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Abstract. We present a new family of hook-length formulas for the
number of standard increasing tableaux which arise in the study of
factorial Grothendieck polynomials. In the case of straight shapes,
our formulas generalize the classical hook-length formula and the
Littlewood formula. For skew shapes, our formulas generalize the
Naruse hook-length formula and its q-analogs, which were studied
in previous papers of the series.

§1. Introduction

1.1. Foreword. There is more than one way to explain a miracle. First,
one can show how it is made, a step-by-step guide to perform it. This is the
most common yet the least satisfactory approach as it takes away the joy
and gives you nothing in return. Second, one can investigate away every
consequence and implication, showing that what appears to be miraculous
is actually both reasonable and expected. This takes nothing away from
the miracle except for its shining power, and puts it in the natural order
of things. Finally, there is a way to place the apparent miracle as a part
of the general scheme. Even, or especially, if this scheme is technical and
unglamorous, the underlying pattern emerges with the utmost clarity.

The hook-length formula (HLF) is long thought to be a minor mir-
acle, a product formula for the number of certain planar combinatorial
arrangements, which emerges where one would expect only a determinant
formula. Despite its numerous proofs and generalizations, including some
by the authors (see §7.1), it continues to mystify and enthrall. The goal
of this paper is to give new curious generalizations of the HLF by using
Grothendieck polynomials. The resulting formulas are convoluted enough
to be unguessable yet retain the hook product structure to be instantly
recognizable.

Key words and phrases: hook-length formula, factorial symmetric functions,
Grothendieck polynomials, standard Young tableaux, increasing tableaux.
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1.2. Straight shapes. Recall some classical results in the area. Let λ =
(λ1, . . . , λℓ) ⊢ n be an integer partition of n with ℓ = ℓ(λ) parts, and let
fλ := | SYT(λ)| be the number of standard Young tableaux of shape λ.
The hook-length formula by Frame–Robinson–Thrall [16] states that

fλ = n!
∏

u∈λ

1

h(u)
, (HLF)

where h(u) = λi − i + λ′j − j + 1 is the hook-length of the square u =

(i, j) ∈ λ.
Similarly, let SSYT(λ) denote the set of semi-standard Young tableaux

of shape λ. For a tableau T ∈ SSYT(λ), let |T | denote the sum of its
entries. The Littlewood formula, a special case of the Stanley hook-content

formula, states that

∑

T∈SSYT(λ)

q|T | = qb(λ)
∏

u∈λ

1

1− qh(u)
, (q-HLF)

where

b(λ) :=
∑

(i,j)∈λ

(i − 1) =

ℓ(λ)∑

i=1

(i− 1)λi ,

see, e.g., [59, §7.21]. Note that (q-HLF) implies (HLF) by taking the limit
q → 1 and using a geometric argument, see [50, §2], or the P -partition

theory, see [59, §3.15]. We are now ready to state the first two results of
the paper, which generalize (HLF) and (q-HLF), respectively.

For a tableau T ∈ SSYT(λ), let Tk = {u ∈ λ : T (u) = k} be the
set of tableau entries equal to k. Define T6k = {u ∈ λ : T (u) 6 k},
T>k = {u ∈ λ : T (u) > k}, and T<k = T6k+1 similarly. Finally, let ν(Tk),
ν(T<k), and ν(T>k) be the shapes of these tableaux.

We say that T is a standard increasing tableau if it is strictly increasing
in rows and columns, and Tk is nonempty for all 1 6 k 6 m, where m =
m(T ) is the maximal entry in T . Note that the (usual) standard Young
tableaux are exactly the standard increasing tableaux T with m(T ) = n.
Denote by SIT(λ) the set of standard increasing tableaux of shape λ. By
definition, for T ∈ SIT(λ), we have 0 6 νi(T6k) 6 λi, where νi(T6k) is the
number of elements in T6k in the ith row of λ.
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Theorem 1.1. Fix d > 1. In the notation above, for every λ ⊢ n with

ℓ(λ) 6 d, we have:

∑

T∈SIT(λ)

m(T )∏

k=1

([
d∏

i=1

1 + β
(
νi(T<k

)
+ d− i+ 1

)

1 + β
(
λi + d− i+ 1

)
]
− 1

)−1

=
1

(−β)n

ℓ(λ)∏

i=1

(
1 + β(λi + d− i+ 1)

)λi
∏

(i,j)∈λ

1

h(i, j)
.

(K-HLF)

Here “K” in (K-HLF) stands for K-theory, see below. Note that (K-HLF)
implies (HLF) by taking the limit β → 0, see Proposition 4.8.

To state the K-theory analog of (q-HLF), we need a few more notation.
For a strictly increasing tableau T ∈ SIT(λ), denote by T>k the skew
subtableau of integers > k, and let a(T>k) := |ν(T>k)| denote the number
of such integers. This should not be confused with |T>k|, which is the sum
of such integers. Finally, denote

s(λ) :=
∑

(i,j)∈λ

(i+ j − 1) = b(λ) + b(λ′) + |λ| .

Corollary 1.2. In the notation above, for every λ ⊢ n, we have:

∑

T∈SIT(λ)

q|T |
m(T )∏

k=1

1

1− qa(T>k)
= qs(λ)

∏

(i,j)∈λ

1

1− qh(i,j)
. (1.1)

The relationship between (K-HLF) and (1.1) is somewhat indirect, and
both follow from a more general equation (4.5) by taking limits.

Remark 1.3. Denote by RPP(λ) the set of reverse plane partitions,
which are Young tableaux with entries > 0 weakly increasing in rows
and columns. Similarly, denote by IT(λ) the set of increasing tableaux,
which are Young tableaux with entries > 1 strictly increasing in rows and
columns. Thus:

SYT(λ) ⊂ SIT(λ) ⊂ IT(λ) ⊂ SSYT(λ) ⊂ RPP(λ). (1.2)

It is well known, and easily follows from (q-HLF), that

∑

T∈IT(λ)

q|T | = qs(λ)
∑

T∈RPP(λ)

q|T | = qs(λ)
∏

(i,j)∈λ

1

1− qh(i,j)
. (1.3)
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Note that both (1.1) and (1.3) have identical RHS, but the LHS of (1.1) has
an extra product term. In fact, there is a similar direct way to derive (1.1)
from (q-HLF) by subtracting a constant from the entries in each anti-
diagonal of the tableau. However, this approach does not extend to skew
shapes, see Theorem 1.5 below and §7.9.

1.3. Skew shapes. We start with the Naruse hook-length formula

(NHLF), the subject of the previous papers in this series [41, 42, 43].
Here we omit some definitions; precise statements are given in §5.

Let λ/µ be a skew Young diagram (skew shape), and let

fλ/µ = |SYT(λ/µ)

be the number of standard Young tableaux of shape λ/µ. Then

fλ/µ = |λ/µ|!
∑

D∈E(λ/µ)

∏

u∈λ\D

1

h(u)
, (NHLF)

where h(u) is the (usual) hook-length of the square u ∈ λ and E(λ/µ)
denotes the set of excited diagrams of shape λ/µ. Note that when µ = ∅,
there is a unique generalized excited diagram D = ∅, and (NHLF) reduces
to (HLF).

The q-analog of (NHLF) generalizing Littlewood’s formula (q-HLF) to
skew shapes was given by the authors in [41]:

∑

T∈SSYT(λ/µ)

q|T | =
∑

D∈E(λ/µ)

∏

(i,j)∈λ\D

qλ
′

j−i

1− qh(i,j)
. (q-NHLF)

In Remark 1.6, we discuss another notable q-analog as a summation over
RPP(λ/µ). The following results respectively generalize Theorem 1.1 and
Corollary 1.2 to skew shapes, thus giving advanced generalizations of (HLF).

Let µ ⊂ λ be two integer partitions. Define the set SIT(λ/µ) of standard

increasing tableaux of skew shape λ/µ again as the set of Young tableaux T
which strictly increase in rows and columns and have nonempty Tk for
all 1 6 k 6 m(T ). In this case, the generalized excited diagrams were
introduced by Graham–Kreiman [18] and Ikeda–Naruse [25]. We denote
the set of such diagrams by D(λ/µ), and postpone their definition until
the next section.
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Theorem 1.4. Fix d > 1. In the notation above, for every µ ⊂ λ with

ℓ(λ) 6 d, we have:

∑

T∈SIT(λ/µ)

m(T )∏

k=1

([
d∏

i=1

1 + β
(
νi(T<k) + d− i+ 1

)

1 + β(λi + d− i+ 1)

]
− 1

)−1

=
∑

D∈D(λ/µ)

(−β)|D| − |λ|
∏

(i,j)∈λ\D

β(λi + d− i+ 1) + 1

h(i, j)
.

(K-NHLF)

See §6.4 for a completely different generalization of (HLF) to skew
shapes, which also has a q-analog and K-theory analog (Theorem 6.8).
Finally, Corollary 1.2 extends to skew shapes as follows.

Theorem 1.5. In the notation above, for every µ ⊂ λ, we have:

∑

T∈SIT(λ/µ)

q|T |
m(T )∏

k=1

1

1− qa(T>k)
=

∑

D∈D(λ/µ)

∏

(i,j)∈λ\D

qh(i,j)

1− qh(i,j)
. (1.4)

Again, equation (1.4) reduces to (1.1) by taking µ = ∅ and noting that
∑

(i,j)∈λ

h(i, j) =
∑

(i,j)∈λ

(λ′j − i+ 1) +
∑

(i,j)∈λ

(λi − j) = s(λ).

Remark 1.6. While the inclusions in (1.2) continue to hold for skew
shapes, the natural analog of (1.3) is no longer straightforward. In fact,
for

Iλ/µ(q) :=
∑

T∈IT(λ/µ)

q|T | and Rλ/µ(q) :=
∑

T∈RPP(λ/µ)

q|T | ,

the theory of P-partition gives:

Iλ/µ(−q) = qN Rλ/µ(1/q) for some N > 0, see [59, §3.15]. (1.5)

On the other hand, the summation formula for Rλ/µ(q) given in [41,
Theorem 1.5] gives yet another generalization of (NHLF), but is summing
over a different, albeit related, set of pleasant diagrams (see §5.2):

∑

T∈RPP(λ/µ)

q|T | =
∑

S∈P(λ/µ)

∏

(i,j)∈S

qh(i,j)

1− qh(i,j)
. (1.6)
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As we explain in §6, equation (K-NHLF) is really a generalization
of (1.6) rather than (q-NHLF). A connection can also be seen through
yet another summation formula for Rλ/µ(q) given in [41, Corollary 6.17]
in terms of (ordinary) excited diagrams and subsets π(λ/µ) of excited peaks

(see the definition in §5.2):

∑

T∈RPP(λ/µ)

q|T | =
∑

D∈E(λ/µ)

qc(D)
∏

(i,j)∈λ\D

1

1− qh(i,j)
, (1.7)

where c(D) :=
∑

(i,j)∈π(λ/µ) h(i, j). Finally, let us mention that the cor-

responding summation formula for Iλ/µ(q), implied by (1.5) and (1.7), is
obtained in (6.8) more directly.

1.4. Methodology. While all results in this paper can be understood
as enumeration of certain Young tableaux, both the motivation and the
proofs are algebraic. This is routine in algebraic combinatorics, of course,
and goes back to the most basic and classical results in the area.

For example, for the LHS of (HLF), we have fλ = dim Sλ, the dimension
of the corresponding irreducible Sn-module, with standard Young tableaux
giving a natural basis. On the other hand, the LHS in (q-HLF) is equal
to the evaluation of the Schur function sλ(1, q, q

2, . . .), and counts multi-
plicities of Sλ in the natural action on the symmetric algebra C[x1, . . . , xn]
graded by the degree. The connection between the two is then provided
by the combination of the Burnside and Chevalley theorems.

One can similarly define the standard Young tableaux of skew shapes,
excited diagrams, etc., even if the explanations become more technical and
involved with each generalization. A tremendous amount of work by many
authors went into developments of this theory, making a proper overview
for a paper of this scope impossible. Instead, we skip to the end of the story
and briefly describe the motivation behind our new enumerative results.

Before we proceed to the recent work, it is worth pausing and ponder-
ing on how the results in the area come about. First, there are algebraic
areas (representation theory, enumerative algebraic geometry, etc.) which
provide the source of key algebraic objects (characters, Schubert cells, char-
acteristic classes, etc.). Second, in order to build the theory of these objects
and be able to compute them, combinatorial objects are extracted which
are able to characterize the algebraic objects (Schur functions, Schubert
polynomials, etc.).
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Third, algebraic combinatorialists join the party and introduce the the-
ory of these combinatorial objects without regard to their algebraic ori-
gin. Along the way they introduce a plethora of new combinatorial tools
(Young tableaux, reduced decompositions, RSK, etc.) which substantially
enhance and clarify the resulting combinatorial structures. This is still
the same theory, of course, but the self-contained presentation and rich
yet to be understood combinatorics allows an easy access to people not
algebraically inclined.

All this leads to the fourth wave, by enumerative combinatorialists who
are able to use tools and ideas from algebraic combinatorics to study purely
combinatorial problems. This is where we find ourselves in this paper,
staring with an amazement at new enumerative results we obtain following
this course that we would not be able to dream up otherwise, yet grasping
for understanding of what these results really mean in the grand scheme
of things.

1.5. Motivation and background. The main result of this paper is
an unusual β-deformation of many known hook formulas. Notably, our
β-deformation (K-HLF) of (HLF), see Theorem 1.1, remains concise and
multiplicative even if it is quite cumbersome at first glance. By comparison,
it is unlikely that gλ := | SIT(λ)| has a closed formula (cf. §7.10), so a
product formula for the weighted enumeration of SITs is both a minor
miracle and testament to the intricate nature of such tableaux.

The same pattern extends to other, more general, hook formulas, sug-
gesting that (K-HLF) is not an accident, that the β-deformation is a far-
reaching generalization, on par with the “q-analog,” “shifted analog,” etc.
We expect further results in this direction in the future.

In the combinatorial context, standard increasing tableaux (without the
restriction on the values of the entries) appear as byproducts of the clas-
sical Edelman–Greene insertion [11, 22] aimed at understanding Stanley’s
theorem on reduced factorizations of Grassmannian permutations (permu-
tations with at most one descent, see, e.g., [36]). They also appear in a
more general setting of the Hecke insertion [6].

More recently, standard increasing tableaux have appeared in the con-
text of the K-theoretic version of the jeu de taquin of Thomas and Yong [62,
64] and K-promotion in K-theoretic Schubert calculus [53]. Closely related
semistandard set-valued tableaux were defined by Buch [4], and have also
been studied in a number of papers.
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In the algebraic context, the K-theoretic Schubert calculus of the Grass-
mannian was introduced by Lascoux and Schützenberger [32]. There, they
defined the Grothendieck polynomials as representatives for K-theory clas-
ses determined by structure sheaves of Schubert varieties. The theory has
been rapidly developed in the past two decades. We refer to [3, 5] for
early surveys of the subject, as reviewing the extensive recent literature is
beyond the scope of this paper.

In this paper, the key role is played by the factorial Grothendieck poly-

nomials [37, 28], which generalize both the well-studied Grothendieck poly-

nomials and factorial symmetric functions. The latter were also first intro-
duced by Lascoux and Schützenberger [31] in the guise of double Schubert
polynomials for Grassmannian permutations, and have been systematically
studied by Macdonald [35], see also [7] for further background.

Finally, let us mention the excited diagrams, pleasant diagrams, and the
generalized excited diagrams, which all arise in the context of hook formu-
las of skew shapes, introduced by Ikeda–Naruse [24], by us [41], and by
Naruse–Okada [47], respectively. These diagrams provide a combinatorial
language needed to state our results.

1.6. Proof ideas. For us, the story starts with our proof in [41] of equa-
tions (NHLF) and (q-NHLF) using evaluations of factorial Schur func-
tions and the Chevalley type formulas, see [39]. Naruse’s (unpublished)
approach was likely similar, cf. [46]. After our paper, Naruse–Okada [47]
rederived and further generalized to d-complete posets our RPP(λ/µ) gen-
eralization (1.7) of (NHLF) using the Billey-type and the Chevalley-type
formulas from the equivariant K-theory. Note that our own proof of the
RPP(λ/µ) summation (1.6) given in [41] is completely combinatorial, and
based on a generalization of the Hillman–Grassl bijection.

Our proofs in this paper combine our earlier proof technique in [42]
with that of Naruse–Okada. Namely, we study evaluations of factorial
Grothendieck polynomials in two different ways. First, we use the Pieri
rule for the factorial Grothendieck polynomials to obtain the LHS of the
equations in terms of increasing tableaux. In the skew case, we combine
these with the Chevalley type formulas. We also use the Naruse–Okada
characterization of generalized excited diagrams in terms of usual excited
diagrams (see Proposition 5.1), to obtain equation (6.7) and its generaliza-
tions. We also prove that these diagrams have a lattice path interpretation,
which we exploit in §5.3 to obtain an upper bound on their number.
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Second, for the RHS of our hook formulas, we use the vanishing property
of the evaluation for the case of straight shapes. Finally, we use formulas
in terms of excited diagrams of Graham–Kreiman [18] for the case of skew
shapes.

1.7. Paper structure. We begin with preliminary Sections 2 and 3,
where we review basic definitions and properties of permutation classes,
Young tableaux, increasing tableaux, and factorial Grothendieck polyno-
mials. We then proceed to present proofs of all our hook formulas via more
general multivariate formulas.

Namely, in §4, we prove Theorem 4.2, the main result of the straight
shape case, which implies Theorem 1.1 and Corollary 1.2. In §5 we re-
view the technology of excited diagrams, which was unnecessary for the
straight shape. We also relate our notation and results to further clarify
the combinatorics of the double Grothendieck polynomials of vexillary per-
mutations for devotees of the subject. Then, in §6, we prove Theorem 6.5,
the main and most general result of this paper, which similarly implies
both Theorems 1.4 and 1.5.

Let us emphasize that this paper is not self-contained by any measure,
as we are freely using results from the area and from our previous papers
in this series. We tried, however, to include all necessary definitions and
results, so the paper can be read by itself. This governed the style of the
paper: we covered the straight shape case first, as it requires less of a
background and can be understood by a wider audience. This also helped
to set up the more general skew shape case which followed. We conclude
with final remarks and open problems in §7.

§2. Permutations, Dyck paths, and Young tableaux

2.1. Basic notation. Let N = {0, 1, . . .} and [n] = {1, . . . , n}.

2.2. Permutations. We write permutations of [n] as w = w1w2 . . . wn ∈
Sn, where wi is the image of i. The Rothe diagram of a permutation w
is the subset of [n] × [n] given by R(w) :=

{
(i, wj) | i < j, wi > wj

}
.

The essential set of a permutation w is the subset of R(w) given by
Ess(w) :=

{
(i, j) ∈ R(w) | (i + 1, j), (i, j + 1), (i + 1, j + 1) 6∈ R(w)

}
, see,

e.g., [36, §2.1–2].
A permutation w ∈ Sn is called Grassmannian if it has a unique

descent, say at position k. Such a Grassmannian permutation corresponds
to a partition µ = µ(w) with ℓ(µ) 6 k, and µ1 6 n − k. Grassmannian
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permutations w can also be characterized as having Ess(w) contained in
one row, the last row of R(w), and µ(w) can be read from the number of
boxes of R(w) in each row bottom to top.

A permutation w ∈ Sn is called vexillary if it is 2143-avoiding. Vex-
illary permutations can also be characterized as permutations w where
R(w) is, up to permuting rows and columns, the Young diagram of a par-
tition µ = µ(w). Given a vexillary permutation w, let λ = λ(w) be the
smallest partition containing the diagram R(w). We call this partition the
supershape of w and note that µ(w) ⊆ λ(w). The Young diagram of λ(w)
can also be obtained by taking the union over i × j rectangles with NW
and SE corners (1, 1) and (i, j) for each (i, j) in Ess(w). Note also that
Grassmannian permutations are examples of vexillary permutations.

2.3. Lattice paths. A lattice path contained in a Young diagram λ is
a path with steps (1, 0) and (0, 1) along the square grid centered at the
centers of the cells of λ.

A Dyck path γ of length 2n is a lattice path from (0, 0) to (2n, 0) with
steps (1, 0) and (1,−1) that stays on or above the x-axis. The set of Dyck
paths of length 2n is denoted by Dyck(n). For a Dyck path γ, a peak is
a point (c, d) such that (c − 1, d − 1) and (c + 1, d − 1) are in γ. A peak
(c, d) is called a high peak if d > 1. The set of high peaks of a Dyck path
γ is denoted by HP(γ), and its size by hp(γ). Note that a Dyck path,
upon rotation and rescaling, is also a lattice path in the Young diagram of
δn = (n+ 1, n, . . . , 1).

For general lattice paths γ above a certain base path γ′, we can also
define the set of high peaks relative to γ′ as the set of points (c, d) such
that (c, d − 1), (c + 1, d) ∈ γ and (c, d) 6∈ γ′. We will also denote this set
by HP(γ).

2.4. Plane partitions and Young tableaux. We use the standard
English notation for drawing integer partitions, Young diagrams, and Young
tableaux, see, e.g., [59, §7].

To simplify the notation, we use the same letter to denote both an
integer partition and the corresponding Young diagram λ = (λ1, . . . , λℓ),
where ℓ = ℓ(λ) is the number of parts of λ. The skew shape (skew Young
diagram) λ/µ is given by a pair of Young diagrams such that µ ⊂ λ. Denote
by |λ/µ| the size of the skew shape.
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A reverse plane partition of skew shape λ/µ is an array A = (aij)
of nonnegative integers of shape λ/µ that is weakly increasing in rows
and columns. A semistandard Young tableau (SSYT) of shape λ/µ is a
reverse plane partition of shape λ/µ that is strictly increasing in columns
and has entries > 1. We denote these sets of tableaux by RPP(λ/µ) and
SSYT(λ/µ), respectively.

A standard Young tableau of shape λ/µ is a reverse plane partition T of
shape λ/µ which contains entries 1, . . . , |λ/µ| exactly once. We denote this
set by SYT(λ/µ), and let fλ/µ := | SYT(λ/µ)| be the number of standard

Young tableaux of shape λ/µ.
In less standard notation, for a tableau T ∈ RPP(λ), we define tableaux

Tk, T6k, and T>k as in the introduction. The (skew) shape of a tableau Q
is denoted by ν(Q). We are using a(Q) := |ν(Q)| to denote the size (the
number of entries) in Q. As in the introduction, we write |T | to denote the
sum of entries in the tableau T .

2.5. Increasing and set-valued Young tableaux. An increasing tab-

leau of shape λ/µ is a row strict semistandard Young tableau of shape λ/µ.
A standard increasing tableau1 is an increasing tableau of shape λ/µ whose
entries are exactly [m], for some m 6 |λ/µ|. As in the introduction, we
denote by m(T ) := m the maximal entry in T .

Denote by IT(λ/µ) the set of increasing tableaux, and by SIT(λ/µ) the
set of standard increasing tableaux of shape λ/µ. Let gλ/µ := | SIT(λ/µ)|
be the number of standard increasing tableaux of shape λ/µ.

A tableau T ∈ SIT(λ/µ) is called a barely standard Young tableau

of shape λ/µ if m(T ) = |λ/µ| − 1. In other words, these are the stan-
dard increasing tableaux with exactly one entry appearing twice (cf. §7.4).
We denote the set of these tableaux by BSYT(λ/µ). We also denote by
BSYTk(λ/µ) the tableaux in BSYT(λ/µ) with entry k appearing twice.

Finally, for a positive integer n, a semistandard set-valued tableau of
shape λ/µ is an assignment of nonempty subsets of [n] to the cells of λ/µ
such that for the set T (u) in a cell u ∈ λ, we have:

◦ maxT (u) 6 minT (u′), where u′ is the cell to the right of u in
the same row, and

◦ maxT (u) < minT (u′), where u′ is the cell below u in the same
column.

1In the literature, these tableaux are sometimes called (just) increasing tableaux or
packed increasing tableaux [54].
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We use ne(T ) to denote the number of entries of T , and SSVTn(λ/µ) to
denote the set of such tableaux. When we draw set-valued tableaux, we
place all integers in T (u) inside the corresponding square u.

2.6. Examples. To illustrate the definitions, in the figure below we have
λ = 442, µ = 21, A ∈ RPP(λ/µ), B ∈ SSYT(λ/µ), C ∈ SYT(λ/µ),
D ∈ SSVT5(λ/µ), E ∈ IT(λ/µ), F ∈ SIT(λ/µ) with m(F ) = 5, and
G ∈ BSYT3(λ/µ). Note that ne(D) = 9.

A =
0 1

0 0 1

1 2

, B =
1 1

1 2 3

3 3

, C =
2 5

1 4 6

3 7

, D =
1 1, 4

1 3 5

1, 2 2

E =
1 3

1 2 4

2 7

, F =
1 3

1 2 4

2 5

, G =
2 3

1 4 5

3 6

In this case, we have |F | = 18, ν(F60) = µ = 21, ν(F61) = 32, ν(F62) =
331, ν(F63) = 431, ν(F64) = 441, and ν(F65) = λ = 442. Similarly,
ν(F>2) = 442/32 and a(F>2) = 5.

Finally, in the notation of the introduction, b(λ)= |Nλ| and s(λ)= |Mλ|
are the sum of the entries of the minimal reverse plane partition Nλ ∈
RPP(λ) and the minimal strictly increasing tableau Mλ ∈ SIT(λ), with
entries Nλ(i, j) = (i − 1) and Mλ(i, j) = (i + j − 1), respectively. See an
example in the figure below:

N442 =
0 0 0 0

1 1 1 1

2 2

and M442 =
1 2 3 4

2 3 4 5

3 4

In this case, b(λ) = |N442| = 8 and s(λ) = |M442| = 31.

2.7. Special cases. To further clarify the definitions, let us give a quick
calculation of the number of increasing tableaux for the two row shape

(n, n) and the hook shape (p, 1q).
Let sn denote the nth little Schröder number [58, A001003] that counts

the lattice paths (0, 0) → (n, n) with steps (1, 0), (0, 1), and (1, 1) that
never go below the main diagonal x = y and have no (1, 1) steps on the
diagonal.

 http://oeis.org/A001003
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Proposition 2.1 ([53]). We have g(n,n) = sn.

Proof. We interpret the SITs as lattice paths on the square grid. In the
case λ = (n, n), let T ∈ SIT(λ) correspond to the lattice path γ : (0, 0)→
(n, n) given by a sequence of steps for i = 1, . . . , 2n:

(1, 0) if the entry i appears only in the first row of T ,
(0, 1) if the entry i appears only in the second row of T , and
(1, 1) if the entry i appears in both rows.

The increasing columns condition forces the paths γ not to cross below the
diagonal, with all (1, 1) steps strictly above the diagonal, as desired. �

Similarly, let D(m,n) denote the Delannoy number [58, A008288] that
counts the lattice paths (0, 0)→ (m,n) with steps (0, 1), (1, 0), and (1, 1).
We call these Delannoy steps.

Proposition 2.2 (cf. [56]). For the hook shape λ = (p, 1q), we have

g(p,1
q) = D(p− 1, q).

The proof follows verbatim the argument above, but the lattice paths
with Delannoy steps no longer have a diagonal constraint. We omit the
details.

§3. Factorial Grothendieck polynomials

Recall the following operators first introduced in [13, 15]:

x⊕ y := x+ y + βxy, x⊖ y :=
(x− y)

(1 + βy)
, ⊖x := 0⊖ x,

and [x |y]k := (x⊕ y1)(x ⊕ y2) · · · (x⊕ yk),

where y = (y1, y2, . . .).

Definition/Theorem 3.1 (McNamara [37]). The factorial Grothendieck
polynomials are defined by either of the following formulas:

Gµ(x1, . . . , xd |y) :=
∑

T∈SSVTd(µ)

βne(T )−|µ|
∏

u∈µ, r∈T (u)

(
xr ⊕ yr+c(u)

)

= det
(
[xi |y]

µj+d−j(1 + βxi)
j−1
)d
i,j=1

∏

16i<j6d

1

(xi − xj)
.

 http://oeis.org/A008288
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The factorial Grothendieck polynomials are equal to the double Grothen-

dieck polynomials parameterized by a Grassmannian permutation associ-
ated to the partition µ, see [38]. These in turn were defined earlier in [28],
in the greater generality of all vexillary permutations, see equation (3.2)
below. We postpone their definition until §5.6 (see also §7.3).

Remark 3.2. As mentioned in [37, Remark 3.2], in the literature Grothen-
dieck polynomials sometimes appear only in the case β = −1. However,
one can obtain the β case from the case β = −1 by replacing xi with
−xi/β and yi with yi/β,

Gµ

(
x |y

) ∣∣
β=−1

= (−β)|µ| ·Gµ

(
−x/β | y/β

)
. (3.1)

It is easy to see that G∅(x|y) = 1. We need the following technical
result.

Proposition 3.3 ([37, 38]). The factorial Grothendieck polynomials

G∅(x|y) satisfy:

(i) Gµ(x1, . . . , xd |y) is symmetric in x1, x2, . . . , xd .

(ii) Doing the substitution yi ← (−yi), and setting β = 0, we obtain the

factorial Schur function:

Gµ

(
x1, . . . , xd | − y

) ∣∣
β=0

= sµ(x1, . . . , xd |y).

(iii) Setting yi = 0, we obtain the ordinary Grothendieck polynomials:

Gµ(x1, . . . , xd | y)
∣∣
yi=0

= Gµ(x1, . . . , xd).

(iv) They are equal to double Grothendieck polynomials of Grassmannian

permutations:

Gw(µ)(x,y) = Gµ(x1, . . . , xd | y), (3.2)

for d > ℓ(µ), where w(µ) is the Grassmannian permutation with

descent at position d associated to µ.

Proposition 3.4 (vanishing property of Grothendieck polynomials [37,
Theorem 4.4]). When evaluated at yλ := (⊖ yλ1+d,⊖ yλ2+d−1, . . . ,⊖ yλd+1)
with ℓ(λ) 6 d,

Gµ(yλ |y) =

{
0 if µ 6⊆ λ,∏

(i,j)∈λ(yd+j−λ′

j
⊖ yλi+d−i+1) if µ = λ.

(3.3)
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To simplify the notation, we write G1 for G(1). We use the notation
ν 7→ µ when the skew shape ν/µ is nonempty and its boxes are in different
rows and columns. Note that ν 6= µ in this case. In this notation, every
standard increasing tableau T ∈ SIT(λ/µ) is viewed as a chain

λ = ν
(
T6k

)
7→ ν

(
T6k−1

)
7→ . . . 7→ ν

(
T61

)
7→ ν

(
T60

)
= µ. (3.4)

Lemma 3.5 (Pieri rule for Grothendieck polynomials [37, Proposition 4.8]).

Gµ(x |y)
(
1+βG1(x |y)

)
=
(
1+βG1(yµ |y)

) ∑

ν 7→µ

β|ν/µ|Gν(x |y) . (3.5)

We can rewrite this Pieri rule as follows.

Proposition 3.6. We have:

Gµ(x |y)

(
G1(x |y) −G1(yµ |y)

1 + βG1(yµ |y)

)
=
∑

ν 7→µ

β|ν/µ|−1Gν(x |y) . (3.6)

Proof. We expand both sides of (3.5) and cancel the term Gµ(x|y) giving

Gµ(x |y) · βG1(x |y) = βG1(yµ |y) ·Gµ(x |y)

+
(
1 + βG1(yµ |y)

) ∑

ν 7→µ

β|ν/µ|Gν(x |y) .

Now collect the terms with Gµ(x |y) on the LHS. Dividing by

1 + βG1(yµ |y) 6= 0

and β gives the desired expression. �

Remark 3.7. When we set β = 0 in the Pieri rule above, it immediately
reduces to the Pieri rule for factorial Schur functions (see, e.g., [39, §3]).

Note that

1 + βG1(x |y) =

d∏

j=1

(
1 + β(xj ⊕ yj)

)
=

d∏

i=1

(1 + βxi)

d∏

i=1

(1 + βyi) .

Evaluating both sides at x = yλ, we get

1 + βG1(yλ |y) =

d∏

i=1

1 + βyi
1 + βyλi+d−i+1

. (3.7)
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§4. Hook formula for straight shapes

The goal of this section is to prove the multivariate Theorem 4.2 and
derive its specializations Theorem 1.1 and Corollary 1.2.

4.1. Multivariate formulas. First we evaluate x = yλ in (3.6) and
simplify to obtain the following expression.

Proposition 4.1. We have:

Gµ(yλ |y)
(
wt(λ/µ)− 1

)
=
∑

ν 7→µ

β|ν/µ|Gν(yλ |y) , (4.1)

where

wt(λ/µ) :=

d∏

i=1

1 + βyµi+d−i+1

1 + βyλi+d−i+1
.

Proof. We evaluate (3.6) at x = yλ and multiply by β. Note that

βG1(yλ |y) − βG1(yµ |y)

1 + βG1(yµ |y)
=

1 + βG1(yλ |y)

1 + βG1(yµ |y)
− 1.

By (3.7), this equals wt(λ/µ)− 1, as desired. �

Theorem 4.2 (multivariate K-HLF). Fix d > 1. For every λ ⊢ n with

ℓ(λ) 6 d, we have:

∑

T∈SIT(λ)

m(T )∏

k=1

([
d∏

i=1

1 + βyνi(T<k)+d−i+1

1 + βyλi+d−i+1

]
− 1

)−1

=
1

βn

d∏

i=1

(
1 + βyλi+d−i+1

)λi
∏

(i,j)∈λ

1

yd+j−λ′

j
− yλi+d−i+1

.

(4.2)

Proof. We apply Proposition 4.1 repeatedly, by taking µ ← ν(T6k−1)
and ν ← ν(T6k), and noting that ν 7→ µ by equation (3.4). Since this is a
straight shape, we are starting with the empty partition ∅ = ν(T60), until
we eventually reach ν(T6k) = λ. Here we use that the vanishing property
Proposition 3.4 ensures that all shapes are contained in λ. We obtain:

∑

T∈SIT(λ)

m(T )−1∏

k=0

βa(T6k+1)− a(T6k)

wt(λ/ν(k))− 1
=

Gλ(yλ |y)

G∅(yλ |y)
.
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Since G∅ = 1 and

Gλ(yλ |y) =
∏

(i,j)∈λ

yd+j−λ′

j
− yλi+d−i+1

1 + βyλi+d−i+1

by Proposition 3.4, the desired statement follows. �

Proposition 4.3. Fix d > 1. For every λ ⊢ n with ℓ(λ) 6 d, we have:

(−1)n Gλ(yλ |y)|yi=i =

d∏

i=1

1

(1 + β(λi + d− i+ 1))λi

∏

(i,j)∈λ

h(i, j) .

Proof. This follows directly from Proposition 3.4, since for yi = i, i > i,
we have:

(
yd+j−λ′

j
⊖ yλi+d−i+1

)
=

j − λ′j − λi + i− 1

1 + β(λi + d− i+ 1)

and h(i, j) = λ′j − i+ λi − j + 1. �

Proof of Theorem 1.1. This follows from Theorem 4.2 by substituting
yi ← i, for all i > 1. Indeed, notice that

yd+j−λ′

j
− yλi+d−i+1 = −(λi − j + λ′j − i+ 1) = −h(i, j),

which implies the result. �

Example 4.4. For λ = (2, 2) ⊢ 4, the hook lengths are 3, 2, 2, 1 as in the
tableau H below. We have:

G22(y22 |y)
∣∣
y1=y2=1

=
3 · 2 · 2 · 1

(1 + 3β)2(1 + 4β)4
.

There are three standard increasing tableaux: SIT(λ) = {A,B,C}, as
shown below:

H =
3 2

2 1
A =

1 2

3 4
, B =

1 3

2 4
, C =

1 2

2 3
.

The terms on the RHS of (4.2) are

u(A) = u(B) =
(1 + 3β)3(1 + 4β)2

6β4(4 + 10β)
, u(C) = −

(1 + 3β)2(1 + 4β)2

3β3(4 + 10β)
,
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and indeed we have

β4
(
u(A) + u(B) + u(C)

)
=

(1 + 3β)2(1 + 4β)4

12
.

4.2. An infinite version. Next we give an equivalent expression for The-
orem 1.1 in terms of increasing tableaux instead of standard increasing
tableaux.

Theorem 4.5 (infinite multivariate K-HLF). Fix d > 1. For every λ ⊢ n
with ℓ(λ) 6 d, we have:

∑

T∈IT(λ)

m∏

k=1

d∏

i=1

1 + βyλi+d−i+1

1 + βyνi(T<k)+d−i+1

=
1

(β)n

d∏

i=1

(
1 + β(λi + d− i+ 1)

)λi
∏

(i,j)∈λ

1

yd+j−λ′

j
− yλi+d−i+1

.

(4.3)

In contrast with (4.2), the sum on the LHS of (4.3) is infinite. This
is somewhat further away from the original (HLF), but closer in spirit
to (q-HLF).

Proof. Rewrite Proposition 4.1 as

Gµ(yλ |y) =
∑

ν 7→µ or ν=µ

β|ν/µ|
Gν(yλ | y)

wt(λ/µ)
.

Now, as in the proof of Theorem 4.2, iterate this relation until ν(T6m) = λ,
where m = m(T ). This implies the result. �

By analogy with the previous argument for SITs, we obtain the following
infinite version of (K-HLF).

Corollary 4.6 (infinite K-HLF). Fix d > 1. For every λ ⊢ n with ℓ(λ)6d,
we have:

∑

T∈IT(λ)

m(T )∏

k=1

d∏

i=1

1 + β(λi + d− i+ 1)

1 + β(νi(T<k) + d− i + 1)

=
1

(−β)n

d∏

i=1

(
1 + β(λi + d− i+ 1)

)λi
∏

(i,j)∈λ

1

h(i, j)
.

(4.4)

The proof follows verbatim the proof above and will be omitted.
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4.3. The q-analog. Let us now obtain the q-analog of (K-HLF).

Theorem 4.7 (q-K-HLF). Fix d > 1. For every λ ⊢ n with ℓ(λ) 6 d, we

have:

∑

T∈SIT(λ)

m(T )∏

k=1

([
d∏

i=1

1 + βqνi(T<k)+d−i+1

1 + βqλi+d−i+1

]
− 1

)−1

=
qm(λ)

βn

d∏

i=1

(
1 + βqλi+d−i+1

)λi
∏

(i,j)∈λ

1

1− qh(i,j)
.

(4.5)

Proof. Substitute yi ← qi for all i > 1 in Theorems 1.1 and 4.5. Observe
that

yd+j−λ′

j
− yλi+d−i+1 = qd+j−λ′

j

(
1− qh(i,j)

)
,

since h(i, j) = (λ′j − j) + (λi − i) + 1. Following verbatim the argument
above, this implies the result. �

Proof of Corollary 1.2. Letting β → ∞ in (4.5), for each term on the
LHS we have:

1 + βqνi(T<k)+d−i+1

1 + βqλi+d−i+1
→ qνi(T<k)−λi = q−νi(T>k) .

The product of the inverses of such terms over all 1 6 i 6 d gives qa(T>k).
Factoring out the leading βn terms on both sides and simplifying the for-
mula, we obtain (1.1). �

4.4. Evaluations of coefficients. We can expand the LHS in (1.1) as
a power series in β and compare the coefficients on both sides. First, as
mentioned in the introduction, we recover the original hook-length for-
mula (HLF) by evaluating the constant terms.

Proposition 4.8 (β=0 in K-HLF). The term at β−n in equation (K-HLF)
gives (HLF).

Proof. Let λ ⊢ n. Extract the constant term in (K-HLF), after multi-
plying both sides by βn. In the RHS, we obtain the product of hooks∏

u∈λ 1/h(u). In the LHS, since

1 + βp

1 + βt
= 1 +

∞∑

i=1

(p− t) (−t)i−1βi,
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the constant term contains only the summands with m(T ) = n, each with
weight 1/n!. By definition, these summands correspond to T ∈ SYT(λ).
Thus (K-HLF) at β = 0 gives the HLF in the form

∑

T∈SYT(λ)

1

n!
=
∏

u∈λ

1

h(u)
,

as desired. �

We conclude with a curious corollary relating standard Young tableaux
and barely standard Young tableaux (see §2.5). Here we are using

p2(x1, . . . , xd) = x2
1 + . . .+ x2

d,

a symmetric power sum. Other notation are the staircase shape δd =
= (d− 1, . . . , 1, 0) and the harmonic number hn = 1 + 1

2 + . . .+ 1
n .

Corollary 4.9 (coefficient of β1−n in K-HLF). Fix d > 1. For every λ ⊢ n
with ℓ(λ) 6 d, we have:

∑

ν(λ

fνfλ/ν p2(ν + δd)

n− |ν|
−

n∑

k=1

(n+ k − 2)
∣∣BSYTk(λ)

∣∣

= fλ

(
(hn − 1) p2(λ+ δd) +

n(n− d(d+ 1))

2

)
.

(4.6)

The proof is a lengthy but straightforward calculation of evaluating the
coefficient of β1 on both sides of (K-HLF) normalized by βn, and will be
omitted. See §7.4 for the background on BSYTs.

§5. Generalized excited diagrams

5.1. Definitions. Given a set S ⊂ λ, we say that a cell (i, j) ∈ S is
active if (i+1, j), (i, j+1), and (i+1, j+1) are in λ\S. For an active cell
u = (i, j) ∈ S, define au(S) to be the set obtained by replacing (i, j) by
(i+1, j+1) in S. Similarly, define bu(S) to be the set obtained by adding
(i+ 1, j + 1) to S. We call au(S) a type I excited move and bu(S) a type

II excited move.
Let E(λ/µ) be the set of diagrams obtained from µ after a sequence of

type I excited moves on active cells. These are called excited diagrams.
These diagrams are used in both the Naruse hook-length formula (NHLF)
and its q-analog (q-NHLF).

Let D(λ/µ) be the set of diagrams obtained from µ after a sequence of
both types of excited moves on active cells. These are called generalized



NEW HOOK FORMULAS FOR STRAIGHT AND SKEW SHAPES 79

excited diagrams. For example, the skew shape λ/µ = 43/2 has five gener-
alized excited diagrams, three of which are the ordinary excited diagrams.
These are illustrated in Fig. 3 below.

5.2. Properties. To an excited diagram D ∈ E(λ/µ) we associate a sub-
set π(D) ⊆ λ\D called the excited peaks, constructed inductively, see [41,
§6.3]. For µ ∈ E(λ/µ), let π(µ) = ∅. Let D ∈ E(λ/µ) be an excited dia-
gram with active cell u = (i, j), and let D′ = au(D) be the result of the
type I excited move D → D′. Then the excited peaks of D′ are defined as

π(D′) := π(D) − (i, j + 1) − (i + 1, j) + (i, j),

see Fig. 1. It is easy to see that the set π(D) of excited peaks is well
defined and independent on the order of the moves. Naruse–Okada gave in
[47, Proposition 3.7] an explicit nonrecursive description of π(D), as well
as the following characterization of generalized excited diagrams in terms
of excited diagrams and excited peaks.

Proposition 5.1 ([47, Proposition 3.13]). We have:

D(λ/µ) =
⋃

D∈E(λ/µ)

{
D ∪ S : S ⊆ π(D)

}
,

so, in particular, ∣∣D(λ/µ)
∣∣ =

∑

D∈E(λ/µ)

2|π(D)| . (5.1)

Remark 5.2. There is a certain duality between the set D(λ/µ) of gener-
alized excited diagrams and the set P(λ/µ) of pleasant diagrams defined
in [41] to give an RPP(λ/µ) version of (q-NHLF). In particular, the fol-
lowing result is a direct analog of Proposition 5.1.

Proposition 5.3 ([41, §6.2]). We have:

P(λ/µ) =
⋃

D∈E(λ/µ)

{
π(D) ∪ S : S ⊆ λ \D

}
,

so, in particular,
∣∣P(λ/µ)

∣∣ =
∑

D∈E(λ/µ)

2|λ/µ| − |π(D)| . (5.2)
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Example 5.4. We have |E(332/21)|=5, see Fig. 1, giving |D(332/21)|=11
by (5.1). Similarly, equation (5.2) gives |P(332/21)| = 88 pleasant dia-
grams in this case.

Fig. 1. Excited diagrams of shape λ/µ = 332/21, excited
moves of type I, and the corresponding excited peaks de-
noted by shaded triangles.

5.3. Lattice paths interpretation. Following the approach in [26, 42],
these generalized excited diagrams are in bijection with certain collections
of lattice paths by the following construction.

Let us cut the skew diagram λ/µ into border strips greedily starting
from µ. Consider these strips between the diagonal starting at (0, ℓ(µ)) and
the diagonal starting at (µ1, 0). Within this region, let these border strips
start at squares with midpoints Ai and end at squares with midpoints Bi,
see Fig. 2 (left).

A1

A2

B1

B2

B1

A1

A2

B2

Fig. 2. Paths corresponding to two generalized excited di-
agrams, the flips of the paths in the type I and II excited
moves, and the forbidden path configuration.

Let η(A,B) be the number of paths A→ B inside λ with endpoints at
the centers of the squares of the Young diagram and Delannoy steps. We
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call these Delannoy paths. The following result interprets the generalized
excited diagrams D(λ/µ) as collections of nonintersecting Delannoy paths
inside λ/µ.

Proposition 5.5. The set D(λ/µ) is in bijection with Delannoy path col-

lections γi : Ai → Bi such that no two such lattice paths γi and γj intersect

or have a configuration as in Fig. 2 (right). In particular, we have:
∣∣D(λ/µ)

∣∣ 6 det
[
η(Ai, Bj)

]
i,j

.

Proof. For the first part, take Delannoy paths in the complement as shown
in Fig. 3. Observe that for the initial configuration µ ∈ D, the lowest such
lattice paths traverse µ inside λ/µ. A type I excited move transforms a
path by flipping a corner from (1, 0), (0, 1) steps to (0, 1), (1, 0) steps. A
type II excited move transforms a path by changing a (1, 0), (0, 1) corner
to a (1, 1) step, while the SE and NW cells of that step are empty. Further,
a type I excited move applied to a cell u with a diagonal step at its SE
corner results in flipping this diagonal to steps (0, 1), (1, 0) and transferring
the diagonal step to the nearest SE path. A type II excited move at a cell
u with a diagonal step already present results in modifying the nearest SE
path as above. See Fig. 2 (middle).

The final configuration can be drawn by a greedy traverse of the non-
excited cells starting from A1 to B1, see Fig. 3. Thus the paths pass ex-
actly through the cells outside S, the corresponding moves are reversible
on paths as long as there is no intersection and no forbidden configuration.
For the second part, note that all nonintersecting Delannoy paths are enu-
merated by the determinant using the Lindström–Gessel–Viennot (LGV)
lemma (see, e.g., [17, §5.4]), giving the desired determinant inequality. �

Example 5.6. For the skew shape λ/µ = 5442/21 as in Fig. 2, we have:

23 =
∣∣D(5442/21)

∣∣ 6 det

[
13 7
1 3

]
= 32.

5.4. Labeled lattice paths. Kreiman [26] (see also [42, Proposition 3.6])
showed that the excited diagrams are in bijection with the complements
of collections of nonintersecting lattice paths consisting of (0, 1) and (1, 0)
steps, contained in λ, and with starting and ending points Ai, Bi as above.
Note that in [26, 42], the starting and ending points were different, but
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1 1 1 2 2 2

1 1,2 21,2

type I excited move

type II excited move

Fig. 3. The generalized excited diagrams of shape λ/µ =
43/2, their peaks, and the corresponding flagged set
tableaux (see §7.5). The complements of diagrams in
D(λ/µ) can be viewed as Delannoy paths inside λ.

the geometry actually forces the corner portions of the paths to be always
fixed and hence the starting and ending points can vary.

Following the definition in §2.3, consider the high peaks of a collection
of nonintersecting lattice paths. Here the high peaks of a path are defined
as the peaks which moved from the corresponding base path cut out from
the skew diagram λ/µ. As an example, in Fig. 1, there is one lattice path
which corresponds to the white cells, and the inner corners which are high
peaks are labeled.

Remark 5.7. Note that the high peaks are a subset of the cells on which
a type I excited move was applied at some point and correspond exactly
to the excited peaks.

Denote by Π(λ/µ) the set of such collections of paths where each high
peak has been labeled 0 or 1. Similarly, denote by ∆(λ/µ) the set of collec-
tions of Delannoy paths in the complement of generalized excited diagrams
in D(λ/µ).

We can now explain Proposition 5.1 via lattice paths by the following
bijection φ : Π(λ/µ) → ∆(λ/µ) between labeled lattice and Delannoy
paths. Formally, for a collection Υ ∈ Π(λ/µ), replace each high peak la-
beled 1 with a (1, 1) step; all other peaks and paths stay the same.

Proposition 5.8. For a skew shape λ/µ, the map φ : Π(λ/µ)→ ∆(λ/µ)
defined above is a bijection.

Proof. It is easy to see that for every Υ ∈ Π(λ/µ), the paths in φ(Υ) are
exactly the Delannoy paths for ∆(λ/µ). For the inverse map φ−1, replace
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every (1, 1) step with (0, 1), (1, 0) steps which would necessarily form a
high peak and label it 1. This implies the result. �

5.5. The thick zigzag shape. Consider the thick zigzag shape δn+2k/δn.
Recall that

∣∣E(δn+2k/δn)
∣∣ = det

[
Cn+i+j−2

]k
i,j=1

and
∣∣P(δn+2/δn)

∣∣ = 2(
k

2) det
[
ŝn+i+j−2

]k
i,j=1

,

where ŝn = 2n+2sn. The first equality is proved in [42, Corollary 8.1],
while the second one was originally conjectured in [41, Conjecture 9.3] and
proved in [23, Theorem 1.1]. We give a similar determinant formula for the
number of generalized excited diagrams of the thick zigzag shape.

Theorem 5.9. We have:
∣∣D(δn+2/δn)

∣∣ = sn and

∣∣D(δn+4/δn)
∣∣ = 1

2

(
snsn+2 − s2n

)
.

More generally, we have:
∣∣D(δn+2k/δn)

∣∣ = 2−(
k

2) det
[
sn−2+i+j

]k
i,j=1

for all k > 1. (5.3)

Proof. From [42, §3.3, §8.1], the complements of excited diagrams D ∈
E(δn+2k/δn) correspond to k-tuples Υ := (γ1, . . . , γk) of nonintersecting
Dyck paths γi ∈ Dyck(n+ 2i− 2), for all 1 6 i 6 k, whose set we denote

by NDyck(n, k). Define HP(Υ) :=
⋃k

i=1HP(γi) and hp(Υ) := |HP(Υ)|.
By Proposition 5.8, the diagrams D ∈ D(δn+2k/δn) correspond to the

tuples (Υ, S) where Υ ∈ NDyck(n, k) and S ⊆ HP(Υ) are the high peaks
labeled with 1. We conclude:

∣∣D(δn+2k/δn)
∣∣ =

∑

Υ∈NDyck(n,k)

2hp(Υ) . (5.4)

Let

Ln(x) :=
∑

γ∈Dyck(n)

xhp(γ) and Ln,k(x) :=
∑

Υ∈NDyck(n,k)

xhp(Υ) .

Note that sn = Ln(2), see, e.g., [61]. By (5.4), we have

Ln,k(2) =
∣∣D(δn+2k/δn)

∣∣.
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Finally, by [23, Theorem 5.9], the sum Ln,k(x) satisfies the following
determinant formula:

x(
k

2) · Ln,k(x) = det
[
Ln+i+j−2(x)

]k
i,j=1

. (5.5)

Setting x = 2, we obtain the result. �

5.6. Double Grothendieck polynomials. Excited diagrams can be
used to give a combinatorial model of these polynomials in the special case
we need. For a definition and combinatorial models of double Grothendieck

polynomials for all permutations, see [13, 14, 27].
In [28], Knutson–Miller–Yong gave the following formula for the Grothen-

dieck polynomials of vexillary permutations, originally stated in terms of
flagged set tableaux and restated here in terms of generalized excited dia-
grams. See also §7.7 for a discussion of another proof of this result.

Theorem 5.10 ([28, Theorem 5.8]). Let w be a vexillary permutation

of shape µ and supershape λ. Then the double Grothendieck polynomial

parameterized by w can be computed as follows:

Gw(x,y) =
∑

D∈D(λ/µ)

β|D|−|µ|
∏

(i,j)∈D

(xi ⊕ yj). (5.6)

Corollary 5.11. Let w be a vexillary permutation of shape µ and super-

shape λ. Then we have:

Gw(x,y) =
∑

D∈E(λ/µ)

β|D|−|µ|
∏

(i,j)∈π(D)

(
1 + β(xi ⊕ yj)

) ∏

(i,j)∈D

(
xi ⊕ yj

)
.

Proof. This follows immediately from Theorem 5.10 and Proposition 5.1.
�

Example 5.12. For w = 1432 ∈ S4, we have µ = 21, λ = 332, and
|D(332/21)| = 11, see Example 5.4 and [13, Example 1]. By Corollary 5.11,
for yi = 0 we have:
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G1432(x,0) = x2
1x2 + x2

2x1 (1 + βx1)

+ x2
1x3 (1 + βx2) + x1x2x3 (1 + βx1) (1 + βx2) + x2

2x3 (1 + βx1)

= x2
1x2 + x2

2x1 + x2
1x3 + x1x2x3 + x2

2x3 + βx2
1x

2
2 + 2 βx2

1x2x3

+ 2βx2
2x1x3 + β2x2

1x
2
2x3 .

5.7. The principal specialization. Let Γw(β) := Gw(1,0) be the prin-

cipal specialization of the Grothendieck polynomial. Substituting xi ← 1
and yi ← 0 in Corollary 5.11, we immediately obtain the following.

Corollary 5.13. Let w be a vexillary permutation of shape µ and super-

shape λ. Then:

Γw(β) =
∑

D∈D(λ/µ)

β|D|−|µ| =
∑

D∈E(λ/µ)

β|D|−|µ| (1 + β)|π(D)| . (5.7)

Using the lattice paths interpretation from §5.3, let ηβ(A,B) be the
weighted sum of Delannoy paths A → B with β keeping track of the
number of (1, 1) steps. We have the following inequality for the principal
specialization of the Grothendieck polynomials considered above.

Corollary 5.14. Let w be a vexillary permutation of shape µ and super-

shape λ, and let Γw(β) be the principal specialization of the Grothendieck

polynomial. Then:

Γw(β) 6 det
[
ηβ(Ai, Bj)

]
i,j

,

where 6 means coefficient-wise inequality for polynomials in β.

Proof. The result follows immediately from Corollary 5.13, the proof of
Proposition 5.5, and the proof of the LGV lemma which preserves the total
number of (1, 1) steps under the involution. �

Finally, we give a determinant formula for the principal specialization
Γw(n,k)(1), where

w(n, k) := (1, 2, . . . , k, n+ k, n+ k − 1, . . . , k + 1).

See [15] and [43, Corollary 5.8] for the analogous results on evaluations of
Schubert polynomials of w(n, k).

Corollary 5.15. For all n, k > 1, in the notation above we have:

Γw(n,k)(1) = 2−(
k

2) det
[
sn−2+i+j

]k
i,j=1

for all k > 1.
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Proof. The permutation w(n, k) is dominant (132-avoiding), and hence
vexillary. Denote by λ/δn the skew shape associated to w(n, k), see [43,
Fig. 6(a)]. Then Corollary 5.13 at β = 1 gives:

Γw(n,k)(1) =
∣∣D(λ/δn)

∣∣.
From the definition of generalized excited diagrams, or from their corre-
spondence with flagged set-valued tableaux (see §7.5), it is easy to see that∣∣D(λ/δn)

∣∣ =
∣∣D(δn+2k/δn)

∣∣. The result then follows by Theorem 5.9. �

§6. Hook formula for skew shapes

6.1. The setup. Recall the vanishing property (Proposition 3.4) of the
factorial Grothendieck polynomials:

Gµ(yλ |y) =




0 if µ 6⊆ λ ,∏
(i,j)∈λ

(yd+j−λ′

j
⊖ yλi+d−i+1) if µ = λ .

Following the approach of Ikeda–Naruse [24] and Kreiman [26] for the
factorial Schur functions sµ(yλ |y), we present a combinatorial model for
the Andersen–Jentzen–Soergel [1] and Billey [2] expressions for evaluations
of the factorial Grothendieck polynomials Gµ(yλ |y) when µ ⊆ λ.

Fix two Grassmannian permutations w 6 v in SN with associated parti-
tions µ ⊆ λ with ℓ(λ) 6 d and λ1 6 N −d, see, e.g., [36, §2.1]. Let cλµτ and

Kλ
µτ be the structure constants for the Schubert classes in the equivariant

cohomology and equivariant K-theory of the Grassmannian, respectively,
see, e.g., [24, 26, 18].

Theorem 6.1 (Ikeda–Naruse [24], Kreiman [26]). Fix d > 1. For all µ ⊂ λ
with ℓ(λ) 6 d, we have:

cλµλ =
∑

D∈E(λ/µ)

∏

(i,j)∈D

(
yd+j−λ′

j
− yλi+d+1−i

)
.

Theorem 6.2 (Graham–Kreiman [18, Theorem 4.5]). Fix d > 1. For all

µ ⊂ λ with ℓ(λ) 6 d, we have:

Kλ
µλ =

∑

D∈D(λ/µ)

(−1)|D|−|µ|
∏

(i,j)∈D

yd+j−λ′

j
− yλi+d+1−i

1 − yλi+d+1−i
.
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Remark 6.3. To translate from the result in [18, Theorem 4.5] to the one
stated here, one needs to do the substitution yi ←

(
1 − eǫi

)
, as discussed

in [18, §4.3.1, §5.4].

6.2. Multivariate formulas. The following technical lemma gives an
evaluation of the factorial Grothendieck polynomials, and provides a bridge
to our enumerative problem.

Lemma 6.4. Fix d > 1. For all µ ⊂ λ with ℓ(λ) 6 d, we have:

Gµ(yλ |y) =
∑

D∈D(λ/µ)

β|D|−|µ|
∏

(i,j)∈D

(
yd+j−λ′

j
⊖ yλi+d−i+1

)
. (6.1)

Proof. We show that both sides of (6.1) satisfy the same identity. First,
the factorial Grothendieck polynomials satisfy the Chevalley formula (3.6).
Thus, for the LHS of (6.1) we have:

Gµ(yλ |y)

(
G1(yλ|y) − G1(yµ |y)

1 + βG1(yµ |y)

)
=
∑

ν)µ

β|ν/µ|−1 Gν(yλ |y) .

By Theorem 6.2, the RHS of (6.1) at β = −1 equals Kλ
µλ. On the

other hand, Lenart–Postnikov [33, Corollary 8.2] (see also the proof of
Proposition 3.1 in [55]) give the following equivariant K-theory Chevalley

formula:

Kλ
µλ

(
Kλ

1λ − 1 + wt′(µ)

wt′(µ)

)
=
∑

ν 7→µ

(−1)|ν/µ|−1 Kλ
νλ ,

where

wt′(µ) :=
∏

(i,j)∈µ

1− yi+j−1

1− yi+j
.

Observe that we have cancellations in the formula for wt′(µ), and for each
row i of µ only the term (1− yi)/(1− yµi+d−i+1) survives in the product.
Thus:

wt′(µ) =

d∏

i=1

1− yi
1− yµi+d−i+1

= 1−G1

(
yµ |y

)
|β=−1 ,

where the second equality follows by (3.7). Therefore, we have:

Kλ
µλ

(
Kλ

1λ −G1(yµ |y) |β=−1
1−G1(yµ |y) |β=−1

)
=
∑

ν)µ

(−1)|ν/µ|−1 Kλ
νλ .
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This shows that
Gµ(yλ |y) |β=−1 = Kλ

µλ.

We conclude:

Gµ(yλ |y) |β=−1=
∑

D∈D(λ/µ)

(−1)|D|−|µ|
∏

(i,j)∈D

yd+j−λ′

j
− yλi+d+1−i

1− yλi+d+1−i
. (6.2)

It remains to show that by substituting yi ← (−yiβ) in (6.2) we get the
desired result. Denote the LHS of (6.2) by F (y1, . . . , yn). We easily verify
that

(−β)−|µ| F (−y1β, . . . ,−ynβ)

=
∑

D∈D(λ/µ)

β|D|−|µ|
∏

(i,j)∈D

(yd+j−λ′

j
⊖ yλi+d−i+1) .

Finally, for the RHS by (3.1) we have that

Gµ

(
yλ |y

)
|yi←(−yiβ)= (−β)|µ|Gµ(yλ |y) , (6.3)

as desired. �

Theorem 6.5 (multivariate K-NHLF). Fix d > 1. For all µ ⊂ λ with

ℓ(λ) 6 d, we have:

∑

T∈SIT(λ/µ)

m(T )∏

k=1

([
d∏

i=1

1 + βyνi(T<k)+d−i+1

1 + βyλi+d−i+1

]
− 1

)−1

=
∑

D∈D(λ/µ)

β|D|−|λ|
∏

(i,j)∈λ\D

βyλi+d−i+1 + 1

yd+j−λ′

j
− yλi+d+1−i

.

(6.4)

Proof. By Lemma 6.4 and the vanishing property (3.3) of Gµ(yµ |y), we
have:

Gµ(yλ |y)

Gλ(yλ |y)
=

∑

D∈D(λ/µ)

β|D|−|µ|
∏

(i,j)∈λ\D

1

yd+j−λ′

j
⊖ yλi+d−i+1

. (6.5)

Alternatively, by iterating (4.1) we obtain:

Gµ(yλ|y)

Gλ(yλ |y)
= β|λ/µ|

∑

T∈SIT(λ/µ)

m(T )∏

k=1

([
d∏

i=1

1 + βyνi(T<k)+d−i+1

1 + βyλi+d−i+1

]
− 1

)−1
.

(6.6)
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Equating (6.5) and (6.6), we get the result. �

Proof of Theorem 1.4. This follows from Theorem 6.5 by substituting
yi ← i for all 1 6 i 6 d, and noticing that yd+j−λ′

j
−yλi+d−i+1 = −h(i, j).

�

6.3. The q-analog. By analogy with the straight shape (§4.3), we obtain
a q-analog using the substitution yi ← qi for all i > 1.

Theorem 6.6 (q-K-NHLF). Fix d > 1. For all µ ⊂ λ with ℓ(λ) 6 d, we

have:

∑

T∈SIT(λ/µ)

m(T )∏

k=1

([
d∏

i=1

1 + βqνi(T<k)+d−i+1

1 + βqλi+d−i+1

]
− 1

)−1

=
∑

D∈D(λ/µ)

β|D|−|λ|
∏

(i,j)∈λ\D

βqλi+d−i+1 + 1

qd+j−λ′

j (1 − qh(i,j))
.

(6.7)

We omit the proof as the calculations follow verbatim those in the proof
of Theorem 4.7.

Proof of Theorem 1.5. Following the proof of Corollary 1.2, let β →∞
in (6.7). We have:

1 + βqνi(T<k)+d−i+1

1 + βqλi+d−i+1
→ q−λi+νi(T<k) = q−νi(T>k) .

Taking the inverse of the product of these terms over all 1 6 i 6 d, we
get qa(T ). The β terms on the RHS of (6.7) all have exponents zero, which
implies the result. �

Finally, as discussed in the introduction (see Remark 1.6), we can now
rewrite the RHS of (6.7) in terms of (ordinary) excited diagrams.

Corollary 6.7. For every µ ⊂ λ, we have:

∑

T∈SIT(λ/µ)

q|T |
m(T )∏

k=1

1

1− qa(T>k)

=
∑

D∈E(λ/µ)

∏

(i,j)∈π(D)

1

1− qh(i,j)

∏

(i,j)∈λ\D

qh(i,j)

1− qh(i,j)
.

(6.8)

Proof. This follows from Theorem 1.5 and the characterization of gener-
alized excited diagrams given in Proposition 5.1. �
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6.4. Back to set-valued tableaux. The following Okounkov–Olshanski

formula (OOF) given in [49] is yet another nonnegative formula for fλ/µ.
Fix d > 1. For µ ⊂ λ with ℓ(λ) 6 d, we have:

fλ/µ = n!
∑

T∈SSYTd(µ)

∏

(i,j)∈λ

(
λd+1−T (i,j) + i− j

) ∏

(i,j)∈λ

1

h(i, j)
, (OOF)

where SSYTd(µ) denotes the set of SSYTs of shape µ with entries 6 d.
Note that (OOF) is also proved via evaluations of factorial Schur functions,
preceding (NHLF) in this approach. The corresponding q-analogs are given
in [8, Theorem 1.2] and [45, §1.4], for the summations over SSYT(λ/µ) and
RPP(λ/µ), respectively.

Here we follow a simple proof in [45, §3.1] via evaluations of factorial
Schur functions, to give a (K-OOF) generalization of (OOF) for SIT(λ/µ)
analogous to Theorem 1.4.

Theorem 6.8 (K-OOF). Fix d > 1. For all µ ⊂ λ with ℓ(λ) 6 d, we have:

∑

T∈SIT(λ/µ)

m(T )∏

k=1

([
d∏

i=1

1 + β
(
νi(T<k) + d− i+ 1

)

1 + β
(
λi + d− i+ 1

)
]
− 1

)−1

=

d∏

i=1

(
1 + β(λi + d− i+ 1)

)λi

×
∑

T∈SSVTd(µ)

(−β)ne(T )−|λ|
∏

(i,j)∈µ,r∈T (i,j)

λd+1−r + i− j

1 + β
(
λd+1−r + r

)
∏

(i,j)∈λ

1

h(i, j)

Proof. We evaluate Gµ(yλ |y) /Gλ(yλ |y) |yi←i in two different ways.
First, the LHS is obtained by the substitution yi ← i in (6.6). For the
RHS we evaluate the numerator and denominator directly. For the denom-
inator we use Proposition 4.3. For the numerator, since Gµ(x1, . . . , xd |y)
is symmetric in x1, . . . , xd by Proposition 3.3 (i), we have:

Gµ

(
⊖(λ1 + d), . . . , ⊖(λd−1 + 2), ⊖(λd + 1)

∣∣ 1, 2, 3, . . .
)

= Gµ

(
⊖(λd + 1), ⊖(λd−1 + 2), . . . , ⊖(λ1 + d)

∣∣ 1, 2, 3, . . .
)
.

Next, by Definition 3.1 of factorial Grothendieck polynomials, the RHS of
the equation above is equal to

∑

T∈SSVTd(µ)

βne(T )−|µ|
∏

(i,j)∈µ, r∈T (i,j)

[
−(λd+1−r + r)

1 + β(λd+1−r + r)
⊕ (r + j − i)

]
.
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The result then follows by simplifying the power of β and doing the cal-
culation

−(λd+1−r + r)

1 + β(λd+1−r + r)
⊕ (r + j − i) =

−λd+1−r − i+ j

1 + β
(
λd+1−r + r

) .

We omit the details. �

Remark 6.9. Note that the set SSYTd(µ) in (OOF) is finite and plays
a role of the set E(λ/µ) of excited diagrams in (NHLF). This connection
is clarified in [45], with reformulations of (OOF) in terms of puzzles and
reverse excited diagrams. Finally, the set SSVTd(µ) plays a role of gener-
alized excited diagrams D(λ/µ). It would be interesting to reformulate the
theorem similarly, in terms of puzzles.

§7. Final remarks and open problems

7.1. The hook-length formula (HLF) has numerous proofs, starting with
the original paper [16]. The Littlewood formula (q-HLF) was first given
in [34, p. 124]. We refer to [9, §6.2] for an overview of other proofs and
generalizations. The Naruse hook-length formula (NHLF) was originally
given by Naruse in his talk slides [46]. In our first two papers of this series
[41, 42], we give about four proofs of this result, which include both the
SSYT and RPP generalizations, see (q-NHLF) and (1.6).

7.2. In [43], we give various enumerative and asymptotic applications of
(NHLF). Further applications and comparisons with other tools for esti-
mating fλ/µ = | SYT(λ/µ)| are surveyed in [51]. It would be interesting to
find similar applications of the β-deformations presented in this paper. Let
us single out Theorem 3.10 in [43] which established a key symmetry via
factorial Schur functions, used to obtain a host of product formulas. Note
that two elementary proofs of this result are given in [52]; we are especially
curious to find its generalization motivated by the factorial Grothendieck
polynomials.

7.3. The notation used for the factorial Grothendieck polynomials goes
back to the formal group law of connective K-theory, and in the context
of algebraic combinatorics is explained in [13] as follows.

Let Aβ
n be the algebra with generators u1, . . . , un−1 satisfying u2

i = βui,
the exchange and braid relation. Observe that A0

n is the NilCoxeter algebra
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and A−1n is the degenerate Hecke algebra. Then the functions hi(t) = etui

satisfy the Yang–Baxter equation:

hi(t)hi+1(t+ s)hi(s) = hi+1(s)hi(t+ s)hi+1(t).

For hi(t) = etui = 1+xui we have x = (eβt− 1)/β. We can now write this
as x = [t]β and note that [t]β ⊕ [s]β = [t+ s]β .

7.4. Our notion of barely standard Young tableaux BSYT comes from a
similar notion of barely set-valued tableaux recently introduced in [57], and
is probably the closest relative of SYT that we have. Note that (4.6) can
be rewritten as computing the expectation of the repeated entry, similar
to [57] (see also [12]), although the resulting formula is more cumbersome.

7.5. The excited diagrams are in bijection with certain flagged tableaux:

|E(λ/µ)| = |Flag(λ/µ)|,

where Flag(λ/µ) ⊂ SSYT(µ), see [41, §3.3]. This connection was used
in [42, §3.3] to obtain a determinant formula for |E(λ/µ)|. Similarly, the
generalized excited diagrams in D(λ/µ) are in bijection with certain flagged

set-valued tableaux of shape µ, see an example in Fig. 3. These bijections
were obtained by Kreiman [26, §6] and by Knutson–Miller–Yong [28, §5]
in the context of Schubert calculus.

7.6. In Theorem 5.9, we gave a determinant formula for the number of
generalized excited diagrams of the skew shape δn+2k/δn using the connec-
tion between D(λ/µ) and P(λ/µ), see Proposition 5.1. A similar determi-
nant formula for P(δn+2k/δn) is proved in [23]. In fact, [23, Corollary 6.4]
gives determinant formulas for pleasant diagrams of more general classes of
skew shapes called good that also include thick reverse hooks (b+ c)a+c/ba.
Using [23, Theorem 6.3], which is an analog of (5.5), one can obtain a
determinant formula for generalized excited diagrams of such good skew
shapes.

7.7. In [65, Corollary 1.5, Theorem 1.1], Weigandt gave two formulas for
double Grothendieck polynomials Gw(x,y) in terms of the bumpless pipe

dreams of w defined by Lam–Lee–Shimozono [30]. When w is vexillary,
these formulas reduce to Theorem 5.10 and Corollary 5.11, respectively.
Indeed, a bijection between marked bumpless pipe dreams of vexillary w
and D

(
λ(w)/µ(w)

)
via the corresponding flagged set-valued tableaux is

given in [65, Theorem 1.6]. Similarly, a bijection between vexillary bump-
less pipe dreams and ordinary excited diagrams is given in [65, §7.3].
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We should mention that bumpless pipe dreams of w behave like (gen-
eralized) excited diagrams of shape λ/µ, since the former are connected
by certain moves called (K-theoretic) droop moves [30, 65]. It would be
interesting to further explore this connection.

7.8. There is a large literature on enumeration of increasing tableaux in
many special cases based on a trick of adding Mλ implicitly used in (1.3).
Notably, for a rectangular shape, the tableaux in SIT(ab) are in bijection
with certain plane partitions of the same shape, see, e.g., [10, §4] and [20].
This approach fails to give a bijection for general skew shapes λ/µ, except
when µ = δk is a staircase. The latter are characterized by all minimal
elements in Mλ/µ having the same entries.

7.9. While all our proofs are algebraic, some of our results seem well-
positioned to have a direct combinatorial proof. We are especially curious
if (K-HLF) has such a proof. Similarly, it would be interesting to use
Konvalinka’s recursive approach [29] to find a combinatorial proof of our
Theorem 1.4.

7.10. The complexity of counting standard increasing tableaux is yet to
be understood. In [63, §1.3], the authors give examples of large primes ap-
pearing as values, and suggest that the exact formula might not exist. They
ask if there are “efficient (possibly randomized or approximate) counting
algorithms” for gλ = | SIT(λ)| and its refinements.

We conjecture that computing gλ is #P-complete. This would partly
explain why our hook formulas involve nontrivial β-weights. For the related
notion of set-valued tableaux, see a discussion in [40] and the #P-comple-
teness conjecture in [21, §5.7].

7.11. The LHS of (K-HLF) is equal to the LHS of equation (K-OOF)
given in Theorem 6.8. It then follows from the proof of Theorem 6.8 that
both can be computed efficiently for a given skew shape λ/µ and β ∈ Q.
It would be interesting to see if these have a determinant formula gen-
eralizing the Aitken–Feit determinant formula for fλ/µ (see, e.g., [59,
Corollary 7.16.3] and [51]).

Note that the Lascoux–Pragacz identity gives yet another determinant
formula for fλ/µ, which we used in [42] to give a combinatorial proof
of (NHLF). Finally, let us mention that E(λ/µ) has a determinant formula
(see §7.5 above), while Proposition 5.5 is not an equality but gives only a
determinant upper bound for D(λ/µ).
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7.12. Following the approach of Stanley [60], we conjecture that for all
β > 0, there is a limit

lim
n→∞

log2 u(β, n)

n2
, where u(β, n) := max

w∈Sn

Γw(β).

Using the Cauchy identity for Grothendieck polynomials [13, Corollary 5.4],
we obtain the following bounds:

1

4
log2(2+β) 6 lim inf

n→∞

log2 u(β, n)

n2
6 lim sup

n→∞

log2 u(β, n)

n2
6

1

2
log2(2+β).

In [44], we computed the limit above for β = 0, when the maximum is
restricted to layered (231- and 312-avoiding) permutations. It would be
interesting to see if our analysis can be extended to the case of general
β > 0.

7.13. Dividing both sides of (K-HLF) by (−1)n and taking β > 0 gives
positive weights in the summation on the LHS over the SITs. Can one
efficiently sample from this distribution? Perhaps, there is a deformation
of the NPS algorithm or the GNW hook walk, see [19, 48]? A positive
answer to either of these would be remarkable.
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