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STATISTICS OF IRREDUCIBLE COMPONENTS IN

LARGE TENSOR POWERS OF THE SPINOR

REPRESENTATION FOR so2n+1 AS n → ∞

Abstract. We consider the Plancherel measure on irreducible com-
ponents of tensor powers of the spinor representation of so2n+1.
With respect to this measure, the probability of an irreducible rep-
resentation is the product of its multiplicity and dimension, divided
by the total dimension of the tensor product. We study the limit
shape of the highest weight as the tensor power N and the rank n
of the algebra tend to infinity with N/n fixed.
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Introduction

The limit shape problem for Young diagrams in the decomposition of
a tensor power of a representation of a semisimple Lie algebra has been
extensively studied for the Nth tensor power of the vector fundamental
representation of sln+1. In this case, the multiplicities of irreducible com-
ponents are the dimensions of irreducible representations of the symmetric
group SN , due to the Schur–Weyl duality. The Plancherel-type measure
associated with this decomposition was first considered by Kerov [10], and
its asymptotic behavior has been studied in three regimes: N → ∞ with
n fixed, N → ∞, n → ∞ with N/n fixed, and N,n → ∞ with N/n2

fixed. The first case was studied in [10] and later generalized to all simple
Lie algebras in [17, 18, 20]. In the second case, Kerov discovered that the
Vershik–Kerov–Logan–Shepp limit shape of Young diagrams with respect
to the Plancherel measure on SN as N → ∞ also appears as the limit
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shape with respect to this measure. Later, P. Biane [1, 2] described the
limit shapes in the third case.

In the present paper, we consider statistics of irreducible components
in the Nth tensor power of the spinor representation V ωn of the algebra
so2n+1 in the limit as N,n → ∞. We give an explicit formula for the limit
shape in the limit as N → ∞ and N/n is finite in terms of boundaries of
generalized Young diagrams [9, 15] (see Fig. 3). The main theorem of the
present paper can be formulated as follows.

Theorem 1. As n → ∞, N → ∞, c = limn,N→∞
N+2n−1

n = const, the
upper boundary fn of a rotated and scaled generalized Young diagram for
a highest weight in the decomposition of the tensor power of the spinor

representation (V ωn)
⊗N

of the simple Lie algebra so2n+1 into irreducible
representations converges in probability in the supremum norm || · ||∞ to

the limit shape given by the formula f(x) = 1 +
x
∫

0

(1 − 4ρ(t))dt, where the

limit density ρ(x) can be written explicitly as

ρ(x) =
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, c ∈ [2, 4],

(1)

where θ(
√
2c− 4− |x|) is the Heaviside step function.

That is, for all ε > 0 we have

P

(

sup
x∈R

|fn(x) − f(x)| > ε

)

−−−−→
n→∞

0.

The paper is organized as follows. In Sec. 1, we introduce the proba-
bility measure, the required notation and describe the generalized Young
diagrams and their boundaries fn that are used to state Theorem 1. In
Sec. 2, we give a sketch of the proof. The detailed proof of the conver-
gence and the derivation of formula (1) will be presented in the separate
paper [16]. In conclusion we state open problems related to the presented
results.

§1. Definitions and notation

Consider the Lie algebra g = so2n+1. In the standard orthogonal basis,
the simple roots are {αi = ei − ei+1|i = 1, . . . , n − 1} ∪ {αn = en}. The
root system Bn consists of the roots ∆ = {±ei ± ej | i 6= j} ∪ {±ei}, the
positive roots are ∆+ = {ei + ej |i < j} ∪ {ei} ∪ {ej − ei|j < i}. The
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fundamental weights of Bn in the same basis are given by the following
formulas: ω1 = e1, ω2 = e1 + e2, . . . , ωn−1 = e1 + · · · + en−1, ωn =
1
2 (e1 + · · · + en). Dominant integral weights λ are linear combinations of
fundamental weights with nonnegative integer coefficients ln, which are

called Dynkin labels: λ =
n
∑

i=1

lnωn. In the orthogonal coordinates, such a

weight is written as λ =
n
∑

i=1

(

li + li+1 + · · ·+ ln
2

)

ei.

Dominant integral weights can be depicted by generalized Young dia-
grams (“diagrams”). For the algebras so2n+1, it is convenient to use dia-
grams with boxes of two different widths, one being twice the other [9,15]
(see also [8]). In the present case, the analog of the Littlewood–Richardson
rule for the tensor product decomposition is more subtle than that for or-
dinary Young diagrams (for sln), and the number of boxes in a diagram
is not equal to the tensor power N . Since there are boxes of two different
widths, it is important to distinguish between the number of boxes in a
row and the length of the row. The length of the row λi is equal to the cor-

responding orthogonal coordinate. The number of boxes is equal to
n
∑

j=i

li.

In such diagrams, the first ln boxes are of width 1/2. See an example in
Fig 1.

For convenience, we use the coordinates {ai} given by the formula

ai = 2

n−1
∑

j=i

lj + ln + 2(n− i) + 1.

These coordinates are positive integers for integral dominant weights, and
ai > aj for i < j. The coordinates {ai}ni=1 have a natural interpretation

if we scale the diagram by the factor 2
√
2, rotate it 45° counterclockwise,

and shift it in such a way that the lowest point has the coordinate (2n).
Then the upper boundary of the diagram is the graph of a piecewise linear
function, and ai is the x-coordinate of the middle of the ith decreasing
segment, if we count these segments from the right. See Fig. 2.

We will be interested in the decomposition of tensor powers (V ωn)
⊗N

of the last fundamental representation ωn (also known as the spinor repre-
sentation) into irreducible representations with highest weights λ. A tensor
power of the representation can be decomposed as

(V ωn)⊗N ∼=
⊕

MN
λ V λ,
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Fig. 1. A generalized Young diagram for the so11 weight
λ with orthogonal coordinates [6, 4, 2, 2, 1] and Dynkin la-
bels (2, 2, 0, 1, 2).

where the sum is taken over the irreducible components of the tensor prod-
uct and MN

λ is the multiplicity of the component V λ. In terms of dimen-

sions, it reads (dimV ωn)N =
∑

MN
λ dimV λ. Since dim V ωn = 2n, we can

introduce the following probability measure on the set of dominant integral
weights:

µn,N(λ) =
MN

λ dim V λ

2nN
. (2)

By analogy with the representation theory of symmetric groups, we call it
the Plancherel measure.

An explicit formula for MN
λ for the decomposition of (V ωn)

⊗N
was

derived by P. P. Kulish, V. D. Lyakhovsky, and O. V. Postnova using the
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Fig. 2. A rotated and scaled generalized Young diagram
and the geometric meaning of the coordinates {ai}ni=1.

Weyl group symmetry and recurrence relations [11–14]:

M̃ωn,N
λ(a1...an)

=

n−1
∏

k=0

(N + 2k)!

22k
(

N+ak+1+2n−1
2

)

!
(

N−ak+1+2n−1
2

)

!

n
∏

l=1

al
∏

i<j

(

a2i − a2j
)

.

Note that there are two congruence classes of weights, one is parame-
terized by even values of ai, while the other one, by odd values. A class is
determined by the parity of N . For N even we get ai odd, and vice versa.
The factors in the numerator vanish at the boundaries of Weyl chambers

shifted by the Weyl vector −ρ = −
n
∑

i=1

ωi, and the denominator ensures

that M̃ω1,N
λ satisfies the boundary conditions and that the whole expres-

sion is anti-invariant with respect to Weyl group transformations.
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An expression for dimV λ can be obtained using the Weyl dimension
formula:

dimV λ =
∏

α∈∆+

(λ+ ρ, α)

(ρ, α)
=

2−n2+2nn!

(2n)!(2n− 2)! . . . 2!
·
∏

i<j

(a2i − a2j)

n
∏

l=1

al.

Finally, the explicit expression for the density function of the discrete
probability measure (or the probability mass function) is

µn,N(λ) = µn,N ({ai}) =
M̃ωn,N

λ(a1...an)
dimV λ

(2n)N

=
n−1
∏

k=0

(N + 2k)!

22k
(

N+ak+1+2n−1
2

)

!
(

N−ak+1+2n−1
2

)

!

×
∏

i<j

(a2i − a2j)
2

n
∏

l=1

a2l ·
2−n2+2n−nNn!

(2n)!(2n− 2)! . . . 2!
. (3)

Now consider the limit as N,n → ∞ so that the ratio of n and N tends to
a finite constant:

c = lim
N,n→∞

N + 2n− 1

n
, c = const.

We are interested in the limiting probability distribution on irreducible
components of the tensor power decomposition. Since dominant integral
weights are depicted by diagrams, the measure (2) can be seen as a proba-
bility measure on diagrams. Therefore, we are interested in the limit shape
of generalized Young diagrams with respect to the measure µn,N .

We scale the diagram by the factor
√
2

n , rotate it 45° counterclockwise,
and shift it along the x-axis in such a way that the lowest point has co-
ordinates (1, 0). This corresponds to a rescaling of the coordinates {ai}:
xi = ai

2n . See Fig. 3 for an example of the most probable diagram for
n = 20, N = 200 and the limit shape for c = 12. The upper boundary
of the diagram is the graph of a piecewise linear function fn(x), which is
almost everywhere differentiable and satisfies f ′

n(x) = ±1 if x 6= i
2n . We

will prove that the piecewise linear functions fn(x) converge in probabil-
ity with respect to the probability measure (2) to a continuous smooth
function f(x) as n → ∞.
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Fig. 3. The most probable diagram for the algebra so41
and N = 200 and the limit shape f(x) of generalized
Young diagrams for c = N

n + 2 = 12.

To derive the limit shape, it is convenient to regard diagrams as particle
configurations {xi}ni=1. Consider the piecewise constant function ρn(x) =
1
4 (1 − f ′

n(x)). It is equal to 0 on an interval of length 1
n if there is no

particle in the middle of the interval, and is equal to 1
2 if there is a particle

in the middle of the interval, which means that there is a particle on one
of the two intervals of length 1

2n constituting it. So, the function ρn(x)
can be called the particle density. The convergence of diagrams to a limit
shape entails the convergence of the particle density functions ρn to a limit
particle density ρ(x).

Due to our choice of normalization, the limit density ρ(x) is related to
the derivative of the limit function f(x) by the formula

f ′(x) = 1− 4ρ(x), (4)
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and the limit shape can be recovered from the explicit expression for ρ(x)
by the formula

f(x) = 1 +

x
∫

0

(1 − 4ρ(t)) dt. (5)

It is more convenient to solve the variational problem for the limit den-
sity ρ(x).

§2. Sketch of the proof

To prove the convergence of generalized Young diagrams to the limit
shape, we regard the upper boundaries of the rotated diagrams as functions
with bounded derivative. We rewrite the probability (2) as the exponen-
tial of a quadratic functional on the boundaries of rotated diagrams and
find the minimizer of this functional as a solution to the corresponding
variational problem. Then we prove the convergence in the space of such
functions with respect to a certain distance.

We denote by a−i, i > 0, the “mirror image” of ai:

a−i ≡ −ai,

and rewrite the formula for the probability measure in the form more
convenient for analysis:

µn({ai}ni=−n,i6=0)

=
1

Zn

n
∏

i<j;i,j 6=0;i,j=−n

|ai − aj | ·
n
∏

l=−n,l 6=0

exp
[

−(2n)V0

( al
2n

)

− en (al)
]

,

(6)

where

V0(u) =
1

4

[( c

2
+ u

)

log
( c

2
+ u

)

+
( c

2
− u

)

log
( c

2
− u

)]

,

en(u) = 1
4 log

(

(cn)2 − u2
)

+ 1
2 log |u| + O

(

1
n

)

, and Zn does not depend
on al.

Indeed, the al-depending factorials in (3) can be written as exponentials,
combined in one exponential with the factor |al|, and then expanded using
Stirling’s formula. Inside this exponential, we denote by V0(u) (one half of)
the main contribution with u = al

2n , and by en (one half of) the remainder.
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Now we can rewrite the probability of a highest weight λ in the limit as
N,n → ∞, N ∼ n and of the corresponding diagram as the exponential
of a functional of the boundary fn(x) of the rotated diagram:

µn(λ) = µn,N ({ai}ni=1) = e−(2n)2J[fn]+O(n log n). (7)

Note also that in order to obtain expression (7), we had to continue the
function ρn(x) to negative values of x so that it becomes an even function.
This corresponds to the continuation of the boundary fn such that f ′

n is
even and fn is continuous at x = 0. The continuation is shown in Fig. 4.

. .

.

.

. . .

.

.

.

Fig. 4. A rotated and scaled diagram for n = 5 and its
continuation to negative values of the coordinate x. The
function fn(x) is shown in solid black, the points xi =

ai

2n
are the midpoints of intervals where f ′

n(x) = −1.

We can write the functional J [f ] explicitly:

J [fn] =
1

2

c/2
∫

−c/2

c/2
∫

−c/2

1

16
f ′
n(x)f

′
n(y) log |x− y|−1dx dy + C,

where fn is the upper boundary of the rotated and scaled diagram for
λ = λ(a1, . . . , an), and the constant C is given by the formula

C = − 1

32
c2 log c+

(c− 2)2

16
log(c− 2) +

c− 1

4
log 2− 3

64
(c− 4)2.
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The integral in the definition of the functional J can be written as a
sum of two integrals, a double integral and a single integral which contains
the potential V0(x) and is taken over the interval (− c

2 ,
c
2 ). The exponen-

tials in (6) can be interpreted as Riemann sums for these integrals, with
the double integral approximated using the first-order Taylor expansion.
The integral with V0(x) corresponds to the leading ai-dependent part of
expression (6).

The functional J [f ] is clearly quadratic. Rewriting it in terms of densi-
ties and searching for its minimum, we arrive at the following variational
problem. The particle density ρ(x), which is related to the limit shape f(x)
by the formula f ′(x) = 1− 4ρ(x), is the minimizer of the functional

1

2

c

2
∫

− c

2

c

2
∫

− c

2

ρ(x)ρ(y) log |x− y|−1dxdy

+
1

4

c

2
∫

− c

2

ρ(x)
[( c

2
+ x

)

log
( c

2
+ x

)

+
( c

2
− x

)

log
( c

2
− x

)]

dx. (8)

Our functional is strictly convex (see [5, Theorem 6.27]), therefore, the
minimizer is unique. We construct the minimizer by an explicit integral
formula, which is obtained as a solution of a Riemann–Hilbert problem,
as described in the book by P. Deift [5]. Namely, we take the derivative of
the corresponding Euler–Lagrange equation with respect to x and get the
equilibrium condition:

−
a

∫

−a

ρ(y) dy

y − x
+ V ′

0(x) = 0.

The integral multiplied by −i is the Hilbert transform G(z) of ρ(y). It

is analytic on C \ [−a, a] and has limit values G±(x) = lim
ε→0

1
i

∫ ρ(y)dy
y−(x±iε) .

One can formulate a Riemann–Hilbert problem for G(z), but it appears
in a nonstandard form with the sum of G+(x) and G−(x) instead of their

difference. By considering G̃(z) = G(z)√
z2−a2

, one can formulate a standard
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Riemann–Hilbert problem:

G̃+(x)− G̃−(x) =
2iV ′

0(x)
(√

x2 − a2
)

+

, z ∈ [−a, a],

G̃+(z)− G̃−(z) = 0, z 6∈ [−a, a], G̃(z) → 0, z → ∞.

The solution G̃(z) of this problem is given by the Plemelj formula. The
formula for G(z) follows. To find the support of ρ, it is sufficient to consider
the asymptotics of G(z) as z → ∞ and expand the Plemelj formula into a
series. In this way one can obtain necessary conditions on the integrals and
determine conditions on integration limits. Then for c > 4 one can obtain
a =

√
2c− 4, and use ρ(x) = 1

πℜ[G+(x)] to write an explicit formula for
the minimizer of the functional (8):

ρ(x) =
1

π2
ℜ







√

2c− 4− x2

√
2c−4
∫

−
√
2c−4

1
4

(

log
(

c
2 + s

)

− log
(

c
2 − s

))

√
2c− 4− s2(s− x)

ds






.

(9)
Similarly, for 2 6 c 6 4 we obtain

ρ(x) =
1

2
− 1

π2
ℜ







√

x2 − 2c+ 4

√
2c−4
∫

−
√
2c−4

1
4

(

log
(

c
2 + s

)

− log
(

c
2 − s

))

(√
s2 − 2c+ 4

)

+
(s− x)

ds






.

The factor g̃ = 1
π log

∣

∣

∣

s−c/2
s+c/2

∣

∣

∣
can be extracted from (9) as the Hilbert

transform of the indicator function g = 1[−c/2,c/2]. Then, in order to com-
pute the integral in (9), it suffices to use the following well-known relation
(see, for example, [6]):

∞
∫

−∞

f(s)g̃(s) ds = −
∞
∫

−∞

f̃(s)g(s) ds, (10)

where f̃ is the Hilbert transform of f and f ∈ Lp(R), g ∈ Lq(R) with
1
p+

1
q = 1. Thus, the problem is reduced to computing the Hilbert transform

for the remaining function f(y). This integral can be computed explicitly
by a change of variables.
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Finally, one can write an expression for ρ(x) in terms of inverse trigono-
metric functions:

ρ(x) =























θ(
√

2c−4−|x|)
4π

[

arctan

(

−c(x−4)−8

(c−4)

√

2c−4−x2

)

+ arctan

(

c(x+4)−8

(c−4)

√

2c−4−x2

)]

, c > 4,

1
2

−
θ(

√
2c−4−|x|)

4π

[

arctan

(

−c(x−4)−8

(4−c)

√

2c−4−x2

)

+ arctan

(

c(x+4)−8

(4−c)

√

2c−4−x2

)]

, c ∈ [2, 4],

where θ(
√
2c− 4 − |x|) is the Heaviside step function. The graphs of the

densities are presented in Fig. 5.

Fig. 5. Plots of the density ρ(x) given by formula (1) for
c = 2.1 (dashed), c = 3 (solid), c = 4 (dotted), c = 8
(bold).

We have shown that the probability of a weight is given by a quadratic
functional J [fn] of a rotated diagram boundary fn. Our approach to the
proof of the convergence is similar to the proof of the Vershik–Kerov–
Logan–Shepp theorem in the book by Dan Romik [19]. We write

J [fn] = Q[fn] + C, Q[fn] =
1

2

c/2
∫

−c/2

c/2
∫

−c/2

1

16
f ′
n(x)f

′
n(y) log |x− y|−1dx dy,

and use the functional to introduce the norm ||f ||Q = Q[f ]1/2 for a com-
pactly supported Lipschitz function f : R → [0,∞) (since Q is pos-
itive definite, see [19]). This allows us to introduce a pseudo-distance
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dQ(f1, f2) = ||f1−f2||Q on the space of 1-Lipschitz functions with bounded
derivative.

We can use the equivalence of different norms in the Sobolev space H1/2

to show that the value of the functional J [f ] on the limit shape f is non-
negative (see Proposition 1.15 in [19] for the connection of Q with this
Sobolev space).

And we can easily estimate the probability of weights with a given
deviation with respect to this distance: for a highest weight λ with the
boundary fn(x) of the corresponding diagram such that d(fn, f) = ε, the
probability satisfies the inequality

µn(λ) 6 c1e
−n2ε2+O(n log n).

It follows that the probability of deviation from the limit shape with
respect to the dQ-distance goes to zero as n goes to infinity. The total
number S(n,N) of dominant integral weights in the reducible representa-

tion (V ωn)⊗N does not exceed the number of partitions inside the n×N
rectangle. We consider the regime N ≈ (c − 2)n, so the total number of
boxes grows as (c − 2)n2. Now it is straightforward to obtain an expo-
nential upper bound S(n,N) 6 c2e

c3n for some constants c2, c3 using the
Hardy–Ramanujan formula; therefore, the total probability of deviation
from the limit shape is exponentially small.

As the last ingredient of the proof, we use the fact that the quadratic
part of the functional is the same as in the case of the Vershik–Kerov–
Logan–Shepp limit shape and conclude that the convergence with respect
to the pseudo-distance entails the convergence in the supremum norm
||f ||∞ = supx |f(x)| 6 c4Q[f ]1/4, where c4 is some constant (Lemma 1.21
in [19]). Theorem 1 follows.

Conclusion

We have proven the convergence of the irreducible components of tensor
powers of the spinor representation of so2n+1 to a limit shape. One can give
an alternative proof based on general results on discrete β-ensembles pre-
sented in the book by Alice Guionnet [7]. This approach (see also [3,4]) can
also be used to prove the central limit theorem for the global fluctuations
around the limit shape. These results, as well as the full proofs of the the-
orems of the present paper, will be presented in a separate publication by
the authors, see the preprint [16]. Similar limit shapes can be obtained for
tensor powers of certain reducible representations of gln, so2n, sp2n. This
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Fig. 6. The limit shapes for Young diagrams for c = 3
(dashed), c = 4 (solid), and c = 6 (dotted) and the most
probable diagram for n = 20, N = 40. The limit shapes
are computed via the explicit formulas (1), (5).

result will be presented in an upcoming paper by A. Nazarov, O. Postnova,
and T. Scrimshaw.
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