finite types I,, and II;. The connection between har-
monic functions and normal factor representations motivates us to study
the so-called semifinite harmonic functions, which correspond to normal
factor representations of types I, and II,,. These functions must take the
value +00 and satisfy some natural condition, see Definition 3.5 below.

Key words and phrases: branching graphs, AF-algebras, semifinite traces, semifinite
harmonic functions.
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A. M. Vershik and S. V. Kerov classified semifinite harmonic functions
on the Young and Kingman graphs, see [7,9]. They solved this problem
using the so-called ergodic method, which involves an evaluation of a non-
trivial limit. This method can be applied to any branching graph, but
the main difficulty, which is not always easy to get over, is to compute
that limit. There is another approach, developed by A. Wassermann. In
his dissertation [18], he suggested to use a bijection between the faithfull
factor representations of a primitive C*-algebra and those of any closed
two-sided ideal of this C*-algebra, see [18, p. 143, Theorem 7|. Another
ingredient of Wassermann’s method requires that the Ky-group of the cor-
responding AF-algebra admit a compatible ring structure, see [18, p. 146,
Theorem 8]. Therefore, Wassermann’s method is applicable to some multi-
plicative graphs only, for which it may be extremely useful. A. Wassermann
applied his method to determine all indecomposable semifinite harmonic
functions on the Young graph and thereby proved the theorem of Vershik
and Kerov without the ergodic method or any other complicated analytic
computations.

This paper contains a detailed exposition of Wassermann’s method in
terms of algebraic combinatorics, unlike the original work [18, Chap. III,
Sec. 6], where the language of operator algebras was used. The combina-
torial setup allows us to clarify and simplify the main arguments of [18,
Chap. III, Sec. 6]. Furthermore, we work with a generalization of branch-
ing graphs, namely, we consider branching graphs with formal nonnegative
multiplicities on edges. Crucial statements of Wassermann’s method can
be found in [18, Chap. II1, Sec. 6], [5,16], and [7,10,11]. We prove them in a
completely combinatorial way. These statements, together with the original
argument of A.Wassermann, constitute a powerful method for determining
the indecomposable semifinite harmonic functions on those multiplicative
graphs for which the limit from the Vershik—Kerov ergodic method turns
out to be too complicated for an evaluation. The Macdonald graph, which
corresponds to the simplest Pieri rule for the Macdonald symmetric func-
tions, is a good example of such a graph. Using Wassermann’s method,
one can obtain an exhaustive list of semifinite indecomposable harmonic
functions on it, see Remark 5.8.

1.1. Organization of the paper. In Sec. 2, we introduce graded graphs
and discuss their ideals and coideals. In Sec. 3, we introduce semifinite har-
monic functions and prove some general facts about them. Section 4 deals
with semifinite harmonic functions on multiplicative branching graphs



116 N. A. SAFONKIN

only. Section 5 contains a combinatorial analog of an observation due to
R. P. Boyer. In Appendix A, we discuss finite harmonic functions on the
product of branching graphs.

1.2. Acknowledgments. The author is deeply grateful to Grigori Ol-
shanski for many useful comments and stimulating discussions. I would
also like to thank Pavel Nikitin for his comments on the first draft of this

paper.

2. IDEALS AND COIDEALS OF GRADED GRAPHS

In this section, we recall the main notions related to branching graphs,
ideals, and coideals.

Definition 2.1. By a graded graph we mean a pair (T, ») where T is a

graded set I' = | | T',,, I'), are finite sets, and s is a function I' x ' — Rxq
n=0

that satisfies the following constraints:

(i) if e T, and p € Ty, then s(A, u) = 0 for m —n # 1;

(ii) for any vertex A € I, there exists p € T'py1 with s(A, ) # 0.
Edges of a graded graph (T, ») are, by definition, pairs of vertices (A, u)
with (A, u) > 0. Thus, we may treat s(\, p) as a formal multiplicity of
the edge.

If A e Ty, then the number n is uniquely defined. We denote it by |A|.
We write A /7 p if |p] — [A| = 1 and »(A, ) # 0. In this case, we say that
there is an edge from X\ to p of multiplicity (X, p).

Condition (i) from Definition 2.1 means that we allow edges only be-
tween adjacent levels, and condition (ii) means that each vertex must be
connected by an edge with some vertex from the next level.

A path in a graded graph T is a (finite or infinite) sequence of vertices
A1, A2, As, ... such that \; /7 A4 for every i. We write v > p if |v| > |y|
and there is a path that connects u and v. We write v = p if v = p or
v > u. The relation > turns I into a poset.

Let p,v €I and |v| — |u| = n = 1. Then the expression

dim(, v) = > (Mo, M) e, A2) - se(A—1, An)
A0 ye-ey An€el™
u=Xo/ A1/ An—1 An=v

(1)
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is the “weighted” number of paths from p to v. By definition we also set
dim(p, ) = 1 and dim(p, v) = 0 if v & p. The function

dim(-, - ): T xT —> Ryg

is called the shifted dimension. Note that dim(u,v) = »(u,v) if p /v,
and for pe 'y, v €T, and any k such that m < k < n, we have

dim(p, v) = Z dim(p, A) dim(A, v). (2)
el

Definition 2.2. A branching graph is defined as a graded graph (T, »)
that satisfies the following conditions:

e Iy = {@} is a singleton,
e for any A € I';, with n > 1 there exists p € I';,_1 such that u 7~ .

For a branching graph (T, 5), we denote the expression dim(&,\) by
dim(\) and call it the dimension of .

Definition 2.3. A subset I of vertices of a graded graph I' is called an
ideal if for any vertices A € I and p € I" such that u > A, we have p € I.
A subset J c T is called a coideal if for any vertices A € J and p € I' such
that 4 < X\ we have p e J.

Remark 2.4. Our terminology differs from the terminology of poset the-
ory. Namely, our ideals and coideals are usually called filters and ideals,
respectively, [15].

There is a bijective correspondence I < I'\I between ideals and coideals.
Let J be a coideal and I = T'\J be the corresponding ideal. Then the
following conditions are equivalent:

(i) if {u| X/ p} =1, then € I;
(ii) for any A € J there exists a vertex p € J such that A 7 p.

Definition 2.5. An ideal I and the corresponding coideal J are said to be
saturated if they satisfy the conditions above. A saturated ideal I is said
to be primitive if for any saturated ideals Iy, I3 such that I = I1 n Iy, we
have I = I; or I = I5. A saturated coideal J is said to be primitive if for
any saturated coideals Ji, Jo such that J = J; u Js, we have J = J; or
J = Js.
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The bijection I < TI'\I maps primitive saturated ideals to primitive
saturated coideals and vice versa. We will also use the fact that ideals and
saturated coideals are graded graphs themselves.

Let T" be a branching graph. The space of infinite paths in I' starting at
@ will be denoted by T (I"). To every path 7 = (&, A1 /" A2 /...) e T(I)
we associate the saturated primitive coideal I'; = (J{ e T | A < A}

n=1

In the next proposition we give a combinatorial characterization of sat-
urated primitive coideals of an arbitrary graded graph, see [5]. Moreover,
for branching graphs we describe all such coideals in terms of path coideals

T, see [16] and [18, p. 129].

Proposition 2.6. 1. A saturated coideal J of a graded graph is primi-
tive if and only if for any two vertices A1, Ao € J we can find a vertex
we J such that p = A1, Aa.

2. Every saturated primitive coideal of a branching graph is of the form
J =T, for some path T € T(T).

Proof. Let J c T be a saturated coideal. Suppose that there exist vertices
A1, A9 € J that do not possess a common majorant. Let us prove that J
can be presented as a union of two distinct proper saturated coideals. We
need to introduce some notation. For any A € J, the subset of vertices of J
that lie above A will be denoted by J*, i.e., J* = {u e J | u = A}. For any
subset A ¢ J, we define | A as the subset of vertices of J that lie below
some vertex of A, ie., | A= {pe J|p < X for some A € A}. Finally,
for any ideal T of J, the symbol sat (I) stands for the minimal saturated
ideal that contains I. In other words, sat (I) consists of all vertices of I
and all vertices A\ € J such that {u | A /" p} < I. With this notation in
mind, we set J; =| (J*), Jo = J\sat(J*). It is not difficult to see that J;
and Jo are saturated coideals and their union coincides with J. Obviously,
A1 € Jy and A\; ¢ Jo. Next, we use the fact that the vertices Ay and Ay do
not, possess a common majorant to show that Ao € Jy and Ay ¢ J;. Thus,
J1 and Jy are proper distinct coideals of J.

Now suppose that for any vertices A1, Ay € J there exists pu € J with
= A, A2. We will show that J = T for some path 7 € T(T'). Let us
denote by x1, 3, ... all the vertices of J enumerated in any (fixed) order.
Since J is primitive, it follows that we can construct a sequence of vertices



SEMIFINITE HARMONIC FUNCTIONS ON BRANCHING GRAPHS 119

y1 < y2 < ...of J with the following properties:

Y2 = Y1, Y3 = Y2, Yn = Yn—1,
Y1 = T1, Yo = T3, Yz = T3, Yn = Tn,
Ys € J, Y3 € J, Yn € J,

Let 7 € T(T') be any path that passes through the vertices y1,ya,.. ..
Obviously, J =T',. O

Remark 2.7. One can formulate an obvious analog of the second part
of Proposition 2.6 for arbitrary graded graphs, but this is of no particular
importance to us.

Definition 2.8. A graded graph I is said to be primitive if it is primitive
as a coideal, i.e., for any vertices A1, Ao € I' there exists a vertex y € T
such that p = A1, Ao.

3. SEMIFINITE HARMONIC FUNCTIONS

Definition 3.1. Let (T', ») be a graded graph. A function
p: "> Ry U {+0}
is said to be harmonic if it enjoys the following property:

w(A) = Z (A, p)(u) for every A eT.
A
Throughout the paper, we use the following conventions:
e z+ (+w) = +w for any z € R,
e (+m) + (+0) = +o©,
e 0-(+00)=0.

Definition 3.2. The set of all vertices A € T' with p()\) < 400 is called
the finiteness ideal of p. We denote the zero ideal {\ € T' | ¢(\) = 0} of ¢
by ker ¢ and its support {A € T' | ¢(A) > 0} by supp ¢.

Note that the zero set ker(y) is a saturated ideal and supp(yp) is a
saturated coideal of T', while ker(¢) U supp(y) = I'. Furthermore, we can
restrict ¢ to any ideal or saturated coideal that contains supp(yp). The
restriction is a harmonic function on that ideal or coideal, respectively.

The symbol Ko (T") stands for the R-vector space spanned by the vertices
of T" subject to the following relations:

A= Z wx(Ap) - for every AeT.
WA
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The symbol K (T') denotes the positive cone in Ko(I') generated by the
vertices of T, i.e., K (') = spang_, (A | A € T'). The partial order defined
by the cone K¢ (T) is denoted by >x. Thus, a > b < a—be K ().
For instance, if A < p, then A =g dim(\, p) - p.

Remark 3.3. The notation Ko(I") is motivated by the following fact. If
all formal multiplicities of edges are integers, then the vector space Ko(T')
can be identified with the Grothendieck Ky-group of the corresponding
AF-algebra. Under this bijection, the cone K{ (') gets identified with the
cone of true modules [10, Theorem 13, p. 32].

Observation 3.4. If b e K{ (') and b <j A, then b has the form

b= Z bup
we lpl=N

for some N and some real numbers b,, subject to the following constraints:
0 < b, < dim(A, p). In particular, b, = 0 if © 3 A.

The Rs¢-linear map K (I') — Rso U {+o0} defined by a harmonic
function ¢ will be denoted by the same symbol ¢. Note that this map
is monotone in the sense of the partial order. Namely, if a >k b, then
p(a) = o(b).

Definition 3.5. A harmonic function ¢ is said to be semifinite if it is
not finite and the map ¢: KJ(I') — Rxo U {+00} enjoys the following
property:
pla) = sup o(b) for every aeKd(T).
beKar (): b<ka, (3)
p(b)<+owo

If p(a) < +o, then condition (3) turns into the trivial identity
p(a) = ¢(a).

Condition (3) arises in a natural way in the theory of operator algebras
[4, Definition 1.8].

Remark 3.6. A harmonic function ¢ is semifinite if and only if there
exists an element a € KJ (') with ¢(a) = +o0 and for any such a we can
find a sequence {a,},>1 = K¢ (I') such that

® an <K @,

. <p(an) < 400,

. nErEOO olay) = +00.
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We will call this sequence {a,},>1 an approzimating sequence.

Proposition 3.7. A harmonic function ¢ is semifinite if and only if it is
not finite and for any vertex A € I the following equality holds:

p(N) = lim > dim(\, p)e(p).
N—ow B (4)
e pZA, |p|=N
0<p(p)<+o0

Proof. If (4) is fulfilled, then ¢ is semifinite, since the prelimit sums give
us an approximating sequence. If ¢ is semifinite and ¢(A) < +o0o, then (4)
is a trivial consequence of Definition 3.1. If ¢(\) = 400, then we can find
an approximating sequence and Observation 3.4 implies that the prelimit
expression is unbounded in N. We are left to prove that the limit exists.
In fact, we will show that the prelimit sequence is nondecreasing in N. Let
us denote the prelimit expression by ¥y .
Next, the function

0 = {W) if 0 < p(\) < +o0,

0 otherwise

is subharmonic:
) < D () ().
BV
Then from the equality
oy = Y, dim(\ p)é(p)
we lul=N

and (2) it follows that 1 <t <3 < .... O

Corollary 3.8. If ¢ is a semifinite harmonic function on a graded graph
T, then for any vertex A € T with ¢(\) = +0 there exists a vertexr p = A
such that 0 < p(u) < +00.

Remark 3.9. Let {c,},er be a tuple of nonnegative real “numbers” ¢, €
R U {+0} such that for every vertex A € I' there exists a limit

J\}l_r)noo Z dim(X, p)ey,
pnel'n
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which may be infinite. For instance, we may take ¢, = ¢(u) where ¢ is a
subharmonic function: ¥(A) < >, (A, p)(p). Then the function

A
o) = Jim 3 dim(\, e
pel'n

is harmonic, cf. [12, p. 4], see also [7, formula (47)].

Definition 3.10. A semifinite harmonic function ¢ is said to be indecom-
posable if for any finite or semifinite harmonic function ¢’ that does not
vanish identically on the finiteness ideal of ¢ and satisfies the inequality
¢ < p, we have ¢’ = const -¢ on the finiteness ideal of .

At first glance, it seems that the finiteness ideal of ¢’ might be bigger
than that of ¢, but the next remark shows that this is not the case.

Remark 3.11. If ¢ and ¢’ from Definition 3.10 are proportional on the
finiteness ideal of (, then they are proportional on the whole graph T.
Indeed, by virtue of Proposition 3.7, we may write
A) = const™! - li dim(A, p)¢’
p(A) =const™!- lim  } im(, 1)’ (1)

i p=A, Jpl=N
0<p(p)<+oo

< const™!- lim Z dim(\, p)¢’ (1) = const™ - (N).
N—w
i p=X, |pl=N

0<¢’(p)<+0
Thus, ¢’ < ¢ < const™! -¢’, and the finitiness ideals of ¢ and ¢’ coincide.

Notation. The set of all indecomposable finite (not identically zero) and
semifinite harmonic functions on a graded graph T is denoted by Hex(T).
The subset of Hex(T") consisting of strictly positive functions is denoted by
Hex(T).

Lemma 3.12. Let I be an ideal of a graded graph T'. Assume that a
function ¢ € Hex(T') does not vanish on I identically. Then the following
equality holds:

e(A) = lim Z dim(\, p)(p), AeT.

N=o pipel (5)
|ul=N
Moreover, for any element a € K (T') we have p(a) = sup ©o(b).

beKy (I): b<ka,
p(b)<+wo
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Remark 3.13. If we omit the assumption that ¢ is indecomposable, then
the equality above should be replaced by the inequality

A) = lim dim(\, .
() N*w}gg, (% we(p)
lul=N
Proof of Lemma 3.12. First of all, we note that there exists a vertex
v € I such that 0 < ¢(r) < +0o0. Indeed, ¢ does not vanish identically on I,
hence we can find a vertex v/ € I such that p(v’) > 0. If ¢(v') = 400, then,
by Corollary 3.8, we can find another vertex v > v/ with 0 < ¢(v) < 40,
which necessarily lies in [.
Note that the function

¢Q)={¢Q)HAGL

0 otherwise

is subharmonic on I'. Then, by Remark 3.9, the right-hand side of (5)
defines a harmonic function on I'. From Observation 3.4 and Remark 3.6
it follows that the restriction of ¢ to the ideal I is a finite or semifinite
harmonic function on I. Then the harmonic function on I" defined by the
right-hand side of (5) is finite or semifinite as well. Next, by the very
definition of harmonic functions, the prelimit expression is majorized by
@ for any N. Then the harmonic function that is defined as the N — 40
limit is also majorized by . Finally, the indecomposibility of ¢ implies
that ¢ and the right-hand side of (5) are proportional, but ¢ and the
right-hand side of (5) coincide on the ideal I. Thus, they coincide on the
whole graph T, since there exists v € I with 0 < p(v) < 40o0. O

Now we are ready to prove the most crucial result of Wassermann’s
method. The following theorem is a combinatorial analog of a result which
is well known in the context of C*-algebras, see [18, Theorem 7 on p. 143,
Corollary on p. 144] and [1, I1.6.1.6, p. 102].

Theorem 3.14. Let I be an ideal of a graded graph T'.

1. There is a bijective correspondence between {¢ € Hex(I'): @|; # 0} and
Hex(I), defined by the following mutually inverse maps:
Res] : {cp € Hex(I): | # 0} — Hex(I), @— <,0|I7
Ext] : Hex(I) = {p € Hex(D): 0l # 0}, () = lim > dim(:, p)p(p)-

pipel
[ul=N
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Furthermore, for any element a € K§ (I') we have

Exty (¢)(a) = sup  p(b).
beK{ (I): b<ka,
p(b)<+wo
2. If T is a primitive graded graph, then the bijection above preserves
strictly positive harmonic functions: HG, (I) «— HS, (T).

Proof. Suppose that ¢ € Hex(I') and ¢|; # 0. Then from Observation 3.4
and Remark 3.6 it follows that Res} () = ¢ |; is a finite or semifinite har-
monic function on I. Lemma 3.12 implies that Res} () is indecomposable.

Now let ¢ € Hex(I). From the proof of Proposition 3.7 it follows that
the limit from the definition of Ext} exists and Ext} (¢) is a finite or
semifinite harmonic function on I'. Note that Ext} (¢) is strictly positive
for ¢ € HE (I) because of the following simple fact, which holds for any
primitive graded graph. For any vertex A € I' there exists a vertex u € I
such that p > A.

Let us show that the harmonic function Ext} (¢) is indecomposable for
any ¢ € Hex(I). Suppose that Ext} (@) > 1 for some 1) that does not
vanish on the finiteness ideal of Ext} (¢) identically. We denote the ideal
by I. The finiteness ideal of ¢ is denoted by I¥. Let us introduce more
notation: ¢ = v |y and 1y = Ext}(¢) — 91. Then 11 and ), are finite
harmonic functions on I. Note that Ext! (¢) = Ext!_;, (¢). On the one

hand, we have Ext;mh, (¢) = 11 + 2. On the other hand, ¢ = 11 + 93 on
I N I%, hence

Ext] e () = Extiq e (1) + Exti o (2) < ¥1 + 1o,

where the last inequality follows from Remark 3.13. Therefore, 1 =
Ext} ;. (1) and ¢y = F)xtfmw(z/}g). Let us rewrite the first equality
in the form ¢ |; = Ext] ;. (1). Then we see that the function % |,
does not vanish identically. Now, the indecomposability of ¢ implies that
¢ and 7 are proportional on I¥. Thus, from ¢ |; = Ext! ;. (¥) and

Ex‘cf~ (p) = Ext;m 1o (p) it follows that Ext} () and 1 are proportional
on I.

Therefore, the maps Resl; and Extl; are well defined, and the identity
Res! o Ext} = id holds. The remaining identity Ext} o Res} = id immedi-
ately follows from Lemma 3.12. O
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Remark 3.15. Let I; < I5 be ideals of I'. Then Extl;2 o Extﬁ = Exti.

Proposition 3.16 ([10, p. 35, Lemma 12]). Let T be a graded graph. If
© € Hex(T'), then supp(p) is a primitive coideal.

Proof. Let A1, Az € supp(¢). Then Lemma 3.12 implies that
p(A2) > dim(Ag, @),

pipel M
lul=N

= lim
N—0

where T* = {v e T'| v > A\;}. Then the inequality ¢(\2) > 0 implies that
there exists a vertex p such that u > A1, A2 and p(p) # 0. Thus, by virtue
of Proposition 2.6, the coideal supp(y) is primitive. (I

4. MULTIPLICATIVE BRANCHING GRAPHS

In this section, we recall some basic notions related to multiplicative
branching graphs [8,10]. For such graphs, we prove a theorem which states
that some multiplicative branching graphs admit no strictly positive semifi-
nite indecomposable harmonic functions [18, Theorem 8, p. 146]. We call
this theorem Wassermann’s forbidding theorem. We also prove a semifinite
analog of the Vershik-Kerov ring theorem [11, p. 144].

Definition 4.1 ([10, p. 40]). A branching graph T is said to be multi-
plicative if there exists an associative Zxq-graded R-algebra A = P A,,
n=0

Ag = R, with a distinguished basis of homogeneous elements {a}er that
satisfy the following conditions:

1) degax = |,

2) ag is the identity in A,

3) fora= >, »(@,v)a, and any vertex A € I', we have

vely

a-ay= Z (A, p)ay,.
wA
Moreover, we assume that the structure constants of A with respect to
the basis {a)} er are nonnegative.

Let (T, ) be the multiplicative graph that is related to an algebra
A and a basis {a)}rer. We denote the quotient algebra A/(a —1) by R,

the canonical homomorphism A — R by [-], and the positive cone in

R consisting of all elements that can be written in the form > cy[ax]
el
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for a sufficiently large n and some ¢y = 0, by R*. The correspondence
[A] — [ax] defines an isomorphism of R-vector spaces Ko(I') == R. The
image of the cone K¢ (I') « Ko(T') under this map coincides with R*.

Consider the positive cone AT < A consisting of all elements of A that
can be written as a linear combination of basis elements ay with non-
negative coefficients. For any semifinite harmonic function ¢ € H(T), we
may speak about the Rx¢-linear map ¢: AT — Ry U {+w0}.

Let us now formulate the Vershik—Kerov ring theorem [11, p. 134], see
also |6, Proposition 8.4].

Definition 4.2. A harmonic function ¢ on a branching graph I' is said to
be normalized if (&) = 1.

Theorem 4.3 (Vershik—Kerov ring theorem [11, p. 134]). A finite normal-
ized harmonic function @ on a multiplicative branching graph T is indecom-
posable if and only if the corresponding functional on A is multiplicative:

w(a-b)=y¢(a) p(b) for any a,be A.
The following semifinite analog of the ring theorem holds.

Theorem 4.4 ([11, p. 144]). For any semifinite indecomposable harmonic
function @ on a multiplicative branching graph T there exists a finite nor-
malized indecomposable harmonic function v such that p(a-b) = 1(a)-p(b)
for any a,be AT with ¢(b) < +c0.

Proof. Note that

@"= > dim@)-a,.

v: vel'y,

Then cp((@)" au> = ¢(a,) = dim(N)p (ay-a,) and > (p) = ¢ (aray)
is a finite harmonic function on the finiteness ideal of . Since the re-
striction of ¢ to its finiteness ideal is an indecomposable harmonic func-
tion (see Lemma 3.12), it follows that there exists ¢y € Rs( such that
¢ (ay-ax) = eaplay). We set (A) = cx by definition. One can check
that ¢ is a harmonic function and that the functional on A defined by
is multiplicative. Then the Vershik—Kerov ring theorem implies that v is
indecomposable. (I

From Theorem 4.4 it follows that the subspace

I = spang (ay | A p(A) < +0) < A
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is an ideal for any semifinite indecomposable harmonic function ¢. How-
ever, the proof shows that this is true for an arbitrary harmonic function
o without any additional assumptions.

The following theorem imposes some restrictions on multiplicative graphs
that possess strictly positive indecomposable semifinite harmonic func-
tions, [18, Theorem 8, p. 146].

Theorem 4.5 (Wassermann'’s forbidding theorem). If axa, # 0 for any
A €T, then the graph T' admits no strictly positive semifinite indecom-
posable harmonic functions.

Proof. Let ¢ be a strictly positive indecomposable semifinite harmonic
function. The argument at the beginning of the proof of Theorem 4.4 shows
that the function ¢* defined by ¢*(X) = ¢ (axa,) is a finite harmonic func-
tion on I, while ¢(u) < +00. Furthermore, the following inequality holds:
¢ = const -, Next, observe that ¢* is strictly positive, since axa, # 0
and the structure constants of A are nonnegative with respect to the basis
{ax}rer- Therefore, p and @* are proportional. Thus, ¢ is finite. (I

Corollary 4.6 ([3, p. 371, the paragraph just before Theorem 3.5]). If
T admits a strictly positive indecomposable finite harmonic function, then
it possesses no strictly positive semifinite indecomposable harmonic func-
tions.

Proof. Suppose that ¢ is a strictly positive indecomposable finite har-
monic function and axa, = 0 for some A, € T'. Then ¢(ara,) = ¢(0) = 0,
and Theorem 4.3 implies that ¢(A)e(u) = 0, which contradicts the strict
positivity of . O

5. BOYER’S LEMMA

In this section, we discuss a very useful result related to arbitrary har-
monic functions on a graded graph. It allows one to determine the finiteness
ideal of an indecomposable semifinite harmonic function in several con-
crete situations. This principle, which was first observed by R. P. Boyer
and published only in 1983, see [4, Theorem 1.10, Example on p. 212], was
also stated by Wassermann [18, Boyer’s lemma, p. 149] two years before
the paper [4]. We formulate and prove a slightly involved generalization of
Wassermann’s concise argument. It turns out to be a combinatorial ana-
log of [4, Theorem 1.10]. After that, we consider a couple of examples,
which immediately follow from the general claim. Boyer’s lemma from [18]
becomes a part of the first example, see Remark 5.6.
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5.1. General statement. Recall that the set of vertices at the nth level
of a graded graph T' is denoted by I',. Below we work with arbitrary
harmonic functions and do not assume that they are finite or semifinite.

Definition 5.1. A harmonic function ¢ is said to be semifinite at a vertex
A if ¢(\) = +o0 and there exists a sequence {a,},>1 = K¢ (T') such that

o a, <k A,
o p(ap) < +oo,

. nErEOO olay) = +00.

The sequence {a,},>1 will be called an approzimating sequence for the
verter .

Observation 5.2. If ¢ is semifinite at a vertex A, then for any vertex
1 < A the function ¢ is semifinite at the vertex p too.

Proposition 5.3 (generalized Boyer’s lemma). Let (T, ) be a graded
graph and o be a harmonic function on it. Assume that I < T is an ideal,
J = I\I is the corresponding coideal, and we are given a fixved vertex
A € J,,. Suppose that there exists a positive integer m = m(\) and a tuple
of nonnegative real numbers {f,}ver,,, which may depend on A, such that
the following conditions are satisfied:

o there exists a vertex v € I,, with 8, # 0 and ¢(v) > 0,
o for any sufficiently large | and any vertex n € 14141, the following
inequality holds:

Z dim()‘vﬂ)%(ﬂun) = Z 5ud1m(V777)- (6)

HETny1 vely,

Then @(A) = +oo. If, additionally, p(v) < 4+ for any v € I, such that
By # 0, then @ is semifinite at the vertex .

Remark 5.4. Condition (6) is a refinement of some condition on the
“number” of paths in the graph I', which admits a graphical interpretation,
see condition (14) from Corollary 5.5 and Fig. 2.

Proof of Proposition 5.3. Let us multiply (6) by n € Ko(T') and sum
over all n € I,1;+1. Then we get

Z dim(A, p)se(p,n) -0 =k Z By dim(v,m) - n, (7)

N€lnti+1 N€lnti+1
peJp 41 vel,
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where both sides of the inequality are regarded as elements of Ko (T") and
the partial order on Ko(I') defined by the cone K¢ (I') is denoted by >.
Furthermore, the right-hand side of inequality (7) equals >, B,v. Let us

vel,,

denote it by by. Then ¢(by) > 0 and

DT dim(A, ) s(p,m)n =k b

N€ly 4141
HETn 41

The only thing we still have to do is to reproduce the original argument
of A. Wassermann [18, p. 149, the proof of Boyer’s lemma] in our context:

A= > dim\HTEx Y, dim(A G (®)
NelnyN4+1 NelniN+1
Note that if A € J,, and 77 € I,,4 y+1, then
N
dim(A\ ) =Y, >} dim(A, u)se(p, 1) dim(n, 7). )
1=0m€lpnti41
HETn 1

Substitute (9) into (8):

N
Az > > > dim(A, p)se(p, ) dim(n, 7).

1=0n€lnti+1 M€+ N+1

HETn 41
Now sum over 7:
N
Azg Y, D, dim(A )l n)n =k by N, (10)
1=0n€lnti41
HETn 41

Compare (10) with (1.10.1) and (1.10.2) from [4, Theorem 1.10].

Thus, (10) yields ©(A) = @(by) - N for any N, hence ¢(\) = +oo.
Moreover, the sequence ay = by - N is an approximating sequence for the
vertex A if ¢(by) < +o0. O

5.2. Example 1. Counsider graded graphs (I'1, 51) and ('3, 52) and sup-
pose that we are given a graded map I'y — ', A — X. Let (T, 5) be still
another graded graph that satisfies the following requirements:

), =T1), @), , forn=1, (I')y = (I'1)y; (11)
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%(Avﬂ) =1 ()‘7/1') if /\7M € Fla 12
%(A7l‘[’) = 2 ()\,,U) if Av,u € FQ? ( )
s\ ) = 0if Ne Do, pueTy. (13)

Condition (13) means that I's is an ideal of T'. For simplicity, one may
assume that edges from I'; to T's can go from A to X only, see Fig. 1. But
we will not use this in what follows.

I'y Ty

)\I

A

Fig. 1. An example of a branching rule for T'.

Corollary 5.5. Assume that the map v — V' is surjective, and let
X e ('), be a fized vertex. Suppose that for any sufficiently large | and
any vertex pu € (T'1),,,;, the following inequality holds:

dimy (N, p)se(p, p) = dima (N, p1'), (14)

where dimy (-, -) and dimy(-, -) are the shifted dimensions for (I'1, )
and (T, 522). Now let ¢ be a harmonic function on T with p(X') > 0. Then
©(A) = 400, and ¢ is semifinite at the vertex X if p(N') < +00.

Proof. Recall that T’ is an ideal of I". Therefore, we may apply Propo-
sition 5.3 for I = I'y, J = T4, m = |A\| + 1, and B, = 0, . Then we
bound the sum in the left-hand side of (6) from below in terms of one of
its summands and use (14). O

Remark 5.6. If the map A — ) is a branching graph morphism, i.e.,
2(A p) = (N, '), then condition (14) means that »(u,u’) > 1. If the
equality holds identically, then we obtain the original formulation of Boyer’s
lemma [18, p. 149, Boyer’s lemma].



SEMIFINITE HARMONIC FUNCTIONS ON BRANCHING GRAPHS 131

Fl FQ

li

7 1t

W i

A

Fig. 2. Condition (14) means that the “number” of paths
from A to p’ that pass through p is not less than the
“number” of arbitrary paths from \ to u'.

5.3. Example 2. Consider graded graphs (I'1, 5¢1) and (T'2, »2) and sup-
pose that we are given a graded map I'y — 'y, A — X. Let (T, ») be
another graded graph that satisfies the condition (I"),, = (I'1),, u (I'2),, for
n > 0 and conditions (12), (13). Recall that the last condition means that
T'5 is an ideal of I'. For simplicity, one may assume that vertices A € I'y
and p € 'y are joined by an edge if and only if A’ ' u, as shown in Fig. 3.

Iy Iy

A N

Fig. 3. An example of a branching rule for T'.

Corollary 5.7. Suppose that the map X\ — N 1is surjective. Let A € T'y
be a fized vertex, and assume that the following inequalities hold for any
o E Fl N

x(\, ) = (N, 1),
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(A W) = =N ).

Then p(\) = 400 for any harmonic function ¢ on T’ such that ¢(\') > 0.
Moreover, ¢ is semifinite at the vertex \ if 0 < p(\') < 400.

Proof. Let us take I =Ty, J =Ty, m = ||, and 8, = §, » in Proposi-

tion 5.3 and prove that >, dim(\, p)»(p,n) = dim(N,n) for any n € T's.
pely
In order to do so, we check that dim(A, u) = dim(\, p’) and write

> dim(A, p)se(p,m) X0 dim(N, p)se(p', m)

pely pely
dim (N, n) - dim (N, n)
2, dim(X', 7) (7, )
HEeL2 -1
- dim(\,n) '
For each of these inequalities, we have used the fact that the map A — X
is surjective. (I

Remark 5.8. As it was pointed out in the introduction, one can obtain
an exhaustive list of indecomposable semifinite harmonic functions on the
Macdonald graph, which corresponds to the simplest Pieri rule for the
Macdonald symmetric functions, by applying Wassermann’s method. This
list turns out to be very similar to that for the Young graph, see [18, The-
orem 9, p. 150]. For instance, the space of classification parameters is an
obvious (g, t)-deformation of the parameter space for the Young graph.
Namely, we should deform only the continuous part of the data in the
same way as it deforms in the case of finite harmonic functions, replac-
ing the ordinary Thoma simplex with the (g, t)-deformed Thoma simplex,
see Theorem 1.4 and Proposition 1.6 from [13], while the discrete part
remains the same. This result easily follows from the original argument
of A. Wassermann, Theorem 1.4 and Proposition 1.6 from [13], Proposi-
tion 2.6, Theorem 3.14, Proposition 3.16, and Corollary 5.5. Instead of
using Theorem 4.5, we must apply a similar argument obtained with the
help of a trick due to K. Matveev [13, §6, proof of Proposition 1.6].

APPENDIX A. DIRECT PRODUCT OF BRANCHING GRAPHS

In this appendix, we describe indecomposable finite harmonic functions
on the product of branching graphs in terms of harmonic functions on
the factors. This result is not related to semifinite harmonic functions in a
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straightforward way, but it turns out to be very useful for describing semifi-
nite harmonic functions on some branching graphs, such as the Gnedin-
Kingman graph [14] and the zigzag graph. The latter was studied in the
paper [6]. One can treat the main result of this appendix, Proposition A.4,
as a generalization of the well-known de Finetti theorem [2, Theorems 5.1
and 5.2]. The difference between Proposition A.4 (the case n = 2) and
the de Finetti theorem is that we replace two sides of the Pascal triangle,
which correspond to two embeddings Z — Z @ Z along the first and the
second components, with arbitrary branching graphs. Note that the case
where one of these graphs is a line consisting of one vertex at each level was
already known, see [17, Theorem 2.8]. Observe that in this theorem one
should consider only strictly positive harmonic functions (or, equivalently,
central measures) instead of arbitrary ones.

Let us provide some motivation for the main definition of the present
section. If A and B are unital Zx(-graded R-algebras, then their tensor
product (over R) is a unital graded algebra too. Namely, if A = @ A4,,

n=0
Ap=Rand B= @ B,, By =R, then A®Qr B= @ (A®r B),, where

n=0 k=0

(A«DRIBM = () Ancm{Bnp
n,m=0:
n+m==k

Furthermore, 1495 = 14®1p and (A ®gr B), = R-14gp. This simple fact,
together with Definition 4.1, motivates us to consider the direct product of
two graded graphs.

Definition A.l. By the direct product of graded graphs (I'1, ) and
(g, 522) we mean the graded graph (T'y x T'a, 361 X 52) where

(T xTy, = [ (T, x (T2,

n,m=0:
n+m=k

and
1M, A2) if pr = pa,

(511 X 222) ((Alaﬂl); ()\2,M2)) = oa(pr, p2) i A = Ag,
0 otherwise.

The next lemma ties together some properties of the direct product of
graded graphs.
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The subset I'y = {u € T' | u < A} of a graded graph I is called the
principal coideal associated to A e T

Lemma A.2. Let I'y and 'y be graded graphs.
1. The graph 'y x Ty is primitive if and only if T'1 and T's are primitive.

2. If T’y and T’y are branching graphs and J < 'y x 'y is a saturated
primitive coideal, then there exist coideals J; < I'y and Jo < I'y such
that J = J1 x J3 and

e Ji,Jo are saturated and primitive, or

e Jy is principal and Jo is saturated and primitive, or

e Ji is saturated and primitive and Jy is principal.
Moreover, coideals J1 and Jo are uniquely defined.

3. Let \,\ €Ty and u, ' € T's. Then

. N =]\ | — . .
dlm(u,m,(x,m):(' N m')dlml(/\,)\’)dlmz(u,u’),

k
are the shifted dimensions for T'y and Tz, see formula (1) on p. 116.

where <n> denotes the binomial coefficient and dimy (-, -), dimy(,-)

Proof. The first and the second assertions follow from Proposition 2.6
immediately, and the third one is obvious. (I

Note that we can easily generalize the statement of Lemma A.2 to the
case of n > 2 graded graphs. Furthermore, the direct product of multiplica-
tive graphs is multiplicative too. For the direct product of two multiplica-
tive graphs, the corresponding algebra is the tensor product of the original
algebras, the distinguished basis is the tensor product of the bases, and
the element that was denoted by @ in Definition 4.1 is a®g 15 + 14 ®r 3,
where @ and b are the same elements for the original algebras. Thus, we can
define the direct product of finitely many graded graphs, and the product
of multiplicative graphs is multiplicative as well.

Recall that a harmonic function ¢ on a branching graph T is said to be
normalized if p(&) = 1.

Remark A.3. Let I'y,...,I',, be branching graphs; let ¢1,..., @, be finite
normalized harmonic functions on these graphs and ws,...,w, be real
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positive numbers such that w; + ...+ w, = 1. Then the function

p: Ty x...xT'y, >Ry

defined by
A
P, An) = wi M lor(An) o () (A1)
is harmonic and normalized.
Note that we can recover these ¢1,...,¢, and wy,...,w, from @ as

follows. Let us set

+ .. +ap)!
MC(ar,.. . an) = <++> _(at o Aa)t

at,...,0n al...ay!
Then
i) = D5 Ml Pl el = 1 sl )

el j#14

Jj=1,..., n

. (A2)
X ndlm(Aj) '@(Al,...,)\ifl,lu,)\prl,...,An)

=1

for |u| =1 and

witwkt = Y dim(M\) . dim(A) (A, A) (A)
)\161_‘1,')\1':]%
i=1,...,n
for any positive integers ki, ..., ky.

Compare (A.2) and (A.3) with the first two formulas from the proof of
Theorem 2.8 in [17].

Notation. Let (T, ») be a branching graph. We denote by FHex(T') the
set of all finite normalized harmonic functions on I', and by FH_, (I') the
subset of all strictly positive functions.

Proposition A.4. Let I'y,..., T, be branching graphs and A% be the in-
terior of the (n — 1)-dimensional simplex, i.e.,

AY = {(w1,...,wp) | w1 + ... +w, =1, w; > 0}.
1) There is a bijection between the sets FHe, (T'1 x ... x T';) and
FHS (1) x ... x FH(T,) x AY
defined by (A.1).
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2) There is a bijection between the sets FHex([1 x ... x T'y,) and

L] Al % x FHex(T).
I:I1c{1,2,...,n} iel
I#2

More precisely, for any harmonic function ¢ € FHex(T1 x ... x Ty,)
there exist a nonempty set I < {1,2,...,n}, harmonic functions p; €
FHex (L), which are indexed by i € I, and w € A\Oll such that for any

n-tuple of vertices \y € I'1, ..., A\, € I'y, the following identity holds:

I1 wlk”(pi()\i) if \j = @ for every j € {1,2,...,n}\I,
©(AL,. oy Ap) = < del
0 otherwise.

Moreover, these I, p;, and w are uniquely defined.

Remark A.5. For multiplicative graphs, Proposition A.4 is a straight-
forward consequence of the Vershik-Kerov ring theorem (Theorem 4.3).
Namely, we should apply this theorem to the following elementary fact:

Hom(A1 ®x ... O AH,R) — % Hom (4;,R),
i=1
where Hom stands for the set of algebra homomorphisms. Indeed, to prove

the first part of the proposition, we note that there are two mutually inverse
maps

O FHL(T1) x ... x FHL(T,) x A2 — FHS (Ty x ... xT),
((Pl,...,wn,’LU)’-’(90107'1”1)@...@((/7"07"71,”),
and

b FHL(Ty x ... xTy) —> FHS (1) x ... x FHS(T,) x AY,

o= (@ la, 0T @ la, 0T W) -

Here 7, denotes the automorphism of a graded algebra defined on ho-
mogeneous elements as a +— u%°%, and ¢ | 4, 1s the restriction of the
map p: A1 ®...® A, — R to the subalgebra 19 -1 A4, ® 197 ~ A,
Furthermore, the n-tuple w = (wy,...,w,) that appears in the definition
of the map ®__ has the following form: w; = ¢ (1®F1 ®a) ® 1®”*i).
Recall that the element a(¥ € A; defines the branching rule for T;, see
Definition 4.1.
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Proof of Proposition A.4. We prove the first part of the proposition
for n = 2 only. The case n > 2 can be dealt with in the same manner. One
can prove the second part of the proposition applying essentially the same
argument, Proposition 3.16, and the second part of Lemma A.2.

One can check that for any harmonic function ¢ on I'y x I's, the right-
hand side of (A.2) defines a harmonic function on T';. Thus, the function
¢ defined by (A.1) is indecomposable if ¢ and @9 are indecomposable.
Then (A.1) defines an injective map FHg (1) x FHo (Ia) x AY —
FHq (T1 x I'z). Using the Vershik—Kerov ergodic method, see [9, p. 20,
Theorem 2], [8, p. 60], we will show that this map is also surjective. Let ¢
be a finite strictly positive normalized indecomposable harmonic function
on I'; x T'y. Then, by [8, p. 60], there exists a path

F= ((@7@), (A1, pt1)s - ) e T(I'y xT'y)

such that

dim (A, 1), (N 1))
@(A,p) = lim :
N dim (V) )
From the last part of Lemma A.2 it follows that

aim (), i) (I000) ™ ()™ i (0 \) i (s )

. - VINHIRD T di ) di )
dlm(()\’N,u’N)> (|)"N|+|M'N|) H dimy (My) dima (ply)

where 2tk = x(x—1)...(z —k +1). Then the strict positivity of ¢ implies
that |[My| — +o0 and |u)y| = +0 as N — +oo. Therefore, passing to
appropriate subsequences, we may assume that the following limits exist:

dimq (A, Ny) . dimg (, )
Nt dimg (Ny) | N-steo  dimg (i)

)

Ay : |y |
im ————— lim ———————
No+oo [Ny | + || Notoo [Ny | + |y ]
Denoting them by @1 (), w2(p), wi, and wq, we obtain a desired element of
FH(T1)x FHS (T2) x AJ. Note that these 1 and @3 are indecomposable,
since ¢ is indecomposable. (|

Example A.6. Let us take I'y = ... = T'), = Z>( and assume that all
edges are simple and go from k to k + 1 for k > 0. Then FH, (I';) =
FHex(T;) is a singleton and T’y x ... x Ty, is the Pascal pyramid P,,. Then
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from Proposition A.4 it follows that FHg (P,) = AY and FHex(P,) =

L] AP = Ay, which is the (n — 1)-dimensional simplex.

I:I1c{1,2,...,n}

I1#2

Remark A.7. Proposition A.4 gives us the following view on Kerov’s
construction [6, §4]. The comultiplication provides us with a linear map

Ko

an

(T) —> Ko(I' x ... x I'), and we take the composition of this map with
—_—

n
indecomposable harmonic function on I' X ... x I to obtain an inde-
_

composable harmonic function on T'.
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