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Abstract. We study semifinite harmonic functions on arbitrary
branching graphs. We give a detailed exposition of an algebraic
method which allows one to classify semifinite indecomposable har-
monic functions on some multiplicative branching graphs. It was
suggested by A. Wassermann in terms of operator algebras, but we
rephrase, clarify, and simplify the main arguments working only with
combinatorial objects. This work was inspired by the theory of trace-
able factor representations of the infinite symmetric group Sp8q.

1. Introduction

The classical character theory of finite and compact groups can be gen-
eralized to other classes of groups and algebras in different ways. For groups
and C˚-algebras not of type I, the character theory deals not with irre-
ducible representations, but with normal factor representations, i.e., homo-
morphisms to von Neumann algebras with a finite or semifinite trace. For
AF-algebras, one can reformulate the character theory in a combinatorial-
algebraic language, speaking about nonnegative harmonic functions on in-
finite graded graphs of a special type. Equivalently, one can treat these
harmonic functions as central measures on the space of monotone paths in
the graph. This approach was developed by A. M. Vershik and S. V. Kerov
in the late 70s – early 80s. Harmonic functions that take finite values only
lead to probability measures on the path space and correspond to factor
representations of finite types In and II1. The connection between har-
monic functions and normal factor representations motivates us to study
the so-called semifinite harmonic functions, which correspond to normal
factor representations of types I8 and II8. These functions must take the
value `8 and satisfy some natural condition, see Definition 3.5 below.

Key words and phrases: branching graphs, AF-algebras, semifinite traces, semifinite
harmonic functions.
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A. M. Vershik and S. V. Kerov classified semifinite harmonic functions
on the Young and Kingman graphs, see [7, 9]. They solved this problem
using the so-called ergodic method, which involves an evaluation of a non-
trivial limit. This method can be applied to any branching graph, but
the main difficulty, which is not always easy to get over, is to compute
that limit. There is another approach, developed by A. Wassermann. In
his dissertation [18], he suggested to use a bijection between the faithfull
factor representations of a primitive C˚-algebra and those of any closed
two-sided ideal of this C˚-algebra, see [18, p. 143, Theorem 7]. Another
ingredient of Wassermann’s method requires that the K0-group of the cor-
responding AF-algebra admit a compatible ring structure, see [18, p. 146,
Theorem 8]. Therefore, Wassermann’s method is applicable to some multi-
plicative graphs only, for which it may be extremely useful. A. Wassermann
applied his method to determine all indecomposable semifinite harmonic
functions on the Young graph and thereby proved the theorem of Vershik
and Kerov without the ergodic method or any other complicated analytic
computations.

This paper contains a detailed exposition of Wassermann’s method in
terms of algebraic combinatorics, unlike the original work [18, Chap. III,
Sec. 6], where the language of operator algebras was used. The combina-
torial setup allows us to clarify and simplify the main arguments of [18,
Chap. III, Sec. 6]. Furthermore, we work with a generalization of branch-
ing graphs, namely, we consider branching graphs with formal nonnegative
multiplicities on edges. Crucial statements of Wassermann’s method can
be found in [18, Chap. III, Sec. 6], [5,16], and [7,10,11]. We prove them in a
completely combinatorial way. These statements, together with the original
argument of A.Wassermann, constitute a powerful method for determining
the indecomposable semifinite harmonic functions on those multiplicative
graphs for which the limit from the Vershik–Kerov ergodic method turns
out to be too complicated for an evaluation. The Macdonald graph, which
corresponds to the simplest Pieri rule for the Macdonald symmetric func-
tions, is a good example of such a graph. Using Wassermann’s method,
one can obtain an exhaustive list of semifinite indecomposable harmonic
functions on it, see Remark 5.8.

1.1. Organization of the paper. In Sec. 2, we introduce graded graphs
and discuss their ideals and coideals. In Sec. 3, we introduce semifinite har-
monic functions and prove some general facts about them. Section 4 deals
with semifinite harmonic functions on multiplicative branching graphs



116 N. A. SAFONKIN

only. Section 5 contains a combinatorial analog of an observation due to
R. P. Boyer. In Appendix A, we discuss finite harmonic functions on the
product of branching graphs.

1.2. Acknowledgments. The author is deeply grateful to Grigori Ol-
shanski for many useful comments and stimulating discussions. I would
also like to thank Pavel Nikitin for his comments on the first draft of this
paper.

2. Ideals and coideals of graded graphs

In this section, we recall the main notions related to branching graphs,
ideals, and coideals.

Definition 2.1. By a graded graph we mean a pair pΓ,κq where Γ is a
graded set Γ “

Ů
ně0

Γn, Γn are finite sets, and κ is a function ΓˆΓ Ñ Rě0

that satisfies the following constraints:

(i) if λ P Γn and µ P Γm, then κpλ, µq “ 0 for m´ n ‰ 1;
(ii) for any vertex λ P Γn there exists µ P Γn`1 with κpλ, µq ‰ 0.

Edges of a graded graph pΓ,κq are, by definition, pairs of vertices pλ, µq
with κpλ, µq ą 0. Thus, we may treat κpλ, µq as a formal multiplicity of
the edge.

If λ P Γn, then the number n is uniquely defined. We denote it by |λ|.
We write λ Õ µ if |µ| ´ |λ| “ 1 and κpλ, µq ‰ 0. In this case, we say that
there is an edge from λ to µ of multiplicity κpλ, µq.

Condition (i) from Definition 2.1 means that we allow edges only be-
tween adjacent levels, and condition (ii) means that each vertex must be
connected by an edge with some vertex from the next level.

A path in a graded graph Γ is a (finite or infinite) sequence of vertices
λ1, λ2, λ3, . . . such that λi Õ λi`1 for every i. We write ν ą µ if |ν| ą |µ|
and there is a path that connects µ and ν. We write ν ě µ if ν “ µ or
ν ą µ. The relation ě turns Γ into a poset.

Let µ, ν P Γ and |ν| ´ |µ| “ n ě 1. Then the expression

dimpµ, νq “
ÿ

λ0,...,λnPΓ:
µ“λ0Õλ1Õ...Õλn´1Õλn“ν

κpλ0, λ1qκpλ1, λ2q . . .κpλn´1, λnq

(1)
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is the “weighted” number of paths from µ to ν. By definition we also set
dimpµ, µq “ 1 and dimpµ, νq “ 0 if ν ğ µ. The function

dimp ¨ , ¨ q : Γ ˆ Γ Ñ Rě0

is called the shifted dimension. Note that dimpµ, νq “ κpµ, νq if µ Õ ν,
and for µ P Γm, ν P Γn, and any k such that m ď k ď n, we have

dimpµ, νq “
ÿ

λ:λPΓk

dimpµ, λqdimpλ, νq. (2)

Definition 2.2. A branching graph is defined as a graded graph pΓ,κq
that satisfies the following conditions:

‚ Γ0 “ t∅u is a singleton,
‚ for any λ P Γn with n ě 1 there exists µ P Γn´1 such that µ Õ λ.

For a branching graph pΓ,κq, we denote the expression dimp∅, λq by
dimpλq and call it the dimension of λ.

Definition 2.3. A subset I of vertices of a graded graph Γ is called an
ideal if for any vertices λ P I and µ P Γ such that µ ą λ, we have µ P I.
A subset J Ă Γ is called a coideal if for any vertices λ P J and µ P Γ such
that µ ă λ we have µ P J .

Remark 2.4. Our terminology differs from the terminology of poset the-
ory. Namely, our ideals and coideals are usually called filters and ideals,
respectively, [15].

There is a bijective correspondence I Ø ΓzI between ideals and coideals.
Let J be a coideal and I “ ΓzJ be the corresponding ideal. Then the
following conditions are equivalent:

(i) if tµ | λ Õ µu Ă I, then λ P I;
(ii) for any λ P J there exists a vertex µ P J such that λ Õ µ.

Definition 2.5. An ideal I and the corresponding coideal J are said to be
saturated if they satisfy the conditions above. A saturated ideal I is said
to be primitive if for any saturated ideals I1, I2 such that I “ I1 X I2, we
have I “ I1 or I “ I2. A saturated coideal J is said to be primitive if for
any saturated coideals J1, J2 such that J “ J1 Y J2, we have J “ J1 or
J “ J2.
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The bijection I Ø ΓzI maps primitive saturated ideals to primitive
saturated coideals and vice versa. We will also use the fact that ideals and
saturated coideals are graded graphs themselves.

Let Γ be a branching graph. The space of infinite paths in Γ starting at
∅ will be denoted by T pΓq. To every path τ “ p∅, λ1 Õ λ2 Õ . . .q P T pΓq
we associate the saturated primitive coideal Γτ “

Ť
ně1

tλ P Γ | λ ď λnu.

In the next proposition we give a combinatorial characterization of sat-
urated primitive coideals of an arbitrary graded graph, see [5]. Moreover,
for branching graphs we describe all such coideals in terms of path coideals
Γτ , see [16] and [18, p. 129].

Proposition 2.6. 1. A saturated coideal J of a graded graph is primi-

tive if and only if for any two vertices λ1, λ2 P J we can find a vertex

µ P J such that µ ě λ1, λ2.

2. Every saturated primitive coideal of a branching graph is of the form

J “ Γτ for some path τ P T pΓq.

Proof. Let J Ă Γ be a saturated coideal. Suppose that there exist vertices
λ1, λ2 P J that do not possess a common majorant. Let us prove that J
can be presented as a union of two distinct proper saturated coideals. We
need to introduce some notation. For any λ P J , the subset of vertices of J
that lie above λ will be denoted by Jλ, i.e., Jλ “ tµ P J | µ ě λu. For any
subset A Ă J , we define Ó A as the subset of vertices of J that lie below
some vertex of A, i.e., Ó A “ tµ P J | µ ď λ for some λ P Au. Finally,
for any ideal I of J , the symbol sat pIq stands for the minimal saturated
ideal that contains I. In other words, sat pIq consists of all vertices of I
and all vertices λ P J such that tµ | λ Õ µu Ă I. With this notation in
mind, we set J1 “Ó pJλ1 q, J2 “ Jz satpJλ1q. It is not difficult to see that J1
and J2 are saturated coideals and their union coincides with J . Obviously,
λ1 P J1 and λ1 R J2. Next, we use the fact that the vertices λ1 and λ2 do
not possess a common majorant to show that λ2 P J2 and λ2 R J1. Thus,
J1 and J2 are proper distinct coideals of J .

Now suppose that for any vertices λ1, λ2 P J there exists µ P J with
µ ě λ1, λ2. We will show that J “ Γτ for some path τ P T pΓq. Let us
denote by x1, x2, . . . all the vertices of J enumerated in any (fixed) order.
Since J is primitive, it follows that we can construct a sequence of vertices
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y1 ď y2 ď . . . of J with the following properties:

y1 “ x1,

y2 ě y1,

y2 ě x2,

y2 P J,

y3 ě y2,

y3 ě x3,

y3 P J,

. . .

. . .

. . .

yn ě yn´1,

yn ě xn,

yn P J,

. . .

. . .

. . .

Let τ P T pΓq be any path that passes through the vertices y1, y2, . . ..
Obviously, J “ Γτ . �

Remark 2.7. One can formulate an obvious analog of the second part
of Proposition 2.6 for arbitrary graded graphs, but this is of no particular
importance to us.

Definition 2.8. A graded graph Γ is said to be primitive if it is primitive
as a coideal, i.e., for any vertices λ1, λ2 P Γ there exists a vertex µ P Γ

such that µ ě λ1, λ2.

3. Semifinite harmonic functions

Definition 3.1. Let pΓ,κq be a graded graph. A function

ϕ : Γ Ñ Rě0 Y t`8u

is said to be harmonic if it enjoys the following property:

ϕpλq “
ÿ

µ:λÕµ

κpλ, µqϕpµq for every λ P Γ.

Throughout the paper, we use the following conventions:

‚ x` p`8q “ `8 for any x P R,
‚ p`8q ` p`8q “ `8,
‚ 0 ¨ p`8q “ 0.

Definition 3.2. The set of all vertices λ P Γ with ϕpλq ă `8 is called
the finiteness ideal of ϕ. We denote the zero ideal tλ P Γ | ϕpλq “ 0u of ϕ
by kerϕ and its support tλ P Γ | ϕpλq ą 0u by suppϕ.

Note that the zero set kerpϕq is a saturated ideal and supppϕq is a
saturated coideal of Γ, while kerpϕq Y supppϕq “ Γ. Furthermore, we can
restrict ϕ to any ideal or saturated coideal that contains supppϕq. The
restriction is a harmonic function on that ideal or coideal, respectively.

The symbol K0pΓq stands for the R-vector space spanned by the vertices
of Γ subject to the following relations:

λ “
ÿ

µ:λÕµ

κpλ, µq ¨ µ for every λ P Γ.
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The symbol K`
0 pΓq denotes the positive cone in K0pΓq generated by the

vertices of Γ, i.e., K`
0 pΓq “ span

Rě0
pλ | λ P Γq. The partial order defined

by the cone K`
0 pΓq is denoted by ěK . Thus, a ěK b ðñ a´ b P K`

0 pΓq.
For instance, if λ ď µ, then λ ěK dimpλ, µq ¨ µ.

Remark 3.3. The notation K0pΓq is motivated by the following fact. If
all formal multiplicities of edges are integers, then the vector space K0pΓq
can be identified with the Grothendieck K0-group of the corresponding
AF-algebra. Under this bijection, the cone K`

0 pΓq gets identified with the
cone of true modules [10, Theorem 13, p. 32].

Observation 3.4. If b P K`
0 pΓq and b ďK λ, then b has the form

b “
ÿ

µ : |µ|“N

bµµ

for some N and some real numbers bµ subject to the following constraints:
0 ď bµ ď dimpλ, µq. In particular, bµ “ 0 if µ ğ λ.

The Rě0-linear map K`
0 pΓq Ñ Rě0 Y t`8u defined by a harmonic

function ϕ will be denoted by the same symbol ϕ. Note that this map
is monotone in the sense of the partial order. Namely, if a ěK b, then
ϕpaq ě ϕpbq.

Definition 3.5. A harmonic function ϕ is said to be semifinite if it is
not finite and the map ϕ : K`

0 pΓq Ñ Rě0 Y t`8u enjoys the following
property:

ϕpaq “ sup
bPK`

0
pΓq : bďKa,

ϕpbqă`8

ϕpbq for every a P K`
0 pΓq.

(3)

If ϕpaq ă `8, then condition (3) turns into the trivial identity
ϕpaq “ ϕpaq.

Condition (3) arises in a natural way in the theory of operator algebras
[4, Definition 1.8].

Remark 3.6. A harmonic function ϕ is semifinite if and only if there
exists an element a P K`

0 pΓq with ϕpaq “ `8 and for any such a we can
find a sequence tanuně1 Ă K`

0 pΓq such that

‚ an ďK a,
‚ ϕpanq ă `8,
‚ lim

nÑ`8
ϕpanq “ `8.
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We will call this sequence tanuně1 an approximating sequence.

Proposition 3.7. A harmonic function ϕ is semifinite if and only if it is

not finite and for any vertex λ P Γ the following equality holds:

ϕpλq “ lim
NÑ8

ÿ

µ : µěλ, |µ|“N
0ăϕpµqă`8

dimpλ, µqϕpµq.
(4)

Proof. If (4) is fulfilled, then ϕ is semifinite, since the prelimit sums give
us an approximating sequence. If ϕ is semifinite and ϕpλq ă `8, then (4)
is a trivial consequence of Definition 3.1. If ϕpλq “ `8, then we can find
an approximating sequence and Observation 3.4 implies that the prelimit
expression is unbounded in N . We are left to prove that the limit exists.
In fact, we will show that the prelimit sequence is nondecreasing in N . Let
us denote the prelimit expression by ψN .

Next, the function

φpλq “

#
ϕpλq if 0 ă ϕpλq ă `8,

0 otherwise

is subharmonic:

φpλq ď
ÿ

µ : λÕµ

κ pλ, µqφpµq.

Then from the equality

ψN “
ÿ

µ : |µ|“N

dimpλ, µqφpµq

and (2) it follows that ψ1 ď ψ2 ď ψ3 ď . . . . �

Corollary 3.8. If ϕ is a semifinite harmonic function on a graded graph

Γ, then for any vertex λ P Γ with ϕpλq “ `8 there exists a vertex µ ě λ

such that 0 ă ϕpµq ă `8.

Remark 3.9. Let tcµuµPΓ be a tuple of nonnegative real “numbers” cµ P
Rě0 Y t`8u such that for every vertex λ P Γ there exists a limit

lim
NÑ8

ÿ

µPΓN

dimpλ, µqcµ,
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which may be infinite. For instance, we may take cµ “ ψpµq where ψ is a
subharmonic function: ψpλq ď

ř
µ:λÕµ

κpλ, µqψpµq. Then the function

cpλq “ lim
NÑ8

ÿ

µPΓN

dimpλ, µqcµ

is harmonic, cf. [12, p. 4], see also [7, formula (47)].

Definition 3.10. A semifinite harmonic function ϕ is said to be indecom-

posable if for any finite or semifinite harmonic function ϕ1 that does not
vanish identically on the finiteness ideal of ϕ and satisfies the inequality
ϕ1 ď ϕ, we have ϕ1 “ const ¨ϕ on the finiteness ideal of ϕ.

At first glance, it seems that the finiteness ideal of ϕ1 might be bigger
than that of ϕ, but the next remark shows that this is not the case.

Remark 3.11. If ϕ and ϕ1 from Definition 3.10 are proportional on the
finiteness ideal of ϕ, then they are proportional on the whole graph Γ.
Indeed, by virtue of Proposition 3.7, we may write

ϕpλq “ const´1 ¨ lim
NÑ8

ÿ

µ : µěλ, |µ|“N
0ăϕpµqă`8

dimpλ, µqϕ1pµq

ď const´1 ¨ lim
NÑ8

ÿ

µ : µěλ, |µ|“N

0ăϕ1pµqă`8

dimpλ, µqϕ1pµq “ const´1 ¨ϕ1pλq.

Thus, ϕ1 ď ϕ ď const´1 ¨ϕ1, and the finitiness ideals of ϕ and ϕ1 coincide.

Notation. The set of all indecomposable finite (not identically zero) and
semifinite harmonic functions on a graded graph Γ is denoted by HexpΓq.
The subset of HexpΓq consisting of strictly positive functions is denoted by
H˝

expΓq.

Lemma 3.12. Let I be an ideal of a graded graph Γ. Assume that a

function ϕ P HexpΓq does not vanish on I identically. Then the following

equality holds:

ϕpλq “ lim
NÑ8

ÿ

µ:µPI
|µ|“N

dimpλ, µqϕpµq, λ P Γ.
(5)

Moreover, for any element a P K`
0 pΓq we have ϕpaq “ sup

bPK`

0
pIq : bďKa,

ϕpbqă`8

ϕpbq.
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Remark 3.13. If we omit the assumption that ϕ is indecomposable, then
the equality above should be replaced by the inequality

ϕpλq ě lim
NÑ8

ÿ

µ:µPI
|µ|“N

dimpλ, µqϕpµq.

Proof of Lemma 3.12. First of all, we note that there exists a vertex
ν P I such that 0 ă ϕpνq ă `8. Indeed, ϕ does not vanish identically on I,
hence we can find a vertex ν1 P I such that ϕpν1q ą 0. If ϕpν1q “ `8, then,
by Corollary 3.8, we can find another vertex ν ą ν1 with 0 ă ϕpνq ă `8,
which necessarily lies in I.

Note that the function

φpλq “

#
ϕpλq if λ P I,

0 otherwise

is subharmonic on Γ. Then, by Remark 3.9, the right-hand side of (5)
defines a harmonic function on Γ. From Observation 3.4 and Remark 3.6
it follows that the restriction of ϕ to the ideal I is a finite or semifinite
harmonic function on I. Then the harmonic function on Γ defined by the
right-hand side of (5) is finite or semifinite as well. Next, by the very
definition of harmonic functions, the prelimit expression is majorized by
ϕ for any N . Then the harmonic function that is defined as the N Ñ `8
limit is also majorized by ϕ. Finally, the indecomposibility of ϕ implies
that ϕ and the right-hand side of (5) are proportional, but ϕ and the
right-hand side of (5) coincide on the ideal I. Thus, they coincide on the
whole graph Γ, since there exists ν P I with 0 ă ϕpνq ă `8. �

Now we are ready to prove the most crucial result of Wassermann’s
method. The following theorem is a combinatorial analog of a result which
is well known in the context of C˚-algebras, see [18, Theorem 7 on p. 143,
Corollary on p. 144] and [1, II.6.1.6, p. 102].

Theorem 3.14. Let I be an ideal of a graded graph Γ.

1. There is a bijective correspondence between tϕ P HexpΓq : ϕ |I ‰ 0u and
HexpIq, defined by the following mutually inverse maps:

Res
Γ

I :
 
ϕ P HexpΓq : ϕ |

I
‰ 0

(
Ñ HexpIq, ϕ ÞÑ ϕ

ˇ̌
I
,

Ext
Γ

I : HexpIq Ñ
 
ϕ P HexpΓq : ϕ |I ‰ 0

(
, ϕp¨q ÞÑ lim

NÑ8

ÿ

µ:µPI
|µ|“N

dimp¨, µqϕpµq.
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Furthermore, for any element a P K`
0 pΓq we have

ExtΓI pϕqpaq “ sup
bPK`

0
pIq : bďKa,

ϕpbqă`8

ϕpbq.

2. If Γ is a primitive graded graph, then the bijection above preserves

strictly positive harmonic functions: H˝
ex pIq ÐÑ H˝

ex pΓq.

Proof. Suppose that ϕ P HexpΓq and ϕ |I ‰ 0. Then from Observation 3.4

and Remark 3.6 it follows that ResΓI pϕq “ ϕ |I is a finite or semifinite har-

monic function on I. Lemma 3.12 implies that ResΓI pϕq is indecomposable.
Now let ϕ P HexpIq. From the proof of Proposition 3.7 it follows that

the limit from the definition of ExtΓI exists and ExtΓI pϕq is a finite or

semifinite harmonic function on Γ. Note that ExtΓI pϕq is strictly positive
for ϕ P H˝

expIq because of the following simple fact, which holds for any
primitive graded graph. For any vertex λ P Γ there exists a vertex µ P I

such that µ ě λ.
Let us show that the harmonic function ExtΓI pϕq is indecomposable for

any ϕ P HexpIq. Suppose that ExtΓI pϕq ě ψ for some ψ that does not

vanish on the finiteness ideal of ExtΓI pϕq identically. We denote the ideal

by rI. The finiteness ideal of ϕ is denoted by Iϕ. Let us introduce more

notation: ψ1 “ ψ |rI and ψ2 “ Ext
rI
Ipϕq ´ ψ1. Then ψ1 and ψ2 are finite

harmonic functions on rI. Note that Ext
rI
I pϕq “ Ext

rI
IXIϕ pϕq. On the one

hand, we have Ext
rI
IXIϕ pϕq “ ψ1 `ψ2. On the other hand, ϕ “ ψ1 `ψ2 on

I X Iϕ, hence

Ext
rI
IXIϕ pϕq “ Ext

rI
IXIϕpψ1q ` Ext

rI
IXIϕpψ2q ď ψ1 ` ψ2,

where the last inequality follows from Remark 3.13. Therefore, ψ1 “

Ext
rI
IXIϕpψ1q and ψ2 “ Ext

rI
IXIϕpψ2q. Let us rewrite the first equality

in the form ψ |rI “ Ext
rI
IXIϕpψq. Then we see that the function ψ |Iϕ

does not vanish identically. Now, the indecomposability of ϕ implies that

ϕ and ψ are proportional on Iϕ. Thus, from ψ |rI “ Ext
rI
IXIϕ pψq and

Ext
rI
I pϕq “ Ext

rI
IXIϕ pϕq it follows that ExtΓI pϕq and ψ are proportional

on rI.
Therefore, the maps ResΓI and ExtΓI are well defined, and the identity

ResΓI ˝ExtΓI “ id holds. The remaining identity ExtΓI ˝ResΓI “ id immedi-
ately follows from Lemma 3.12. �
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Remark 3.15. Let I1 Ă I2 be ideals of Γ. Then ExtΓI2 ˝ExtI2I1 “ ExtΓI1 .

Proposition 3.16 ([10, p. 35, Lemma 12]). Let Γ be a graded graph. If

ϕ P HexpΓq, then supppϕq is a primitive coideal.

Proof. Let λ1, λ2 P supppϕq. Then Lemma 3.12 implies that

ϕpλ2q “ lim
NÑ8

ÿ

µ:µPΓλ1

|µ|“N

dimpλ2, µqϕpµq,

where Γλ1 “ tν P Γ | ν ě λ1u. Then the inequality ϕpλ2q ą 0 implies that
there exists a vertex µ such that µ ě λ1, λ2 and ϕpµq ‰ 0. Thus, by virtue
of Proposition 2.6, the coideal supppϕq is primitive. �

4. Multiplicative branching graphs

In this section, we recall some basic notions related to multiplicative
branching graphs [8,10]. For such graphs, we prove a theorem which states
that some multiplicative branching graphs admit no strictly positive semifi-
nite indecomposable harmonic functions [18, Theorem 8, p. 146]. We call
this theorem Wassermann’s forbidding theorem. We also prove a semifinite
analog of the Vershik–Kerov ring theorem [11, p. 144].

Definition 4.1 ([10, p. 40]). A branching graph Γ is said to be multi-

plicative if there exists an associative Zě0-graded R-algebra A “
À
ně0

An,

A0 “ R, with a distinguished basis of homogeneous elements taλuλPΓ that
satisfy the following conditions:

1) deg aλ “ |λ|,
2) a∅ is the identity in A,
3) for pa “

ř
νPΓ1

κp∅, νqaν and any vertex λ P Γ, we have

pa ¨ aλ “
ÿ

µ:λÕµ

κpλ, µqaµ.

Moreover, we assume that the structure constants of A with respect to
the basis taλuλPΓ are nonnegative.

Let pΓ,κq be the multiplicative graph that is related to an algebra

A and a basis taλuλPΓ. We denote the quotient algebra A
L
ppa ´ 1q by R,

the canonical homomorphism A ։ R by r ¨ s, and the positive cone in
R consisting of all elements that can be written in the form

ř
λPΓn

cλraλs
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for a sufficiently large n and some cλ ě 0, by R`. The correspondence
rλs ÞÑ raλs defines an isomorphism of R-vector spaces K0pΓq „ÝÑR. The
image of the cone K`

0 pΓq Ă K0pΓq under this map coincides with R`.
Consider the positive cone A` Ă A consisting of all elements of A that

can be written as a linear combination of basis elements aλ with non-
negative coefficients. For any semifinite harmonic function ϕ P HpΓq, we
may speak about the Rě0-linear map ϕ : A` Ñ Rě0 Y t`8u.

Let us now formulate the Vershik–Kerov ring theorem [11, p. 134], see
also [6, Proposition 8.4].

Definition 4.2. A harmonic function ϕ on a branching graph Γ is said to
be normalized if ϕp∅q “ 1.

Theorem 4.3 (Vershik–Kerov ring theorem [11, p. 134]). A finite normal-

ized harmonic function ϕ on a multiplicative branching graph Γ is indecom-

posable if and only if the corresponding functional on A is multiplicative:

ϕ pa ¨ bq “ ϕ paq ¨ ϕ pbq for any a, b P A.

The following semifinite analog of the ring theorem holds.

Theorem 4.4 ([11, p. 144]). For any semifinite indecomposable harmonic

function ϕ on a multiplicative branching graph Γ there exists a finite nor-

malized indecomposable harmonic function ψ such that ϕpa¨bq “ ψpaq¨ϕpbq
for any a, b P A` with ϕpbq ă `8.

Proof. Note that

ppaq
n

“
ÿ

ν : νPΓn

dimpνq ¨ aν .

Then ϕ
´

ppaqn aµ

¯
“ ϕ paµq ě dimpλqϕ paλ ¨ aµq and ϕλ pµq “ ϕ paλaµq

is a finite harmonic function on the finiteness ideal of ϕ. Since the re-
striction of ϕ to its finiteness ideal is an indecomposable harmonic func-
tion (see Lemma 3.12), it follows that there exists cλ P Rě0 such that
ϕ paµ ¨ aλq “ cλϕpaµq. We set ψpλq “ cλ by definition. One can check
that ψ is a harmonic function and that the functional on A defined by ψ
is multiplicative. Then the Vershik–Kerov ring theorem implies that ψ is
indecomposable. �

From Theorem 4.4 it follows that the subspace

I “ span
R

paλ | λ : ϕpλq ă `8q Ă A
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is an ideal for any semifinite indecomposable harmonic function ϕ. How-
ever, the proof shows that this is true for an arbitrary harmonic function
ϕ without any additional assumptions.

The following theorem imposes some restrictions on multiplicative graphs
that possess strictly positive indecomposable semifinite harmonic func-
tions, [18, Theorem 8, p. 146].

Theorem 4.5 (Wassermann’s forbidding theorem). If aλaµ ‰ 0 for any

λ, µ P Γ, then the graph Γ admits no strictly positive semifinite indecom-

posable harmonic functions.

Proof. Let ϕ be a strictly positive indecomposable semifinite harmonic
function. The argument at the beginning of the proof of Theorem 4.4 shows
that the function ϕµ defined by ϕµpλq “ ϕ paλaµq is a finite harmonic func-
tion on Γ, while ϕpµq ă `8. Furthermore, the following inequality holds:
ϕ ě const ¨ϕµ. Next, observe that ϕµ is strictly positive, since aλaµ ‰ 0

and the structure constants of A are nonnegative with respect to the basis
taλuλPΓ. Therefore, ϕ and ϕµ are proportional. Thus, ϕ is finite. �

Corollary 4.6 ([3, p. 371, the paragraph just before Theorem 3.5]). If

Γ admits a strictly positive indecomposable finite harmonic function, then

it possesses no strictly positive semifinite indecomposable harmonic func-

tions.

Proof. Suppose that ϕ is a strictly positive indecomposable finite har-
monic function and aλaµ “ 0 for some λ, µ P Γ. Then ϕpaλaµq “ ϕp0q “ 0,
and Theorem 4.3 implies that ϕpλqϕpµq “ 0, which contradicts the strict
positivity of ϕ. �

5. Boyer’s lemma

In this section, we discuss a very useful result related to arbitrary har-
monic functions on a graded graph. It allows one to determine the finiteness
ideal of an indecomposable semifinite harmonic function in several con-
crete situations. This principle, which was first observed by R. P. Boyer
and published only in 1983, see [4, Theorem 1.10, Example on p. 212], was
also stated by Wassermann [18, Boyer’s lemma, p. 149] two years before
the paper [4]. We formulate and prove a slightly involved generalization of
Wassermann’s concise argument. It turns out to be a combinatorial ana-
log of [4, Theorem 1.10]. After that, we consider a couple of examples,
which immediately follow from the general claim. Boyer’s lemma from [18]
becomes a part of the first example, see Remark 5.6.
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5.1. General statement. Recall that the set of vertices at the nth level
of a graded graph Γ is denoted by Γn. Below we work with arbitrary
harmonic functions and do not assume that they are finite or semifinite.

Definition 5.1. A harmonic function ϕ is said to be semifinite at a vertex

λ if ϕpλq “ `8 and there exists a sequence tanuně1 Ă K`
0 pΓq such that

‚ an ďK λ,
‚ ϕpanq ă `8,
‚ lim

nÑ`8
ϕpanq “ `8.

The sequence tanuně1 will be called an approximating sequence for the

vertex λ.

Observation 5.2. If ϕ is semifinite at a vertex λ, then for any vertex
µ ď λ the function ϕ is semifinite at the vertex µ too.

Proposition 5.3 (generalized Boyer’s lemma). Let pΓ,κq be a graded

graph and ϕ be a harmonic function on it. Assume that I Ă Γ is an ideal,

J “ ΓzI is the corresponding coideal, and we are given a fixed vertex

λ P Jn. Suppose that there exists a positive integer m “ mpλq and a tuple

of nonnegative real numbers tβνuνPIm , which may depend on λ, such that

the following conditions are satisfied:

‚ there exists a vertex ν P Im with βν ‰ 0 and ϕpνq ą 0,

‚ for any sufficiently large l and any vertex η P In`l`1, the following

inequality holds:
ÿ

µPJn`l

dimpλ, µqκpµ, ηq ě
ÿ

νPIm

βν dimpν, ηq. (6)

Then ϕpλq “ `8. If, additionally, ϕpνq ă `8 for any ν P Im such that

βν ‰ 0, then ϕ is semifinite at the vertex λ.

Remark 5.4. Condition (6) is a refinement of some condition on the
“number” of paths in the graph Γ, which admits a graphical interpretation,
see condition (14) from Corollary 5.5 and Fig. 2.

Proof of Proposition 5.3. Let us multiply (6) by η P K0pΓq and sum
over all η P In`l`1. Then we get

ÿ

ηPIn`l`1

µPJn`l

dimpλ, µqκpµ, ηq ¨ η ěK

ÿ

ηPIn`l`1

νPIm

βν dimpν, ηq ¨ η, (7)
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where both sides of the inequality are regarded as elements of K0pΓq and
the partial order on K0pΓq defined by the cone K`

0 pΓq is denoted by ěK .
Furthermore, the right-hand side of inequality (7) equals

ř
νPIm

βνν. Let us

denote it by bλ. Then ϕpbλq ą 0 and
ÿ

ηPIn`l`1

µPJn`l

dimpλ, µqκpµ, ηqη ěK bλ.

The only thing we still have to do is to reproduce the original argument
of A. Wassermann [18, p. 149, the proof of Boyer’s lemma] in our context:

λ “
ÿ

ηPΓn`N`1

dimpλ, ηqη ěK

ÿ

ηPIn`N`1

dimpλ, ηqη. (8)

Note that if λ P Jn and η P In`N`1, then

dimpλ, ηq “
Nÿ

l“0

ÿ

ηPIn`l`1

µPJn`l

dimpλ, µqκpµ, ηqdimpη, ηq. (9)

Substitute (9) into (8):

λ ěK

Nÿ

l“0

ÿ

ηPIn`l`1

µPJn`l

ÿ

ηPIn`N`1

dimpλ, µqκpµ, ηqdimpη, ηqη.

Now sum over η:

λ ěK

Nÿ

l“0

ÿ

ηPIn`l`1

µPJn`l

dimpλ, µqκpµ, ηqη ěK bλ ¨ N. (10)

Compare (10) with p1.10.1q and p1.10.2q from [4, Theorem 1.10].
Thus, (10) yields ϕpλq ě ϕpbλq ¨ N for any N , hence ϕpλq “ `8.

Moreover, the sequence aN “ bλ ¨N is an approximating sequence for the
vertex λ if ϕpbλq ă `8. �

5.2. Example 1. Consider graded graphs pΓ1,κ1q and pΓ2,κ2q and sup-
pose that we are given a graded map Γ1 Ñ Γ2, λ ÞÑ λ1. Let pΓ,κq be still
another graded graph that satisfies the following requirements:

pΓqn “ pΓ1qn \ pΓ2qn´1 for n ě 1, pΓq0 “ pΓ1q0 ; (11)
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κ pλ, µq “ κ1 pλ, µq if λ, µ P Γ1,

κ pλ, µq “ κ2 pλ, µq if λ, µ P Γ2;
(12)

κ pλ, µq “ 0 if λ P Γ2, µ P Γ1. (13)

Condition (13) means that Γ2 is an ideal of Γ. For simplicity, one may
assume that edges from Γ1 to Γ2 can go from λ to λ1 only, see Fig. 1. But
we will not use this in what follows.

λ

λ1

Γ1 Γ2

Fig. 1. An example of a branching rule for Γ.

Corollary 5.5. Assume that the map ν ÞÑ ν1 is surjective, and let

λ P pΓ1qn be a fixed vertex. Suppose that for any sufficiently large l and

any vertex µ P pΓ1qn`l, the following inequality holds:

dim1pλ, µqκpµ, µ1q ě dim2pλ1, µ1q, (14)

where dim1p ¨ , ¨ q and dim2p ¨ , ¨ q are the shifted dimensions for pΓ1,κ1q
and pΓ2,κ2q. Now let ϕ be a harmonic function on Γ with ϕpλ1q ą 0. Then

ϕpλq “ `8, and ϕ is semifinite at the vertex λ if ϕpλ1q ă `8.

Proof. Recall that Γ2 is an ideal of Γ. Therefore, we may apply Propo-
sition 5.3 for I “ Γ2, J “ Γ1, m “ |λ| ` 1, and βν “ δν,λ1 . Then we
bound the sum in the left-hand side of (6) from below in terms of one of
its summands and use (14). �

Remark 5.6. If the map λ ÞÑ λ1 is a branching graph morphism, i.e.,
κpλ, µq “ κpλ1, µ1q, then condition (14) means that κpµ, µ1q ě 1. If the
equality holds identically, then we obtain the original formulation of Boyer’s
lemma [18, p. 149, Boyer’s lemma].
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Γ1 Γ2

λ

λ1

µ µ1

Fig. 2. Condition (14) means that the “number” of paths
from λ to µ1 that pass through µ is not less than the
“number” of arbitrary paths from λ1 to µ1.

5.3. Example 2. Consider graded graphs pΓ1,κ1q and pΓ2,κ2q and sup-
pose that we are given a graded map Γ1 Ñ Γ2, λ ÞÑ λ1. Let pΓ,κq be
another graded graph that satisfies the condition pΓqn “ pΓ1qn \ pΓ2qn for
n ě 0 and conditions (12), (13). Recall that the last condition means that
Γ2 is an ideal of Γ. For simplicity, one may assume that vertices λ P Γ1

and µ P Γ2 are joined by an edge if and only if λ1 Õ µ, as shown in Fig. 3.

λ λ1

Γ1 Γ2

Fig. 3. An example of a branching rule for Γ.

Corollary 5.7. Suppose that the map λ ÞÑ λ1 is surjective. Let λ P Γ1

be a fixed vertex, and assume that the following inequalities hold for any

µ P Γ1:

κpλ, µq ě κpλ1, µ1q,
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κpλ, µ1q ě κpλ1, µ1q.

Then ϕpλq “ `8 for any harmonic function ϕ on Γ such that ϕpλ1q ą 0.

Moreover, ϕ is semifinite at the vertex λ if 0 ă ϕpλ1q ă `8.

Proof. Let us take I “ Γ2, J “ Γ1, m “ |λ|, and βν “ δν,λ1 in Proposi-
tion 5.3 and prove that

ř
µPΓ1

dimpλ, µqκpµ, ηq ě dimpλ1, ηq for any η P Γ2.

In order to do so, we check that dimpλ, µq ě dimpλ1, µ1q and write
ř

µPΓ1

dimpλ, µqκpµ, ηq

dimpλ1, ηq
ě

ř
µPΓ1

dimpλ1, µ1qκpµ1, ηq

dimpλ1, ηq

ě

ř
µPΓ2

dimpλ1, µqκpµ, ηq

dimpλ1, ηq
“ 1.

For each of these inequalities, we have used the fact that the map λ ÞÑ λ1

is surjective. �

Remark 5.8. As it was pointed out in the introduction, one can obtain
an exhaustive list of indecomposable semifinite harmonic functions on the
Macdonald graph, which corresponds to the simplest Pieri rule for the
Macdonald symmetric functions, by applying Wassermann’s method. This
list turns out to be very similar to that for the Young graph, see [18, The-
orem 9, p. 150]. For instance, the space of classification parameters is an
obvious pq, tq-deformation of the parameter space for the Young graph.
Namely, we should deform only the continuous part of the data in the
same way as it deforms in the case of finite harmonic functions, replac-
ing the ordinary Thoma simplex with the pq, tq-deformed Thoma simplex,
see Theorem 1.4 and Proposition 1.6 from [13], while the discrete part
remains the same. This result easily follows from the original argument
of A. Wassermann, Theorem 1.4 and Proposition 1.6 from [13], Proposi-
tion 2.6, Theorem 3.14, Proposition 3.16, and Corollary 5.5. Instead of
using Theorem 4.5, we must apply a similar argument obtained with the
help of a trick due to K. Matveev [13, §6, proof of Proposition 1.6].

Appendix A. Direct product of branching graphs

In this appendix, we describe indecomposable finite harmonic functions
on the product of branching graphs in terms of harmonic functions on
the factors. This result is not related to semifinite harmonic functions in a
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straightforward way, but it turns out to be very useful for describing semifi-
nite harmonic functions on some branching graphs, such as the Gnedin–
Kingman graph [14] and the zigzag graph. The latter was studied in the
paper [6]. One can treat the main result of this appendix, Proposition A.4,
as a generalization of the well-known de Finetti theorem [2, Theorems 5.1
and 5.2]. The difference between Proposition A.4 (the case n “ 2) and
the de Finetti theorem is that we replace two sides of the Pascal triangle,
which correspond to two embeddings Z ãÑ Z ‘ Z along the first and the
second components, with arbitrary branching graphs. Note that the case
where one of these graphs is a line consisting of one vertex at each level was
already known, see [17, Theorem 2.8]. Observe that in this theorem one
should consider only strictly positive harmonic functions (or, equivalently,
central measures) instead of arbitrary ones.

Let us provide some motivation for the main definition of the present
section. If A and B are unital Zě0-graded R-algebras, then their tensor
product (over R) is a unital graded algebra too. Namely, if A “

À
ně0

An,

A0 “ R and B “
À
ně0

Bn, B0 “ R, then A bR B “
À
kě0

pAbR Bqk, where

pAbR Bqk “
à

n,mě0:
n`m“k

An bR Bm.

Furthermore, 1AbB “ 1Ab1B and pA bR Bq0 “ R¨1AbB. This simple fact,
together with Definition 4.1, motivates us to consider the direct product of
two graded graphs.

Definition A.1. By the direct product of graded graphs pΓ1,κ1q and
pΓ2,κ2q we mean the graded graph pΓ1 ˆ Γ2,κ1 ˆ κ2q where

pΓ1 ˆ Γ1qk “
ğ

n,mě0:
n`m“k

pΓ1qn ˆ pΓ2qm

and

pκ1 ˆ κ2q
´

pλ1, µ1q; pλ2, µ2q
¯

“

$
’&
’%

κ1pλ1, λ2q if µ1 “ µ2,

κ2pµ1, µ2q if λ1 “ λ2,

0 otherwise.

The next lemma ties together some properties of the direct product of
graded graphs.
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The subset Γλ “ tµ P Γ | µ ď λu of a graded graph Γ is called the
principal coideal associated to λ P Γ.

Lemma A.2. Let Γ1 and Γ2 be graded graphs.

1. The graph Γ1 ˆΓ2 is primitive if and only if Γ1 and Γ2 are primitive.

2. If Γ1 and Γ2 are branching graphs and J Ă Γ1 ˆ Γ2 is a saturated

primitive coideal, then there exist coideals J1 Ă Γ1 and J2 Ă Γ2 such

that J “ J1 ˆ J2 and

‚ J1, J2 are saturated and primitive, or

‚ J1 is principal and J2 is saturated and primitive, or

‚ J1 is saturated and primitive and J2 is principal.

Moreover, coideals J1 and J2 are uniquely defined.

3. Let λ, λ1 P Γ1 and µ, µ1 P Γ2. Then

dim
´

pλ, µq, pλ1, µ1q
¯

“

ˆ
|λ1| ´ |λ| ` |µ1| ´ |µ|

|λ1| ´ |λ|

˙
dim1

`
λ, λ1

˘
dim2

`
µ, µ1

˘
,

where

ˆ
n

k

˙
denotes the binomial coefficient and dim1p ¨ , ¨ q, dim2p¨, ¨q

are the shifted dimensions for Γ1 and Γ2, see formula (1) on p. 116.

Proof. The first and the second assertions follow from Proposition 2.6
immediately, and the third one is obvious. �

Note that we can easily generalize the statement of Lemma A.2 to the
case of n ą 2 graded graphs. Furthermore, the direct product of multiplica-
tive graphs is multiplicative too. For the direct product of two multiplica-
tive graphs, the corresponding algebra is the tensor product of the original
algebras, the distinguished basis is the tensor product of the bases, and

the element that was denoted by pa in Definition 4.1 is pabR 1B ` 1A bR
pb,

where pa and pb are the same elements for the original algebras. Thus, we can
define the direct product of finitely many graded graphs, and the product
of multiplicative graphs is multiplicative as well.

Recall that a harmonic function ϕ on a branching graph Γ is said to be
normalized if ϕp∅q “ 1.

Remark A.3. Let Γ1, . . . ,Γn be branching graphs; let ϕ1, . . . , ϕn be finite
normalized harmonic functions on these graphs and w1, . . . , wn be real
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positive numbers such that w1 ` . . .` wn “ 1. Then the function

ϕ : Γ1 ˆ . . . ˆ Γn Ñ Rě0

defined by

ϕpλ1, . . . , λnq “ w
|λ1 |
1 . . . w|λn|

n ϕ1pλ1q . . . ϕnpλnq (A.1)

is harmonic and normalized.
Note that we can recover these ϕ1, . . . , ϕn and w1, . . . , wn from ϕ as

follows. Let us set

MCpa1, . . . , anq “

ˆ
a1 ` . . . ` an
a1, . . . , an

˙
“

pa1 ` . . .` anq!

a1! . . . an!
.

Then

ϕipµq “
ÿ

λjPΓj ,j‰i
j“1,...,n

MC
´

|λ1|, . . . , |λi´1|, |µ| ´ 1, |λi`1|, . . . , |λn|
¯

ˆ
nź

j“1
j‰i

dimpλjq ¨ ϕpλ1, . . . , λi´1, µ, λi`1, . . . , λnq

(A.2)

for |µ| ě 1 and

wk1

1 . . . wkn
n “

ÿ

λiPΓi,|λi|“ki

i“1,...,n

dimpλ1q . . .dimpλnq ¨ ϕpλ1, . . . , λnq (A.3)

for any positive integers k1, . . . , kn.
Compare (A.2) and (A.3) with the first two formulas from the proof of

Theorem 2.8 in [17].

Notation. Let pΓ,κq be a branching graph. We denote by FHexpΓq the
set of all finite normalized harmonic functions on Γ, and by FH

˝
expΓq the

subset of all strictly positive functions.

Proposition A.4. Let Γ1, . . . ,Γn be branching graphs and ∆0
n be the in-

terior of the pn ´ 1q-dimensional simplex, i.e.,

∆0
n “ tpw1, . . . , wnq | w1 ` . . .` wn “ 1, wi ą 0u.

1) There is a bijection between the sets FH
˝
expΓ1 ˆ . . . ˆ Γnq and

FH
˝
expΓ1q ˆ . . .ˆ FH

˝
expΓnq ˆ ∆0

n

defined by (A.1).
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2) There is a bijection between the sets FHexpΓ1 ˆ . . . ˆ Γnq and
ğ

I : IĂt1,2,...,nu
I‰∅

∆0
|I| ˆ ˆ

iPI
FHexpΓiq.

More precisely, for any harmonic function ϕ P FHexpΓ1 ˆ . . .ˆ Γnq
there exist a nonempty set I Ă t1, 2, . . . , nu, harmonic functions ϕi P
FHexpΓiq, which are indexed by i P I, and w P ∆0

|I| such that for any

n-tuple of vertices λ1 P Γ1, . . . , λn P Γn the following identity holds:

ϕ pλ1, . . . , λnq “

$
&
%

ś
iPI

w
|λi|
i ϕipλiq if λj “ ∅ for every j P t1, 2, . . . , nuzI,

0 otherwise.

Moreover, these I, ϕi, and w are uniquely defined.

Remark A.5. For multiplicative graphs, Proposition A.4 is a straight-
forward consequence of the Vershik–Kerov ring theorem (Theorem 4.3).
Namely, we should apply this theorem to the following elementary fact:

Hom
´
A1 bR . . . bR An,R

¯
“

ną

i“1

Hom pAi,Rq ,

where Hom stands for the set of algebra homomorphisms. Indeed, to prove
the first part of the proposition, we note that there are two mutually inverse
maps

ΦÑ : FH
˝
expΓ1q ˆ . . .ˆ FH

˝
expΓnq ˆ ∆0

n ÝÑ FH
˝
expΓ1 ˆ . . . ˆ Γnq,

pϕ1, . . . , ϕn, wq ÞÑ pϕ1 ˝ rw1
q b . . .b pϕn ˝ rwn

q ,

and

ΦÐ : FH
˝
expΓ1 ˆ . . .ˆ Γnq ÝÑ FH

˝
expΓ1q ˆ . . .ˆ FH

˝
expΓnq ˆ ∆0

n,

ϕ ÞÑ
`
ϕ |A1

˝ r´1
w1
, . . . , ϕ |An

˝ r´1
wn
, w

˘
.

Here ru denotes the automorphism of a graded algebra defined on ho-
mogeneous elements as a ÞÑ udeg aa, and ϕ |Ai

is the restriction of the

map ϕ : A1 b . . . b An Ñ R to the subalgebra 1bi´1 b Ai b 1bn´i » Ai.
Furthermore, the n-tuple w “ pw1, . . . , wnq that appears in the definition
of the map ΦÐ has the following form: wi “ ϕ

`
1bi´1 b papiq b 1bn´i

˘
.

Recall that the element papiq P Ai defines the branching rule for Γi, see
Definition 4.1.
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Proof of Proposition A.4. We prove the first part of the proposition
for n “ 2 only. The case n ą 2 can be dealt with in the same manner. One
can prove the second part of the proposition applying essentially the same
argument, Proposition 3.16, and the second part of Lemma A.2.

One can check that for any harmonic function ϕ on Γ1 ˆ Γ2, the right-
hand side of (A.2) defines a harmonic function on Γi. Thus, the function
ϕ defined by (A.1) is indecomposable if ϕ1 and ϕ2 are indecomposable.
Then (A.1) defines an injective map FH

˝
expΓ1q ˆ FH

˝
expΓ2q ˆ ∆0

2 ÝÑ
FH

˝
expΓ1 ˆ Γ2q. Using the Vershik–Kerov ergodic method, see [9, p. 20,

Theorem 2], [8, p. 60], we will show that this map is also surjective. Let ϕ
be a finite strictly positive normalized indecomposable harmonic function
on Γ1 ˆ Γ2. Then, by [8, p. 60], there exists a path

τ “
´

p∅,∅q, pλ1, µ1q, . . .
¯

P T pΓ1 ˆ Γ2q

such that

ϕpλ, µq “ lim
NÑ`8

dim
´

pλ, µq, pλ1
N , µ

1
Nq

¯

dim
´

pλ1
N , µ

1
N q

¯ .

From the last part of Lemma A.2 it follows that

dim

´
pλ, µq, pλ1

N , µ1
N q

¯

dim

´
pλ1

N , µ1
N q

¯ “

´
|λ1

N |
¯Ó|λ|

¨
´

|µ1
N |

¯Ó|µ|

´
|λ1

N | ` |µ1
N |

¯Óp|λ|`|µ|q
¨
dim1

`
λ, λ1

N

˘

dim1 pλ1
Nq

¨
dim2

`
µ, µ1

N

˘

dim2 pµ1
N q

,

where xÓk “ xpx´1q . . . px´k`1q. Then the strict positivity of ϕ implies
that |λ1

N | Ñ `8 and |µ1
N | Ñ `8 as N Ñ `8. Therefore, passing to

appropriate subsequences, we may assume that the following limits exist:

lim
NÑ`8

dim1 pλ, λ1
N q

dim1 pλ1
N q

, lim
NÑ`8

dim2 pµ, µ1
N q

dim2 pµ1
N q

,

lim
NÑ`8

|λ1
N |

|λ1
N | ` |µ1

N |
, lim

NÑ`8

|µ1
N |

|λ1
N | ` |µ1

N |
.

Denoting them by ϕ1pλq, ϕ2pµq, w1, and w2, we obtain a desired element of
FH

˝
expΓ1qˆFH

˝
expΓ2qˆ∆0

2. Note that these ϕ1 and ϕ2 are indecomposable,
since ϕ is indecomposable. �

Example A.6. Let us take Γ1 “ . . . “ Γn “ Zě0 and assume that all
edges are simple and go from k to k ` 1 for k ě 0. Then FH

˝
expΓiq “

FHexpΓiq is a singleton and Γ1 ˆ . . .ˆΓn is the Pascal pyramid Pn. Then
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from Proposition A.4 it follows that FH
˝
expPnq “ ∆0

n and FHexpPnq “Ů
I : IĂt1,2,...,nu

I‰∅

∆0
|I| “ ∆n, which is the pn ´ 1q-dimensional simplex.

Remark A.7. Proposition A.4 gives us the following view on Kerov’s
construction [6, §4]. The comultiplication provides us with a linear map
K0pΓq Ñ K0pΓ ˆ . . . ˆ Γlooooomooooon

n

q, and we take the composition of this map with

an indecomposable harmonic function on Γ ˆ . . .ˆ Γlooooomooooon
n

to obtain an inde-

composable harmonic function on Γ.
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