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A NOTE ON A LOCAL COMBINATORIAL FORMULA

FOR THE EULER CLASS OF A PL SPHERICAL FIBER

BUNDLE

Abstract. We present a local combinatorial formula for the Euler
class of an n-dimensional PL spherical fiber bundle as a rational
number eCH associated to a chain of n + 1 abstract subdivisions
of abstract n-spherical PL cell complexes. The number eCH is a
combinatorial (or matrix) Hodge-theoretic twisting cochain in Guy
Hirsch’s homology model of the bundle associated with the PL com-
binatorics of the bundle.

§1. Introduction

Local combinatorial formulas for characteristic classes of combinatorial
manifolds is a rich, fruitful, intriguing subject which is far from being fin-
ished, see [16] for the history and an overview. We switch the attention to
the conceptually (but not immediately) related problem of rational local
combinatorial formulas for characteristic classes of combinatorial spherical
fiber bundles in the case of the Euler class. The Euler class of a closed ori-
ented combinatorial manifold is its Euler characteristic. In this situation,
a local combinatorial formula is well known. The formula is the “Levitt
curvature” [24], a discrete analog (see [12]) of the Gauss–Bonnet–Chern
curvature. A combinatorial manifold has nothing like the spherical bun-
dle associated to the tangent bundle, therefore, bundle local formulas and
manifold local formulas are not immediately related. For the case of spher-
ical bundles, only circle bundles (bundles with fiber S1) are investigated.
We have simple local combinatorial formulas [21, Secs. 1, 2], [28] in this
situation based on Kontsevich’s cyclic connection form on metric polygons.
A brief sketch of another local combinatorial formula for circle bundles is
presented around Proposition 2 in [17]. The sketch constructs the formula
as a local obstruction to constructing a chain-level section representing
the transgression differential in the Serre spectral sequence of the bundle.
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The Gelfand–MacPherson sketch for circle bundles has a natural general-
ization for arbitrary Sn-bundles, and our work emerged from an attempt
to organize and develop this idea. As a result, we obtained a canonical
construction with a canonically looking formula (33) representing the lo-
cal combinatorial twisting cochain for the Hirsch homology model of the
bundle. Formula (33) and the Levitt curvature should have some mutual
relation in the case of combinatorial manifolds. But it is a challenge to find
this relation.

1. The problem of finding a local combinatorial formula for the

Euler class of a spherical fiber bundle in the PL category. The PL
category is defined using triangulations. A spherical PL fiber bundle Sn −→

E
p
−→ B has a triangulation given by a map of simplicial complexesEEE

ppp
−→ BBB.

We call the stalk of the triangulation over a base simplex σk ∈ BBB(k) an
elementary simplicial spherical bundle. It triangulates the trivial bundle

Sn×∆k π
−→ ∆k in such a way that any simplex in the total space is mapped

onto a face of the base simplex (see Fig. 1). The triangulation EEE
ppp
−→ BBB is

Fig. 1. An elementary simplicial circle bundle.

assembled from elementary simplicial spherical bundles using boundary
maps which are combinatorial automorphisms of the elementary bundles.
Suppose that the base simplicial complex is locally ordered. Then it has a
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complex of ordered cochains, which computes the singular cohomology of
the base. We wish to find a universal rational function of the combinatorial
isomorphism class of elementary triangulated oriented Sn-bundles over an
(n + 1)-simplex such that this value being assigned to the base (n + 1)-
simplex is a rational cocycle representing the Euler class of the bundle.
Thus, it is supposed to be independent of the boundary combinatorial
automorphisms composing the bundle from elementary bundles. Such a
formula will be called a simplicial local combinatorial formula for the Euler
class.

Since the Euler class is an integer characteristic class, a rational for-
mula should have integer periods, now in the combinatorial setting. That
is, its evaluation at integer (n + 1)-simplicial cycles in the base are inte-
gers depending on the isomorphism class of the bundle and the homology
class of the cycle, and independent of the triangulation. In particular, if we
triangulate a differentiable Sn-bundle over a differentiable closed oriented
(n+1)-base, we should obtain the same Euler number of the bundle from
combinatorial and from differential considerations. Therefore, the arith-
metics of the formula is highly nontrivial.

2. There is an alternative to triangulations and a somewhat dual combi-
natorics of PL fiber bundles investigated in [27].

By a local system G onBBB with values in some categoryGGG we mean a map
associating to any vertex v of BBB an object G(v) of GGG, and to any oriented

edge (v0, v1) a GGG-morphism G(v0)
G(v0,v1)
−−−−−→ G(v1), in such a way that any

2-simplex (v0, v1, v2) goes to the compositionG(v0, v2) = G(v1, v2)G(v0, v1).

Alternatively, we may say that we have a simplicial mapBBB
G
−→ N GGG, where

N denotes the nerve of the category.
One may encode a spherical PL fiber bundle p by a local system on

the base simplicial complex BBB with values in the category SSSn of abstract
regular spherical PL cell complexes and corresponding aggregations (this is
explained in Sec. 5). Any triangulation has such a local system canonically
associated with it. For this combinatorics, a local formula for the Euler
class of a PL Sn-bundle is a universal Euler (n + 1)-cocycle, which is a
function of a chain of n+1 subdivisions (or aggregations) of n-spherical cell
complexes, e.g., a chain of subdivisions of convex polytopes. This function
measures certain combinatorial asymmetry in the chain. We call it the
aggregation local combinatorial formula for the Euler class, and it is defined
in §5, Subsec. 13.
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3. This note is devoted to a simple observation: the combinatorial model
of a spherical PL fiber bundle as a local system of abstract aggregations (or
subdivisions) of PL spherical cell complexes on a triangulated base ([27])
smoothly and naturally fits into the very classical theory of Hirsch homol-
ogy models of fibrations, since it produces exactly the “bigraded model
of a fibration” and its Serre spectral sequence is the bicomplex spectral
sequence. Thus, we immediately produce a local combinatorial formula for
the Euler class as a “twisting cochain.” In fact, we substitute the combina-
torics of cellular local systems from [27] into the deformation theory of lo-
cal systems of spherical chain complexes as expressed in [22, Corollary 2.5]
with an explicit formula [22, formula (3)] for the Euler cocycle. The simpli-
cial local combinatorial formula in this setting is derived from the formula
for local systems. The resulting aggregation local formula (Theorem 8) is
composed from combinatorial Hodge-theoretic retractions of chain cellu-
lar spheres in homology. This is expected to be an interesting subject of
combinatorics, statistics, thermodynamics, etc. of “higher Kirchhoff theo-
rems” [7–9,14, 26].

Unless stated otherwise, we assume that our coefficients are in some
characteristic 0 field A, since our goal is a rational formula.

§2. The Euler class of an oriented spherical fiber

bundle

4. The Gysin homomorphism and trangression differential. An
oriented spherical fiber bundle

Sn −→ E
p
−→ B (1)

has an integer Euler characteristic class E (p) ∈ Hn+1(B;Z). In [10, 32,
33], the Euler class of a fiber bundle (1) was identified via the Gysin
homomorphism G = ⌢E (p) of the homological Gysin exact sequence of
the bundle

· · ·
p
−→ Hn+k+1(B;Z)

⌢E (p)
−−−−→ Hk(B;Z)

j
−→

Hn+k(E;Z)
p
−→ Hn+k(B;Z)

⌢E (p)
−−−−→ · · ·

· · ·
⌢E (p)
−−−−→ H1(B;Z)

j
−→ Hn+1(E;Z)

p
−→ Hn+1(B;Z)

⌢E (p)
−−−−→ H0(B;Z) −→ 0. (2)
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The Gysin homomorphism is the differential on the (n+ 1)th page of the
Leray–Serre spectral sequence of the bundle

Hn+k+1(B;H0(S
n;Z)

≈Z

) ≈ En+1
n+k+1,0(p)

dn+1=⌢E (p)
−−−−−−−−→ En+1

k,n (p)

≈ Hk(B,Hn(S
n;Z)

≈Z

).

And thus the first one, the transgression differential

Hn+1(B;H0(S
n;Z)

≈Z

) ≈ En+1
n+1,0(p)

⌢E (p)
−−−−→ En+1

0,n (p)

≈ H0(B,Hn(S
n;Z)

≈Z

), (3)

can be regarded as the Euler class itself if the base is connected.

§3. Guy Hirsch’s model of a fibration

Guy Hirsch in [20] introduced “Hirsch homology models of fibrations.”

For certain fibrations F −→ E
g
−→ B, he detected a subcomplex of the chain

complex C•(E) of the form C•(B) ⊗H•(F ) that has the same homology
as E. In [6], E. Brown defined the “twisted tensor product” and recog-
nized Hirsch’s model in the form of the twisted Eilenberg–Zilber theorem,
C•(E) ≈ C•(B)⊗τ(g) H•(F ), where τ(g) is a “twisting cochain.”

Twisting cochains for Hirsch models allow one to obtain a chain-level
understanding of the differentials in the Serre spectral sequence of a Serre
fibration. This was investigated in detail by the Georgian school [3, 4, 23].
The modern setup for Brown’s twisting cochain has the form of A∞ local
systems [22, Secs. 1, 2].

There are two steps in the construction of the Hirsch model of a fibration

F −→ E
g
−→ B: an algebraic step and a topological step.

In the case of a base polyhedron B ( [3, 22, 23]), the algebraic step
investigates a local system L of chain complexes with fixed homology

H•(F ) =
n∑

k=0

Hk(F ) on a locally ordered triangulation of the base BBB,

|BBB| = B. Let TotL be the naturally filtered total complex of the bicom-
plex C•(BBB;L•) of L. The Hirsch–Brown model of L is a deformation of the
differential in the complex C•(BBB) ⊗ H•(F )  C•(BBB) ⊗τ(L) H•(F ) using
a twisting cochain τ(L) such that TotL is filtered homotopy equivalent
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to C•(BBB)⊗τ(L)H•(F ) and produces an equivalent spectral sequence with
differentials readable at the chain level.

At the next topological step, we try to replace the fibration g over the
polyhedron |BBB| by a local system of spaces W overBBB in such a way that cer-
tain chain complexes C•(Wv) of the local system give rise to the “bigraded
model of the fibration,” a bicomplex with total complex equivalent to the
total singular complex of the fibration ([4,13,15]). For this bigraded model,
the algebraic step becomes applicable and we obtain C•(BBB)⊗τ(W(g))H•(F )
as the Hirsch model of g, and thus we can see chain-level formulas for dif-
ferentials in the Serre spectral sequence of g up to irrationalities in the
construction of the bigraded model.

§4. Local systems of spherical chain complexes on a

simplicial base, the twisting cochain, and a formal

Euler cocycle

We present, in a form suitable for us, the classical construction ([3, 22,
23]) of the twisting cochain for a local system of spherical chain complexes
on a simplicial base. Our coefficiens are in a characteristic 0 field A.

5. Local systems of spherical chain complexes. Let Ch(Sn) be the
category of oriented spherical chain complexes. Objects are length n+1
chain complexes of finite-dimensional vector spaces over A, where we de-
note the differentials by γ:

K• = (0 −→ Kn
γn
−→ Kn−1

γn−1

−−−→ · · ·
γ1
−→ K0 −→ 0).

We suppose that Hi(K) = A if i = 0, n and Hi(K) = 0 otherwise. Also,

we suppose that K has a fixed augmentation denoted by K0
p0
−→ A and a

fixed “orientation” in making the sequence exact:

0 −→ A
in−→ Kn

γn
−→ Kn−1.

The orientation fixes the “fundamental class” i(1) ∈ Kn regarded as a gen-
erator in Hn(K). Morphisms in Ch(Sn) are degree 0 chain maps commut-
ing with the augmentation and orientation. We have a special homology
spherical complex with zero differentials

H•(S
n) = (0 −→ A

0
−→ 0 −→ · · · −→ 0 −→ A

n
−→ 0). (4)

LetBBB be a locally ordered simplicial complex equipped with a Ch(Sn)op-

valued local system L onBBB defined by a simplicial mapBBB
L
−→ N Ch(Sn; A)op.
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Associating to a simplex σp = (v0, . . . , vp) ∈ BBB(p) the complex L(vp) sit-
ting over its last vertex, and to the ith face inclusion diσp −→ σp the
identity map of complexes if i = 0, . . . , p − 1 and the map L(vp−1, vp) if
i = p, we obtain from the simplicial local system a simplicial constructible
sheaf on BBB.

6. The Leray–Gysin spectral sequence of a spherical local sys-

tem. We can consider the complex C•(BBB;L•) of simplicial chains on BBB

with coefficients in L. It is a bigraded module with two anticommuting dif-
ferentials. The module Cp(BBB,Lq) is formed by (p, q) chains σpcq assigning
to a simplex σp = (v0, . . . , vp) ∈ BBB(p) an element cq ∈ Lq(vp), i.e., a q-ele-
ment of the complex over the last vertex vp. We have two anticommuting
differentials: the simplicial horizontal differential

Cp(BBB,Lq)
∂
−→ Cp−1(BBB,Lq),

∂(σpcq) =

p−1
∑

i=0

(−1)i(diσp)cq + (−1)p(dpσp)L(vp−1, vp)(cq),
(5)

where a nontrivial transition map appears only in the last summand, and
the vertical differential

Cp(BBB,Lq)
γ̃
−→ Cp(BBB,Lq−1),

γ̃(σpcq) = (−1)pσpγσp
(cq),

(6)

induced by the differential in Ch(Sn). Thus, we obtain the total complex
Tot(BBB,L) with total differential

Tot = ∂ + γ̃ (7)

and horizontal filtration

Fp(TotC•(BBB;L•))d =
⊕

k1+k2
k16p

=d

Ck1(BBB;Lk2).
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Its first quadrant spectral sequence E•
•,• starting from page zero converges

to the chain homology of the Tot-complex. On page 0 we have
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On E1
••, the 1-differential is the horizontal differential ∂:

Cp−1(BBB;Hq(S
n)) = E1

p−1,q
d1=∂←−−− E1

p,q = Cp(BBB;Hq(S
n)).

That is, E1
p,q ≈ Cp(BBB;Hq(S

n)). Thus, E2
p,q = Hp(BBB;Hq(S

n)). On page
n+ 1, we get the Gysin–Leray transgression differential (3) as the formal
Gysin homomorphism. “Formal,” because a priori the local system L is not
related to any spherical Serre fibration on |BBB|.

7. Brown’s twisting cochain as a formal Euler cocycle. We need
some objects and notions. The complex C•(BBB) has an Alexander–Whitney
coalgebra structure. Let H = H• =

∑

i

Hi be some graded module. Then

Hom(H,H) has an algebra structure with respect to composition, and we
can consider the DGA C•(BBB; Hom(H,H)) with the Alexander–Whitney
product. A twisting cochain τ is a cochain

τ = τ1 + τ2 + . . . , τ i ∈ Ci(BBB; Homi−1(H,H)) (8)

satisfying the condition

δτ = −τ ⌣ τ. (9)

There is a pairing H ⊗ Hom(H,H) −→ H sending eq ∈ Hq and fi ∈
Homi(H,H) to an element eqfi = fi(eq) ∈ Hq+i. We have the cap product

Ck(BBB;H)⊗Cp(BBB; Hom(H,H)
⌢
−→ Cp−k(BBB,H). Having a twisting cochain

τ , we can deform the differential as

∂  ∂ + ⌢ τ (10)

on C•(BBB)⊗H , thus obtaining a new filtered DG module C•(BBB)⊗τ H . The
new differential respects the horizontal filtration on C•(BBB)⊗H , therefore,
it just adds some nontrivial differentials to the trivial bicomplex spectral
sequence in the simplest possible way.
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Now let H = H(Sn). Assume that the twisting cochain has τ1 = 0.
In this situation, a twisting cochain τ on C•(BBB)⊗H(Sn) is just a formal
Euler cocycle. Indeed, from dimension considerations Eq. (9) becomes the
cocycle condition δτ = 0, thus τ has a single nonzero element τn+1 ∈
Cn+1(BBB; Homn(H(Sn), H(Sn)). The spectral sequence of the horizontal
filtration becomes the Gysin–Leray sequence with transgression differential
⌢ τ on page n + 1. So, τ(σn+1)(1) is nothing but an A-valued “Euler”
simplicial (n+ 1)-cocycle on the base.

8. Strong deformational retractions, the basic homology pertur-

bation lemma. Recall the notions of strong deformational retraction and
homology perturbation. Let C,K be chain complexes of modules over
a commutative ring with unit. A strong deformation retraction (SDR)
(see [19]) of C on K is the data 〈F, i, p〉 of a diagram of chain maps
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Here the retraction operator C
F
−→ C[1] shifts the dimension by one, and

the following conditions hold:

pi = Id, dF + Fd = Id− ip, (12)

Fi = 0, pF = 0, F 2 = 0. (13)

The annihilation conditions (13) can be satisfied if (12) holds by perturb-
ing F . In particular, i splits the exact sequence

0 −→ Ker p −→ C
p
−→ K −→ 0

with the projection to the kernel given by dF + Fd, and thus represents
C as the direct sum of K and a contractible Ker p.

Let H(C) be the homology complex of C regarded as a complex with
zero differentials. The complex C is said to be homology split if there exists
a homology splitting (see, e.g., [18, §1]) that is an SDR of C on H(C),
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representing C as the direct sum of its homology module and a trivial
chain complex. If the complex and its homology are free, then a homology
splitting exists. In particular, if C has trivial homology, then its homology
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splitting is a degree 1 contraction C
F
−→ C[1] such that F 2 = 0 and

dF + Fd = Id.
If complexes C,K are filtered and the SDR data preserves filtrations,

then the SDR is filtered.

A perturbation of an SDR data is a homomorphism C
ψ
−→ C[−1] of

degree −1 such that (dC + ψ)2 = 0, i.e., dC + ψ is also a differential.
The fundamental tool for obtaining otherwise unavailable formulas is the
following lemma.

Lemma 1 (basic perturbation lemma [19]). Let 〈F, i, p〉 be a filtered
SDR (11) and ψ be a perturbation of this SDR. Then
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is a filtered SDR, where

dψ = pψΣψi, (14)

pψ = p(1− ψΣψi F ), (15)

iψ = Σψi, (16)

Fψ = ΣψF. (17)

Here

Σψ =
∑

j>0

(−1)i(Fψ)j = 1− Fψ + FψFψ − FψFψFψ · · · .

9. The Hirsch model of a Ch(Sn)-local system with retractions

on homology, its twisting cochain, and a formal Euler cocycle.

Here we present a deformation of a Ch(Sn)op-local system L onto the
trivial local system C•(BBB;H(Sn)) by a locally defined formal Euler cocycle.
The deformation and the cocycle are determined by a certain free extra
structure: retractions onto the homology of the complexes Lv, v ∈ BBB(0).
Suppose that for any spherical complex Lv in the local system, we have
fixed a strong deformational retraction on the homology H(Sn). This will
be the extra data F:
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Proposition 2 (Corollary 2.5 and formula (3) in [22]). There is a fil-
tering preserving the strong deformational retraction of Tot(BBB;L) onto
C•(BBB)⊗E (F) H(Sn) where

E (F)(v0, . . . , vn+1) = pnL0,1F1L1,2, . . . , FnLn,n+1i0

∈ Zn+1(BBB; Homn(H(Sn), H(Sn))) (19)

is the Euler cocycle for the local system of spherical chain complexes L

endowed with the retractions on homology F.

Proof. 1. This is a typical application of the basic homology perturbation
lemma 1. Let us forget about the horizontal differential ∂ in Tot(BBB;L) and

obtain the complex Totγ̃(BBB;L). The family of retractions F (18) provides

a filtered SDR of Totγ̃(BBB,L) on the filtered module C0
• (BBB)⊗H(Sn) with

zero differentials. Now we perturb the differential γ̃  γ̃ + ∂ restoring
the initial differential in Tot(BBB;L) and see what happens by the lemma
identities. We compute the new differential d∂ = p∂Σ∂i on the element
σkh ∈ C0

k(BBB)⊗H(Sn). Directly applying the annihilation conditions (13),
we get the expression

d∂(σ
kh) = ∂σkh+ σk ⌢ E (F)(v0, . . . , vn+1)(h).

2. Now we check that E (F)(v0, . . . , vn+1) is a cocycle. Consider the
bigraded module of simplicial cochains C•(BBB;L•) with values in the local
system. Put cpq(σp) ∈ Lq(v0σp); we assign an element over the first vertex.
It has the anticommuting horizontal codifferential

δ(x(σp)) = L(v0, v1)(x(d0σp)) +

p
∑

i

(−1)ix(diσp) ∈ L(v0(σp)) (20)

and the vertical differential γ̃. We introduce a new local system Hom•(H ;Lv)
on BBB. Then we have a system of cochains

i ∈ C0(BBB; Hom0(H ;Lv)),
δi ∈ C1(BBB; Hom0(H ;Lv)),

F δi ∈ C1(BBB; Hom1(H ;Lv)),
δFδi ∈ C2(BBB; Hom2(H ;Lv)),
· · · · · ·

(Fδ)ni ∈ Cn(BBB; Homn(H ;Lv)),
δ(Fδ)ni ∈ Cn+1(BBB; Homn(H ;Lv)).

(21)
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The differentials γ̃ and δ anticommute. We can prove by induction on k

that the cochain δ(Fδ)ki is a cycle for γ̃. The inductive step is

γ̃δ(Fδ)ki = −δγ̃F δ(Fδ)k−1i
︸ ︷︷ ︸

γ̃-cycle

= −δδ(Fδ)k−1 = 0,

since by (12) if γ̃x = 0 then γ̃Fx = x. Hence, δ(Fδ)ni is a γ̃-cycle, and,
therefore, it is proportional to the fundamental class in(1). Simultane-
ously, it is a δ-cocycle being a δ-coboundary. Therefore, pnδ(Fδ)

ni0 ∈
Zn+1(BBB; Hom(H ;H)) is a δ-cocycle.

Now we compute (21) using (20):

δi(v0, v1) = L(v0, v1)i(v1)− i(v0) ∈ Lv0(0),

F δi = Fv0L(v0, v1)i(v1)− Fv0 i(v0)
︸ ︷︷ ︸

=0 since Fi=0

,

δFδi(v0, v1, v2)

= L(v0, v1)F (v1)L(v1, v2)i(v2)− F (0)(L(0, 1)i(1) + L(0, 2)i(2)),

(Fδ)ki(0, 1, . . . , k) = F (0)L(0, 1)F (1) . . . L(k, k − 1)i(k) + F 2(0)(...)
︸ ︷︷ ︸

=0

,

δ(Fδ)ki(0, . . . , k + 1)

= L(0, 1)F (1)L(1, 2)F (2) . . . L(k + 1, k)i(k + 1) + F (0)

k+1∑

i=1

(−1)i(. . . ).

Finally, since p(0)F (0) = 0, we get

p(Fδ)ni(0, . . . , n+ 1)

= p(0)L(0, 1)F (1)L(1, 2) . . .F (n)L(n, n+ 1)i(n+ 1)

= E (F)(v0, . . . , vn+1),

and, therefore, E (F)(v0, . . . , vn+1) is a cocycle and an Euler twisting cochain
for the Hirsch model of the spherical local system L. �
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§5. The PL combinatorics of a spherical fiber bundle

10. Geometric and abstract regular spherical PL cell complexes.

Let Sn be the n-dimensional sphere in the PL category. A regular geometric
cell complex structure B on Sn is a covering of Sn by a collection of closed
embedded PL balls B such that the interiors of the balls form a partition
of Sn and the boundary of a ball is a union of balls. The face complex of a
convex polytope is the most obvious example. The other names for these
objects in the literature are “ball complexes” ([31, Appendix to Chap. 2,
formula (5)]) or “regular CW complexes” ([25, Chap. III, Secs. 1, 2]). Par-
tially ordered by inclusion, the set P (B) of balls in B defines B up to a PL
homeomorphism (see [5]). Thus, we can define an abstract regular spherical
PL cell complex as a finite poset P for which the simplicial order complex
∆P is PL homeomorphic to Sn and all the principal lower ideals are PL
homeomorphic to balls.

Unless specified otherwise, all our cell complexes are regular and PL.

If we have a poset P , then P op is the poset with the order reversed.
It is a special feature of the PL category that if a poset P is an abstract
spherical cell complex, then P op is also an abstract spherical cell complex;
we say that it is dual to P . This follows from the “PL invariance of a
star” theorem. For simplicial triangulations of manifolds, it is often called
the Poincaré dual complex, which appears in combinatorial proofs of the
Poincaré duality.

11. Geometric and abstract subdivisions, cellular local systems.

We follow [27]. A geometric spherical cell complex B0 is a subdivision of
B1 (or B1 is an aggregation of B0) if the relative interior of any ball from
B0 is contained in the relative interior of a ball from B1. We denote this by
B0EB1. A geometric aggregation creates a poset map P (B0) −→ P (B1). A
poset map of abstract spherical cell complexes is called an abstract aggrega-
tion if up to a PL homeomorphism it can be represented by a geometric ag-
gregation. With the direction of arrows reversed, we call such a morphism
an abstract subdivision. Thus, we get the category SSSn of abstract regular
n-spherical PL cell complexes and abstract aggregations. We suppose that
abstract spherical cell complexes are oriented, i.e., for any complex S a
fundamental class [S] is chosen and an aggregation map aggregates the
fundamental class to the fundamental class.
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An abstract spherical cellular local system S on BBB is a local system
with values in SSSn. With S we can associate a PL cellular spherical fiber
bundle T ot S −→ BBB using iterated cellular cylinders of subdivision maps
(this cellular bundle is called “prismatic” in [27]). This goes as follows. We
can realize any chain of abstract aggregations over a simplex as a chain of
geometric aggregations of the geometric realization of the first complex in
the chain. Then we can construct the geometric cellular cylinders of the
corresponding subdivisions over the simplex (see Fig. 2). These geometric
prismatic trivial bundles constructed separately over each base simplex can
be glued together fiberwise using for PL transition maps the parametric
Alexander trick. The result is a PL spherical cellular fiber bundle T ot S.

Fig. 2

12. Bundle triangulations versus cellular local systems. The PL
category is defined using triangulations. A spherical PL fiber bundle Sn −→

E
p
−→ B has a triangulation by a map of simplicial complexes EEE

ppp
−→ BBB.

We call the stalk of the triangulation over a base simplex σk ∈ BBB(k) an
elementary simplicial spherical bundle. It triangulates the trivial bundle

Sn×∆k π
−→ ∆k in such a way that any simplex in the total space is mapped

onto a face of the base simplex. A triangulation EEE
ppp
−→ BBB is assembled

from elementary simplicial spherical bundles using boundary maps which
are combinatorial automorphisms of elementary bundles. Let us fix the
following statement.

Proposition 3. A triangulation of a spherical PL fiber bundle EEE
ppp
−→ BBB

has a canonically associated spherical cellular local system S(ppp) on the
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first derived subdivision SdBBB of BBB such that the bundle T otS(ppp) is PL
isomorphic to ppp.

Proof. This specifically PL topology statement is based on M. Cohen’s
theory of transverse cellular maps and corresponding cylinders [11]. Con-

sider an elementary triangulated Sn-bundle over a simplex RRR
qqq
−→ ∆k. The

simplex ∆k has ordered vertices v0, . . . , vk, Take an interior point x ∈

int∆k. Take the simplicial 0-face ∆k−1 δ0−→ ∆k and a point x0 ∈ int∆k−1

in the 0-face. The fiber q−1(x) has the structure of an abstract regular
spherical PL cell complex P (x) induced from the triangulation RRR. It is
a “multi-simplicial complex.” Its balls are simplicial prisms (see [1]). The
prisms are products of simplices. This comes from the fact that the general
fiber of a simplicial projection of a simplex onto a simplex is a product of
simplices which are the fibers of the projection over the vertices in the base.
When we move the point x in the base to the point x0 in the 0-face, all
the factors of the prisms in the fiber coming from p−1(v0) shrink to points.
This creates multi-simplicial boundary degeneration maps which we regard

Fig. 3. An elementary triangulated circle bundle over the
interval and the dual pattern of circle subdivisions.

as poset maps P (x)
δ∗0−→ P (x0). So, we see over the first derived subdivision
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of ∆k iterated cylinders of those maps. The key fact is that these bound-
ary degeneration poset maps are exactly Cohen’s transverse cellular maps
([11, Theorem 8.1]), the poset maps of abstract PL spherical cell complexes

which are dual to aggregation maps. Thus, P op(x)
(δ∗0 )

op

−−−−→ P op(x0) is an ag-
gregation morphism. Therefore, over the first derived subdivision Sd∆k of
the base simplex ∆k we canonically obtain a diagram S(qqq) of aggregations
of abstract PL spherical cell complexes (see Fig. 3). Now we may men-

tion that, applying the Kan derived subdivision functor SdRRR
Sdqqq
−−→ Sd∆k,

we obtain a simplicial spherical bundle over Sd∆k triangulating both the
elementary bundle qqq and the cellular bundle T ot S(qqq). The construction
commutes with assembling ppp from elementary bundles. �

13. A local formula for the Euler class of a spherical bundle repre-

sented by an SSSn-local system. By Proposition 3, we can functorially
replace a triangulated spherical bundle on BBB by an SSSn-local system on
SdBBB. In the language of the combinatorics of an SSSn-local system S on the
base BBB, a rational local formula for the Euler class is a rational number
associated to the combinatorics of the stalk of the local system S over an
(n + 1)-simplex of the base and representing the simplicial Euler cocycle
for the bundle |T ot S| −→ |BBB|. This stalk is just a chain of n+ 1 aggrega-
tions of abstract cellular spheres, which can always be realized as a chain
of geometric aggregations (subdivisions). The local system S is assembled
from stalks over simplices using boundary combinatorial automorphisms
of stalks. Therefore, a rational local formula for the Euler class in this
setting is a rational function of a chain of aggregations of spherical cell
complexes depending only on the combinatorics of the chain and invariant
under automorphisms of boundary subchains. We call such a formula an
aggregation local combinatorial formula for the Euler class. From an ag-
gregation formula we can obtain a simplicial local formula (see Subsec. 1)
by Proposition 3, integrating the aggregation simplicial cocycle over the
derived subdivision of the base of the elementary simplicial bundle.

§6. A local system of abstract spherical cell

complexes as a bigraded model of a spherical fiber

bundle

Assume that we have an abstract SSSn-spherical cellular local system

BBB
S
−→ N SSSn on a simplicial locally ordered complex BBB. Let us associate to
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S a local system of ChSn-chain complexes

BBB
R(S)
−−−→ N (ChSn)op.

Pick arbitrary orientations of the cells of any complex Sv, v ∈ BBB(0), and

form cellular chain complexes Rv = C•(Sv). Now let S0
S(0,1)
−−−−→ S1 be an

aggregation morphism. By definition, it is representable by an orientation-

preserving homeomorphism |S0|
f
−→ |S1|. For any closed k-ball B ∈ |S1|,

g−1(B) is a union of closed k-balls from |S0|. We associate to S(0, 1) the
subdivision chain map

R(S1)
R(S(0,1))
−−−−−−→ R(S0) (22)

sending a k-cell from R(S1) to the sum of k-cells which it aggregates with
the relative orientations. By the acyclic carriers argument, these maps are
quasi-isomorphisms, and they obviously commute with compositions. The
maps on 0-chains commute with augmentations. The fact that we are in
the oriented situation means that fundamental classes [S] ∈ Zn(S) are
fixed and the chain map R(S(0, 1)) sends the fundamental class to the
fundamental class.

The key (albeit trivial) statement of this paper is as follows.

Proposition 4. The cellular chain complex C•(T otS) is isomorphic to
Tot(BBB,R(S)).

Proof. This is an immediate corollary of the construction of the “prismatic
bundle” T otS (Subsec. 11, [27]). The cellular differential of the prismatic
bundle decomposes in a natural way into the sum of vertical and horizontal
differentials. �

But the corollary is that we get an explicit “bigraded model of the
fibration.”

Corollary 5. The algebraic bicomplex spectral sequence of the local system
R(S) on BBB is the Leray–Serre spectral sequence of the PL spherical fiber
bundle |T otS| −→ |BBB|.

What follows by Proposition 2 is the following corollary.

Corollary 6. If we endow the local system R(S) on BBB with a system F of
SDRs on H(Sn), then (19) is an expression for the simplicial Euler cocycle
on the base of BBB of the fiber bundle |T otS| −→ |BBB| represented by the local
system S of aggregations of abstract spherical cell complexes.



52 N. E. MNËV

§7. The combinatorial Hodge-theoretic twisting

cochain and a local combinatorial formula for the

Euler class of a PL spherical fiber bundle

Now we may choose an SDR of R(Sv) on homology and see what hap-
pens. There is a freedom of interesting choices, but the simplest one is
combinatorial Hodge-theoretic (or Moore–Penrose) matrix retractions.

14. A rational matrix homology splitting of a cellular sphere.

Now our coefficients are rational numbers. Let S be the n-dimensional
PL cellular sphere. The cells of S have fixed orientations and are linearly
ordered in every dimension. Let S have w ordered vertices and f ordered
top cells.

We can form a based integer cellular chain complex C•(S) with differen-
tials γi represented by matrices with entries 0, 1,−1. Set R• = C•(S)⊗Q.
We have the special trivial complex

H(Sn;Q) = (0 −→ Q −→ 0 −→ . . . −→ 0 −→ Q −→ 0).

It has Q as the 0th and nth terms, 0 as all the other terms, and the zero
differential. We denote by Q0,Qn the two nontrivial modules of H(Sn;Q).
We suppose that H(Sn;Q) has fixed bases as modules over Q identified as
units in Q0,Qn. The complex R• has a fixed augmentation

R0
p0
−→ Q : p0(β1, . . . , βw) =

v∑

i=1

βi, p0γ1 = 0. (23)

Fix the cellular fundamental class [S] ∈ Rn. Fixing the fundamental class
allows us to define

Q
in−→ Rn : in(α) = α[A], γnin = 0. (24)

Thus, we have identified R• as an object of Ch(Sn;Q).

Our aim is to find a matrix representation for the SDR data of R• onto
H(Sn;Q).
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Unwinding conditions (11)–(13) for the special case of a retraction R•

onto its homology H(Sn;Q), we get the diagram

0

��

0

��

Rn
pn

//

γn

��

OO

Qn

OO

in

oo

Rn−1

Fn

OO

γn−1
��

0

...

Fn−1

OO

γ2

��

...

R1

F2

OO

γ1

��

0

R0

F1

OO

p0
//

��

Q0
i0

oo

��

0

OO

0 .

OO

(25)

We can translate axioms (12), (13) into a symmetric form: the two com-
plexes

0 −→ Qn
in−→ Rn

γn
−→ Rn−1

γn−1

−−−→ ...
γ1
−→ R0

p0
−→ Q0 −→ 0,

0←− Qn
pn
←− Rn

Fn←−− Rn−1
Fn−1

←−−− ...
F1←− R0

i0←− Q0 ←− 0.
(26)

are acyclic chain and cochain complexes, respectively, on the same graded
free module over Q, the operators of the second one are SDR null homotopy
operators (i.e., SDRs onto zero) for the first one. This means that we have
the following identities:

γ1F1 + i0p0 = Id,
inpn + Fnγn = Id,

γjFj + Fj−1γj−1 = Id for j 6= 1, n,
(27)

γjγj−1 = 0, γnin = 0, p0γ1 = 0, pnFn = 0, F1i0 = 0, Fj−1Fj = 0.
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For the matrix SDR of the chain sphere R• on homology, we have fixed all
the data of the first row in (26). To get a retraction of R• onto H(Sn;Q),
we need to find the data in the second row of (26) satisfying conditions (27)
together with the data in the first row.

For a matrixM over Q, denote byM † its Moore–Penrose inverse matrix.

Lemma 7. A matrix homology splitting of R• is provided by the data

〈F, i, p〉 where Fi = γ
†
i , i0 = p

†
0, pn = i†n.

Proof. The lemma follows from the combinatorial Hodge theory for a free
based rational chain complex with fixed bases, which provides a strong de-
formational retraction 〈γ†, i, p〉 of R• onto the homologyH(Sn;Q) (see, for

example, [29, § A.1]). Here γ†i is the Moore–Penrose inverse of the matrix

γi, i0 = p
†
0, pn = i†n. �

We will present matrix formulas. Our complex R• = C•(S;Q) is based.
We have canonical scalar products making the bases in R• orthonormal,
and, therefore, we have a combinatorial Hodge theory. Let

Ri−1
γ
⊺
i−→ Ri

be the metric adjoint differential for γi, which is represented simply by the
transposed matrix. Let

∆i = γ
⊺
i γi + γi+1γ

⊺
i+1 (28)

be the combinatorial Laplace matrix operator. Our cellular sphere has
w vertices and f top cells. For a top cell j, we denote by o(j, [A]) its
orientation relative to the fundamental class. Then the matrix formulas for
the combinatorial Hodge theory (or Moore–Penrose) homology splitting of
R• are as follows. Define matrices

i0, in, p0, pn

by the formulas

Q0
i0−→ R0 : i0(β) = 1

w
(β, . . . , β)
︸ ︷︷ ︸

w

,

Qn
in−→ Rn : in(α) = α[A],

R0
p0
−→ Q0 : p0(β1, . . . , βw) =

w∑

j=1

βj ,

Rn
pn
−→ Qn : pn(α1, . . . , αf ) = 1

f

n∑

j=1

o(j, [A])αj .

(29)
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Set

Gj =

{

(∆j + ijpj)
−1, j = 0, 1,

∆−1
j , j 6= 0, n,

(30)

and set

γ
†
j = γ

⊺
jGj−1 = Gjγ

⊺
j−1. (31)

15. A Hodge-theoretic local combinatorial formula for the Eu-

ler class of a PL spherical fiber bundle. Now we can insert Hodge-
theoretic matrix homology splittings of cellular spheres into formula (19)
for the formal Euler cocycle and get a theorem.

Assume that we have a chain of spherical aggregations in SSSn:

S = (S0 −→ S1 −→ . . . −→ Sn+1).

Assume that we have the corresponding chain of based chain complexes in
Ch(Sn,Q) (see §6):

R(S) = (R0
•

R(0,1)
←−−−− R1

•

R(1,2)
←−−−−) . . .

R(n,n+1)
←−−−−−− Rn+1

• ),

where R(i, i + 1) are subdivision chain quasi-isomorphisms (22). The dif-
ferential in Ri• is denoted by γ. For every Ri•, we have a Hodge-theoretic
strong deformational retraction onto H(Sn;Q):
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p

γ†

i
#$F&

J'"10/!* -; '88 "5! -:!1'"-1* '1! )!K(!) B9 ;-16<8'* #F=&L #$%&L #$+&?

 !" # $%#&' !( )*%+"&$#, #--"+-#.&!') / .%+ "#.&!'#, '012+"

!2.#&'+3 #) .%+ 1#."&4 *"!30$.

 !

#$$&

&) #' #--"+-#.&!' ,!$#, $!12&'#.!"&#, (!"10,# (!" .%+ 50,+" $,#)) !( 67 892+"

20'3,+) :#) &'  :;<==>

6"!!(> G50* 0* "5! 6'"107 ;-16<8' ;1-6 M1-:-*0"0-( F ;-1 "5! ".0*"0(3 /-/5'0(

0( "5! B031')!) 6-)!8 -; MN *:5!10/'8 KB!1 B<()8! )!K(!) B9 ' 8-/'8 *9*"!6 -;

'331!3'"0-(* #C-1-88'19 D&? O" 0* 0(@'10'(" <()!1 '88 /5-0/!* 0(@-8@!)L 0(@'10'(" <()!1

'<"-6-1:50*6* -; L B!/'<*! '88 "5! 0(@-8@!) N':8'/! '() P1!!( -:!1'"-1* '1!? O"

)!:!()* <: "- *03( -(89 -( "5! B<()8! -10!("'"0-(?

F+

. (32)

The matrices of all the operators are defined by formulas (29)–(31).

Theorem 8. For a chain of spherical aggregations S, the rational number
obtained as the matrix product

eCH (S) = pnR(0, 1)γ
†R(1, 2) . . . γ†R(n, n+ 1)i0 (33)

is an aggregation local combinatorial formula for the Euler class of PL
Sn-fiber bundles (as in Subsec. 13).

Proof. This is the matrix formula from Proposition 2 for the twisting
cochain in the bigraded model of the PL spherical fiber bundle defined
by a local system of aggregations (Corollary 6). It is invariant under all
choices involved and invariant under automorphisms of Ri•, because all the
involved Laplace and Green operators are. It depends up to sign only on
the bundle orientation. �
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§8. Notes

We do not know much about the behavior of the local formula (33). To
our deep shame, we do not know why the cocycle is a coboundary if n is
even. It should be, since the Euler class of an even-dimensional spherical
bundle is zero. We suspect that the absolute value of the number (33)
has a small absolute upper bound, but we do not know it. Meanwhile, we
can compare the formula in an interesting way with the formulas for cir-
cle bundles [21,28]. We postpone this for a later publication. Formula (33)
should have an interesting interpretation in terms of cellular combinatorial
physics and statistics. It is composed from Moore–Penrose inverses of dif-
ferentials, which have a very interesting description [8, Theorem 5.3] based
on Lothar Berg’s theorem [2], which have no analog yet in the differential
Hodge theory.
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