Г. А. Вепрев

МАСШТАБИРОВАННАЯ ЭНТРОПИЯ ТИПИЧНОГО ПРЕОБРАЗОВАНИЯ

§1. Введение

1.1. Масштабированная энтропия. Масштабированная энтропия есть инвариант сохраняющего меру преобразования, предложенный А. М. Вершиком в работах [2–4]. В отличие от классической энтропии Колмогорова—Синая, основанной на динамике измеримых разбиений, мы, следуя подходу А. М. Вершика, изучаем свойства усреднений измеримых метрик и полуметрик.

Пусть (X, μ) – стандартное вероятностное пространство (пространство Лебега–Рохлина). Неотрицательная функция ρ на $(X, \mu)^2$ называется *полуметрикой*, если она симметрична и удовлетворяет неравенству треугольника. Полуметрика называется *измеримой* (суммируемой), если она измерима (суммируема) как функция двух переменных.

Для положительного ε определим ε -энтропию полуметрической тройки (X,μ,ρ) следующим образом. Пусть k – минимальное такое натуральное число, что пространство X представляется в виде объединения измеримых множеств X_0,X_1,\ldots,X_k , где $\mu(X_0)<\varepsilon$ и $\mathrm{diam}(X_i)<\varepsilon$ для i>0. Положим

$$\mathbb{H}_{\varepsilon}(X, \mu, \rho) = \log_2 k$$
,

если такое конечное k существует. Иначе положим $\mathbb{H}_{\varepsilon}(X,\mu,\rho)=+\infty$.

Полуметрика называется допустимой, если все ее ε -энтропии конечны при всех положительных ε . Оказывается (см. [5]), это условие эквивалентно тому, что полуметрика является сепарабельной на подмножестве полной меры. Множество всех суммируемых допустимых полуметрик образует выпуклый конус \mathcal{A} dm в пространстве $L^1(X^2, \mu^2)$. Для работы с допустимыми полуметриками полезна специальная m-норма на подпространстве в $L^1(X^2, \mu^2)$, содержащем конус \mathcal{A} dm,

Kлючевые слова: масштабированная энтропия, типичный автоморфизм, нулевая энтропия.

Работа поддержана грантом РНФ 21-11-00152. Работа выполнена при финансовой поддержке "Фонда поддержки молодых ученых «Конкурс Мёбиуса»".

определенная в работе [5]:

$$\|f\|_m = \inf\{\|\rho\|_{L^1(X^2,\mu^2)} \,:\, \rho(x,y) \geqslant |f(x,y)|, \ \mu^2\text{-H.B.}\},$$

где инфимум вычисляется по множеству всех измеримых полуметрик. Пусть T – автоморфизм пространства (X,μ) , а ρ – допустимая полуметрика на (X,μ) . Символом $T^n_{\rm av}\rho$ обозначим усреднение полуметрики ρ за n шагов преобразования T:

$$T_{\text{av}}^n \rho(x, y) = \frac{1}{n} \sum_{i=0}^{n-1} \rho(T^i x, T^i y), \quad x, y \in X.$$

Рассмотрим следующую величину:

$$\Phi_{\rho}(n,\varepsilon) = \mathbb{H}_{\varepsilon}(X,\mu,T_{\rm av}^n\rho).$$

Априори функция $\Phi_{\rho}(n,\varepsilon)$ зависит от n, ε и полуметрики ρ . Однако её асимптотическое поведение по n в некотором смысле не зависит от ε и ρ . Следующее определение было предложено А. М. Вершиком в работах [2–4].

Определение 1. Последовательность положительных чисел h_n называется масштабирующей энтропийной последовательностью для полуметрики ρ , если при всех достаточно малых $\varepsilon > 0$ выполнено асимптотическое соотношение

$$\Phi_{\rho}(n,\varepsilon) \simeq h_n.$$

Иными словами, функция Φ_{ρ} асимптотически не зависит от ε .

Здесь и далее соотношение $\phi \asymp \psi$ для двух последовательностей $\phi(n)$ и $\psi(n)$ означает, что существуют такие две положительные константы c и C, что $c\phi(n)\leqslant \psi(n)\leqslant C\phi(n)$. Отметим, что любая последовательность $h_n'\asymp h_n$ также является масштабирующей последовательностью для ρ .

Полуметрика называется порождающей, если все её сдвиги разделяют точки с точностью до множества меры нуль. В работе [7] П. Б. Затицкий доказывает, что если последовательность h_n является масштабирующей для некоторой порождающей полуметрики $\rho \in \mathcal{A}$ dm, то h_n является масштабирующей для любой такой полуметрики. Таким образом, класс всех масштабирующих энтропийных последовательностей не зависит от полуметрики и образует инвариант сохраняющего меру преобразования T. Отметим, что этот класс может оказаться пустым (см. [6]).

Для преобразований с положительной энтропией Колмогорова–Синая последовательность $h_n=n$ является масштабирующей последовательностью, см. [7]. В [5] доказано, что преобразования с чисто точечным спектром, и только они, имеют ограниченную масштабирующую энтропийную последовательность. Случаи линейной и ограниченной масштабирующей последовательности являются экстремальными случаями асимптотического поведения последовательности h_n .

В работах [8,9] было доказано, что если масштабирующая последовательность h_n существует, то можно найти субаддитивную последовательность $f_n > h_n$. Более того, для любой данной субаддитивной возрастающей последовательности f_n существует эргодическое сохраняющее меру преобразование T, для которого f_n является масштабирующей последовательностью. В частности, для любой возрастающей к бесконечности последовательности $f_n = o(n)$ существуют как автоморфизмы с масштабирующей последовательностью, растущей асимптотически быстрее f_n , так и автоморфизмы с масштабирующей последовательностью, растущей медленнее f_n . Более того, существуют преобразования, масштабирующая последовательность которых не сравнима с f_n .

Необходимо отметить что схожие инварианты "медленного типа" рассматривались в работах [1,10,11,14].

В общем случае понятие масштабирующей последовательности может быть обобщено следующим образом. Определим отношение эквивалентности на множестве функций из $\mathbb{N} \times \mathbb{R}_+$ в \mathbb{R}_+ , убывающих по своим вторым аргументам: будем говорить, что Φ и Ψ эквивалентны, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \Psi(n, \varepsilon) \lesssim \Phi(n, \delta) \ \text{if } \Phi(n, \varepsilon) \lesssim \Psi(n, \delta). \tag{1}$$

Для последовательностей $\phi(n)$ и $\psi(n)$ соотношение $\phi \lesssim \psi$ означает, что $\phi(n) \leqslant C\psi(n)$ для некоторой положительной константы C. Мы будем писать $\phi \prec \psi$, если $\phi(n) = o(\psi(n))$. Отношение \lesssim продолжается на множество функций двух переменных. Мы будем писать $\Phi \lesssim \Psi$, если для каждого $\varepsilon > 0$ существует такое $\delta > 0$, что $\Phi(n, \varepsilon) \lesssim \Psi(n, \delta)$. Отношение \lesssim согласовано с отношением эквивалентности (1) и образует частичный порядок на множестве классов эквивалентности.

В работе [7] доказано (см. лемму 9), что для любого сохраняющего меру преобразования и порождающих полуметрик ω и ρ из \mathcal{A} dm соответствующие энтропийные функции Φ_{ρ} и Φ_{ω} эквивалентны. Таким образом, мы можем дать следующее определение.

Определение 2. Масштабированной энтропией системы (X, μ, T) называется класс эквивалентности $\mathcal{H}(X, \mu, T) = [\Phi_{\rho}]$, где $\rho \in \mathcal{A}dm(X, \mu)$ – некоторая (любая) порождающая полуметрика.

Стоит отметить согласованность определения с понятием масштабирующей последовательности. Система (X,μ,T) допускает энтропийную масштабирующую последовательность в том и только том случае, если класс $\mathcal{H}(X,\mu,T)$ содержит функцию $\Phi(n,\varepsilon)=\phi(n)$, не зависящую от ε .

Для масштабированной энтропии также справедливы аналоги теорем о субаддитивности. Для любого сохраняющего меру преобразования T класс $\mathcal{H}(T)$ содержит функцию, монотонную по ε и n и субаддитивную по n. И обратно, для любой такой функции Φ существует такой эргодический автоморфизм T, что $\mathcal{H}(T) \ni \Phi$. Подробный обзор теории масштабированной энтропии ожидается в готовящейся работе A. М. Вершика, Π . Б. Затицкого и автора.

В настоящей работе мы изучаем масштабированную энтропию типичного преобразования. Типичность рассматривается в слабой топологии группы автоморфизмов $\mathrm{Aut}(X,\mu)$ стандартного пространства с мерой (X,μ) . Мы доказываем, что не существует никаких нетривиальных оценок масштабированной энтропии типичного преобразования. Иными словами, имеет место следующая теорема.

Теорема 1. Пусть $\phi(n)$ – неограниченная возрастающая последовательность положительных чисел, причем $\phi(n) = o(n)$. Тогда множество автоморфизмов T, для которых для любой функции $\Phi \in \mathcal{H}(T)$ и любого $\varepsilon > 0$ последовательность $\Phi(n, \varepsilon)$ не сравнима $c \ \phi(n)$, содержит плотное G_{δ} -множество.

Отметим, что на настоящий момент автору неизвестно, допускает ли типичное преобразование масштабирующую последовательность. Также остается открытым вопрос о существовании нетривиальных оценок масштабированной энтропии типичных групповых действий.

1.2. Последовательностная энтропия. Доказательство теоремы 1 использует взаимные оценки между масштабированной энтропией и последовательностной энтропией Кириллова-Кушниренко [12], точнее вариантом последовательностной энтропии, который рассматривался в работе [13]. Пусть $P = \{P_j\}$ есть последовательность конечных множеств целых чисел. Для автоморфизма T пространства (X, μ)

и конечного измеримого разбиения ξ определим величину

$$h_P(T,\xi) = \limsup_j \frac{1}{|P_j|} H\left(\bigvee_{n \in P_j} T^{-n}\xi\right),$$

где $H(\zeta)$ – энтропия Шеннона разбиения ζ . Последовательностная энтропия преобразования T относительно системы множеств P определяется следующим образом:

$$h_P(T) = \sup_{\xi} h_P(T, \xi).$$

1.2.1. Оценки ε -энтропии. Сформулируем несколько технических результатов теории масштабированной энтропии, которые будут использоваться в дальнейшем. Каждому измеримому разбиению ξ естественным образом соответствует разрезная полуметрика $\rho_{\xi}(x,y)$, равная единице, если x и y лежат в разных элементах разбиения ξ , и нулю иначе. Следующая лемма из работы [7] связывает энтропию Шеннона измельчения разбиений и ε -энтропию усреднения соответствующих разрезных полуметрик.

Лемма 1. Путь $m, k \in \mathbb{N}$ и $\{\xi_i\}_{i=1}^k$ – конечные измеримые разбиения пространства (X, μ) , состоящие не более чем из m элементов. Пусть $\xi = \bigvee_{i=1}^k \xi_i$ есть общее измельчение этих разбиений, а $\rho = \frac{1}{k} \sum_{i=1}^k \rho_{\xi_i}$ – усреднение соответствующих полуметрик. Тогда для любого $\varepsilon \in (0, \frac{1}{2})$ выполнено неравенство

$$\frac{H(\xi)}{k} \leqslant \frac{\mathbb{H}_{\varepsilon}(X, \mu, \rho)}{k} + 2\varepsilon \log m - \varepsilon \log \varepsilon - (1 - \varepsilon) \log(1 - \varepsilon) + \frac{1}{k}.$$

Одним из фундаментальных свойств ε -энтропии является ее монотонность в следующем смысле [9].

Лемма 2. Пусть ρ_1, \ldots, ρ_k – допустимые полуметрики на пространстве (X, μ) , причем $\rho_i \leqslant 1$ для $i \leqslant k$. Тогда существует такое $m \leqslant k$, что

$$\mathbb{H}_{2\sqrt{\varepsilon}}(X,\mu,\rho_m) \leqslant \mathbb{H}_{\varepsilon}\left(X,\mu,\frac{1}{k}\sum_{i=1}^k \rho_i\right).$$

Также в контексте данной работы полезна следующая лемма из работы [7] о локальной ограниченности ε -энтропии в m-норме.

Пемма 3. Предположим, что полуметрики ρ , $\widetilde{\rho} \in \mathcal{A}\mathrm{dm}(X,\mu)$ и число $\varepsilon > 0$ таковы, что $\|\rho - \widetilde{\rho}\|_m < \varepsilon^2/32$. Тогда для любого $n \geqslant 1$ выполнено неравенство

$$\mathbb{H}_{\varepsilon}(X,\mu,T_{\mathrm{av}}^{n}\widetilde{\rho}) \leqslant \mathbb{H}_{\frac{\varepsilon}{4}}(X,\mu,T_{\mathrm{av}}^{n}\rho).$$

§2. ОТСУТСТВИЕ ОЦЕНКИ СВЕРХУ МАСШТАБИРОВАННОЙ ЭНТРОПИИ ТИПИЧНОГО АВТОМОРФИЗМА

Следующая теорема была доказана в работе [13].

Теорема 2. Пусть L(j) – неубывающая последовательность натуральных чисел, стремящаяся к бесконечности, и $P = \{P_j\}$, где $P_j = \{j, 2j, \ldots, L(j)j\}$. Тогда множество автоморфизмов $\{S \mid h_P(S) = \infty\}$ содержит плотное G_{δ} -подмножество в группе $\mathrm{Aut}(X,\mu)$.

Последовательностная энтропия и ее обобщения тесно связаны с масштабированной энтропией. Примером такой связи является следующая теорема.

Теорема 3. Пусть $\phi(n)$ – последовательность положительных чисел $u \lim_{n} \frac{\phi(n)}{n} = 0$. Тогда множество автоморфизмов $S \in \operatorname{Aut}(X, \mu)$, для которых для $\Phi \in \mathcal{H}(S)$ выполнено условие $\Phi \not\subset \phi$, содержит плотное G_{δ} -подмножество.

Теорема 3 может быть сформулирована в терминах классов эквивалентности отношения (1).

Следствие 1. Пусть $\Phi(n,\varepsilon)$ – такая положительная функция, убывающая по ε , что для любого ε выполнено условие $\Phi(n,\varepsilon) = o(n)$. Тогда множество автоморфизмов $S \in \operatorname{Aut}(X,\mu)$, для которых $\mathcal{H}(S) \not \subset \Phi$, типично.

Доказательство теоремы 3. Рассмотрим такую целочисленную последовательность L(j), что $L(j) \succ \phi(L(j)j)$.

Пусть $T \in \operatorname{Aut}(X,\mu)$. Предположим, что существуют положительная константа c и конечное измеримое разбиение ξ , состоящее из m элементов, удовлетворяющие соотношению

$$\limsup_{j} \frac{1}{L(j)} H(\xi_j) > c,$$

где $\xi_j = \bigvee_{n=1}^{L(j)} T^{-nj} \xi$. Пусть ρ – разрезная полуметрика, соответствую-

щая разбиению $\xi,$ а полуметрика $\rho_j = \frac{1}{L(j)} \sum_{n=1}^{L(j)} T^{-nj} \rho$ – среднее первых

L(j) сдвигов полуметрики ρ под действием преобразования T^j . Применяя лемму 1 для разбиений $T^{-nj}\xi$, получим следующее неравенство:

$$\frac{H(\xi_j)}{L(j)} \leqslant \frac{\mathbb{H}_{\varepsilon}(X, \mu, \rho_j)}{L(j)} + 2\varepsilon \log m - \varepsilon \log \varepsilon - (1 - \varepsilon) \log(1 - \varepsilon) + \frac{1}{L(j)}.$$

Выбирая достаточно малое $\varepsilon > 0$, найдем такую подпоследовательность $\{j_k\}$, что

$$\mathbb{H}_{\varepsilon}(X,\mu,\rho_{j_k}) \succsim L(j_k).$$

Заметим, что

$$T_{\text{av}}^{L(j)j}\rho = \frac{1}{j}\sum_{i=0}^{j-1} T^{-i}\rho_j.$$

Следовательно, в силу леммы 2

$$\mathbb{H}_{\frac{\varepsilon^2}{2}}(X,\mu,T_{\mathrm{av}}^{L(j_k)j_k}\rho) \geqslant \mathbb{H}_{\varepsilon}(X,\mu,\rho_{j_k}) \succsim L(j_k) \succ \phi(L(j_k)j_k).$$

Последнее неравенство справедливо в силу выбора последовательности L(j). Таким образом, для любой функции $\Phi \in \mathcal{H}(T)$ и последовательности $n_k = L(j_k)j_k$ при достаточно малом ε выполнено условие $\Phi(n_k,\varepsilon) \succ \phi(n_k)$. Следовательно, $\Phi \not\subset \phi$ для любого автоморфизма $T \in \{S \mid h_P(S) > 0\}$. Применяя теорему 2, получаем желаемое.

§3. ОТСУТСТВИЕ ОЦЕНКИ СНИЗУ МАСШТАБИРОВАННОЙ ЭНТРОПИИ ТИПИЧНОГО АВТОМОРФИЗМА

Для доказательства теоремы 1 остается доказать отсутствие нетривиальной оценки снизу для типичного преобразования.

Теорема 4. Пусть $\phi(n)$ – неограниченная возрастающая последовательность положительных чисел. Тогда множество автоморфизмов T, для которых для любой функции $\Phi \in \mathcal{H}(T)$ выполнено условие $\Phi \not\subset \phi(n)$, содержит плотное G_{δ} -подмножество.

Замечание. Теорема 4 также может быть сформулирована в терминах классов эквивалентности отношения (1).

Доказательство. Зафиксируем некоторую плотную последовательность конечных измеримых разбиений $\{\xi_i\}_{i=1}^{\infty}$ пространства (X,μ) и полуметрику $\rho = \sum_{i=1}^{\infty} \frac{1}{2^i} \rho_{\xi_i}$, где ρ_{ξ_i} есть разрезная полуметрика для разбиения ξ_i . Пусть $\{T_q\}$ – плотное семейство преобразований с чисто точечным спектром, например счетное плотное подмножество в орбите стандартного одометра, а $\{\varepsilon_k\}$ – убывающая к нулю последовательность положительных чисел. Так как масштабированная энтропия преобразования с чисто точечным спектром ограничена, для любых q и p найдется такое $j_{p,q}$, что

$$\mathbb{H}_{\frac{\varepsilon_k}{4}}(X,\mu,(T_q)_{\mathrm{av}}^{j_{p,q}}\rho) < \frac{1}{p}\phi(j_{p,q}), \quad k = 1,\dots, p.$$
 (2)

Докажем, что существует такая окрестность $U_{p,q}$ преобразования T_q , что для любого $T\in U_{p,q}$

$$\mathbb{H}_{\varepsilon_k}(X, \mu, T_{\mathrm{av}}^{j_{p,q}} \rho) < \frac{1}{p} \phi(j_{p,q}), \quad k = 1, \dots, p.$$
 (3)

В силу леммы 3 для этого достаточно найти такую окрестность U, что $\|T_{\mathrm{av}}^{j_{p,q}} \rho - S_{\mathrm{av}}^{j_{p,q}} \rho\|_m < \varepsilon^2/32$ для любого $S \in U$. Пусть $\rho_N = \sum\limits_{i=1}^N \frac{1}{2^i} \rho_{\xi_i}$. При достаточно большом N полуметрика ρ_N отстоит в m-норме от полуметрики ρ менее чем на $\varepsilon^2/64$. Полуметрика ρ_N , в свою очередь, является конечной комбинацией разрезных полуметрик, соответствующих конечным разбиениям $\{\xi_i\}_{i=1}^N$. Пусть A — семейство всех элементов всех разбиений $\{\xi_i\}_{i=1}^N$. Так как A конечно и количество шагов $j_{p,q}$, по которым производится усреднение, фиксировано, достаточно требовать малость всех величин $\mu(T^{-i}a\triangle S^{-i}a)$ для всех $a\in A$, $i=0,\ldots,j_{p,q}-1$, что и определяет искомую окрестность U. Пусть

$$W = \bigcap_{p} \bigcup_{q} U_{p,q}.$$

Ясно, что W является G_δ -множеством и содержит плотное семейство $\{T_q\}_q$. Пусть $T\in W$, а k – некоторое натуральное число. По построению для любого $T\in W$ и любого p>k существует такое q_p , что

$$\mathbb{H}_{\varepsilon_k}(X, \mu, T_{\text{av}}^{j_{p,q_p}} \rho) < \frac{1}{n} \phi(j_{p,q_p}). \tag{4}$$

Пусть $\Phi(n,\varepsilon) = \mathbb{H}_{\varepsilon}(X,\mu,T_{\mathrm{av}}^n\rho)$. Полуметрика ρ является допустимой и порождающей в силу плотности семейства $\{\xi_i\}$, и, следовательно,

 $\Phi \in \mathcal{H}(T)$. Неравенство (4) гарантирует, что существует такая подпоследовательность n_p , что при достаточно малом ε выполнено условие $\Phi(n_p,\varepsilon) \prec \phi(n_p)$. Тем самым для любого T из плотного G_δ -множества W выполнено условие $\mathcal{H}(T) \not\subset \phi(n)$.

Благодарности

Автор благодарен А. М. Вершику за внимание к настоящей работе и своему научному руководителю П. Б. Затицкому за множество полезных советов и обсуждений. Автор благодарен В. В. Рыжикову за привлечение его внимания к результату о типичности бесконечной последовательностной энтропии.

Список литературы

- T. Adams, Genericity and rigidity for slow entropy transformations. New York J. Math. 27 (2021), 393–416.
- 2. А. М. Вершик, *Информация, энтропия, динамика*. В сб.: Математика XX века: взгляд из Петербурга, МЦНМО, 2010, сс. 47–76.
- A. M. Vershik, Dynamics of metrics in measure spaces and their asymptotic invariants. — Markov Process. Related Fields 16, No. 1 (2010), 169–185.
- 4. А. М. Вершик, Масштабированная энтропия и автоморфизмы с чисто точечным спектром. — Алгебра и анализ 23, вып. 1 (2011), 111–135.
- A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, Geometry and dynamics of admissible metrics in measure spaces. — Cent. Eur. J. Math. 11, No. 3 (2013), 379–400.
- 6. Г. А. Вепрев, Scaling entropy of unstable systems. Зап. научн. семин. ПОМИ 498 (2020), 5–17.
- 7. П. Б. Затицкий, Масштабирующая энтропийная последовательность: инвариантность и примеры. Зап. научн. семин. ПОМИ **432** (2015), 128–161.
- 8. П. Б. Затицкий, О возможной скорости роста масштабирующей энтропийной последовательности. — Зап. научн. семин. ПОМИ **436** (2015), 136–166.
- 9. П. Б. Затицкий, Ф. В. Петров, О субаддитивности масштабирующей энтропийной последовательности. — Зап. научн. семин. ПОМИ **436** (2015), 167–173.
- A. Katok, J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations. — Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), 323–338.
- 11. A. Kanigowski, A. Katok, D. Wei, Survey on entropy-type invariants of sub-exponential growth in dynamical systems, arXiv:2004.04655.
- 12. А. Г. Кушниренко, *О метрических инвариантах типа энтропии.* Успехи мат. наук **22**, вып. 5 (1967), 57–65.
- V. V. Ryzhikov, Compact families and typical entropy invariants of measurepreserving actions, arXiv:2102.06187.
- S. Ferenczi, Measure-theoretic complexity of ergodic systems. Israel J. Math. 100 (1997), 187–207.

Veprev G. A. The scaling entropy of a generic action.

We prove that the scaling entropy of a generic action is asymptotically incomparable with a given increasing sublinear sequence.

С.-Петербургский международный математический институт имени Леонарда Эйлера, 14 линия ВО 29Б, 199178, С.-Петербург, Россия E-mail: egor.veprev@mail.ru

Поступило 25 октября 2021 г.