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Abstract. We derive explicit formulae for the expected volume
and the expected number of facets of the convex hull of several
multidimensional Gaussian random walks in terms of the Gaussian
persistence probabilities. Special cases include the already known
results about the convex hull of a single Gaussian random walk and
the d-dimensional Gaussian polytope with or without the origin.

§1. Introduction

1.1. Random walk in R1. Consider a one-dimensional random walk

Si = X1 + · · ·+Xi, i = 1, . . . , n, (1)

where X1, . . . , Xn are i.i.d. random variables. The classical result of Sparre
Andersen [20] states that if the steps are symmetrically and absolutely
continuously distributed, then the probability for the random walk to stay
positive (the persistence probability) is distribution-free and given by

P[S1 > 0, . . . Sn > 0] =
(2n− 1)!!

(2n)!!
. (2)

Another very well-known result, also due to Sparre Andersen [22], under
the same assumptions calculates the distribution of the random walk’s
maximum position (the discrete arcsine law): for i = 0, . . . , n,

P[max(S0, . . . , Sn) = Si] =
(2i− 1)!!

(2i)!!

(2n− 2i− 1)!!

(2n− 2i)!!
. (3)

Key words and phrases: average number of facets, Blaschke–Petkantschin formula,
Sparre Andersen theorem, convex hull, expected volume, facet probability, Gaussian
vectors, persistence probability, random polytope, random walk.
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Summing up over i gives the following version of the Chu–Vandermonde
identity:

n∑

i=0

(2i− 1)!!

(2i)!!

(2n− 2i− 1)!!

(2n− 2i)!!
= 1. (4)

1.2. Random walk in Rd. Because of the symmetry, Equations (2)
and (3) are equivalent to

P[0 6∈ conv(S1, . . . Sn)] = 2
(2n− 1)!!

(2n)!!
(5)

and

P[Si is an edge of conv(S0, . . . , Sn)] = 2
(2i− 1)!!

(2i)!!

(2n− 2i− 1)!!

(2n− 2i)!!
, (6)

where in the one-dimensional case

conv(S1, . . . Sn) = {min(S1, . . . , Sn),max(S1, . . . , Sn)} ,

and an “edge” reduces to a point (either min or max). In this form, the
formulae can be naturally generalized to higher dimensions. Again let
S0, S1, . . . , Sn be a random walk defined as in (1), where now the steps
are d-dimensional i.i.d. random vectors:

X1, . . . , Xn ∈ R
d.

As in the one-dimensional case, we assume that they are symmetrically and
absolutely continuously distributed. Generalizing (5) it was shown in [12]
that

P[0 /∈ conv(S1, S2, . . . , Sn)] = 2
P

(n)
d−1 + P

(n)
d−3 + . . .

(2n)!!
, (7)

where P
(n)
j are the coefficients of the polynomial

(t+ 1)(t+ 3) . . . (t+ 2n− 1) =
n∑

j=0

P
(n)
j tj .

The left-hand side of (7) is often referred to as the non-absorption proba-

bility.
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Equation (6) was generalized in [23] as follows: let 0 6 i1 < · · · < id 6 n
be any indices. Then,

P[conv(Si1 , . . . , Sid) is a facet of conv(S0, . . . , Sn)]

= 2
(2i1 − 1)!!

(2i1)!!

(2n− 2id − 1)!!

(2n− 2id)!!

d−1∏

j=1

1

ij+1 − ij
.

This expression is naturally called the facet probability. Later, in [11] this
result was extended to faces of any dimension as follows. For k = 0, 1, . . . ,
d− 1, denote by Fk(·) the set of k-dimensional faces of a polytope. Then
for any indices

0 6 i1 < · · · < ik+1 6 n (8)

we have

P[conv(Si1 , . . . ,Sik+1
) ∈ Fk(conv(S0, . . . , Sn))]

= 2
P

(n,i1,...,ik+1)
d−k−1 + P

(n,i1,...,ik+1)
d−k−3 + . . .

(2i1)!!(2i2 − 2i1)!! . . . (2ik+1 − 2ik)!!(2n− 2ik+1)!!
,

where P
(n,i1,...,ik+1)
j are the coefficients of the polynomial

(t+ 1)(t+ 3) . . . (t+ 2i1 − 1)× (t+ 1)(t+ 3) . . . (t+ 2n− 2ik+1 − 1)

×
k∏

l=1

[(t+ 1)(t+ 2) . . . (t+ il+1 − il − 1)] =

n∑

j=0

P
(n,i1,...,ik+1)
j tj .

Summing this up over all (k+1)-tuples from (8) gives the average number
of k-faces of the convex hull:

E |Fk(conv(S0, . . . , Sn))|

= 2
∑

06i1<···<ik+16n

P
(n,i1,...,ik+1)
d−k−1 + P

(n,i1,...,ik+1)
d−k−3 + . . .

(2i1)!!(2i2 − 2i1)!! . . . (2ik+1 − 2ik)!!(2n− 2ik+1)!!
.

Surprisingly, as was shown in [11], this formula remains true even with-

out symmetry assumption for the step distribution.
If k = d−1, then the formula reduces to the formula of Barndorff-Nielsen

and Baxter [3] (see also [23]):

E |Fd−1(conv(S0, . . . , Sn))| = 2
∑

j1+···+jd−16n
j1,...,jd−1>1

1

j1 . . . jd−1
. (9)
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1.3. Several random walks. Now let us turn to the case of several

random walks which is our main interest in this paper.
Fix m,n1, . . . , nm ∈ N, and let

X
(1)
1 , . . . , X(1)

n1
, . . . , X

(m)
1 , . . . , X(m)

nm

be independent d-dimensional random vectors. As above, we assume that
they are symmetrically and absolutely continuously distributed and for
any l = 1, . . . ,m, the vectors

X
(l)
1 , . . . , X(l)

nl
are identically distributed.

Consider the collection of m random walks (S
(1)
i )n1

i=1, . . . , (S
(m)
i )nm

i=1 de-
fined as

S
(l)
i = X

(l)
1 + · · ·+X

(l)
i , 1 6 i 6 nl, 1 6 l 6 m.

We aim to study the properties of their convex hull

Cd := conv
(
S
(1)
1 , . . . , S(1)

n1
, . . . , S

(m)
1 , . . . , S(m)

nm

)

and also the convex hull with the origin

C0
d := conv

(
0, S

(1)
1 , . . . , S(1)

n1
, . . . , S

(m)
1 , . . . , S(m)

nm

)
.

Under these quite general assumptions, it was shown in [12] that

P[0 /∈ Cd] = 2
P

(n1,...,nm)
d−1 + P

(n1,...,nm)
d−3 + . . .

(2n)!!
,

where P
(n1,...,nm)
k are the coefficients of the polynomial

m∏

l=1

(
(t+ 1)(t+ 3) . . . (t+ 2nl − 1)

)
=

n1+···+nm∑

k=0

P
(n1,...,nm)
k tk.

Taking n1 = · · · = nm = 1 recovers the classical Wendel formula [24]

P[0 /∈ conv(X(1), X(2) . . . , X(m))] =
1

2m−1

d−1∑

j=0

(
m− 1

j

)
,

where X(1) := X
(1)
1 , . . . , X(m) := X

(m)
1 . Again, let us stress that this non-

absorption probability is distribution-free.
Yet, the average number of facets of conv(X(1), X(2) . . . , X(m)) does

depend on the step distribution, see [1, 4, 5, 7, 10], where the asymptotic
formulae for the different distribution classes were obtained.
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Thus the average number of facets of Cd and C0
d is no longer distribution

free. In this paper, we study the case when the steps are the standard

Gaussian vectors.

1.4. Paper structure. In the next section, we fix basic notation and
formulate our main theorem which gives the expected value of some general
geometrical functional of Cd, C0

d .
In Section 3, from this main theorem we derive the formulae for the

expected number of facets, volume and surface area of Cd, C0
d .

As examples, several known results are derived in Section 4.
In our proofs, we will be faced with having to calculate the first and sec-

ond moments of some random determinant of Gaussian type. To this end,
in Section 6 we formulate a general result that gives all positive moments
of the volume of a random simplex from some class of Gaussian simplices.

The proofs are located in Section 5.

§2. Setting and Main Results

In the remainder of the paper we assume that the steps

X
(1)
1 , . . . , X(1)

n1
, . . . , X

(m)
1 , . . . , X(m)

nm
∈ R

d

are independent standard Gaussian random vectors.
With probability 1, Cd and C0

d are convex polytopes with boundaries of
the form

∂ Cd =
⋃

F∈F(Cd)

F and ∂ C0
d =

⋃

F∈F(C0
d
)

F,

where F(·) := Fd−1(·) stands for the set of facets ((d−1)-dimensional faces)
of a polytope. Each facet is a (d−1)-dimensional simplex almost surely.

Fix some non-negative integers

k1, . . . , km such that kl 6 nl and
m∑

l=1

kl = d, (10)

then fix d indices

1 6 i
(l)
1 < · · · < i

(l)
kl

6 nl for l = 1, . . . ,m such that kl > 0, (11)

and denote by Sd a d-tuple defined as

Sd :=

(
S
(1)

i
(1)
1

, . . . , S
(1)

i
(1)
k1

, . . . , S
(m)

i
(m)
1

, . . . , S
(m)

i
(m)
km

)
(12)
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with the convention that
{
S
(l)

i
(l)
1

, . . . , S
(l)

i
(l)
kl

}
:= ∅ for kl = 0.

We also write

convSd := conv

(
S
(1)

i
(1)
1

, . . . , S
(1)

i
(1)
k1

, . . . , S
(m)

i
(m)
1

, . . . , S
(m)

i
(m)
km

)
.

In the same way fix some non-negative integers

k1, . . . , km such that kl 6 nl and

m∑

l=1

kl = d− 1, (13)

and fix d− 1 indices

1 6 i
(l)
1 < · · · < i

(l)
kl

6 nl for l = 1, . . . ,m such that kl > 0, (14)

and similarly let

S0
d :=

(
0, S

(1)

i
(1)
1

, . . . , S
(1)

i
(1)
k1

, . . . , S
(m)

i
(m)
1

, . . . , S
(m)

i
(m)
km

)
(15)

and

convS0
d := conv

(
0, S

(1)

i
(1)
1

, . . . , S
(1)

i
(1)
k1

, . . . , S
(m)

i
(m)
1

, . . . , S
(m)

i
(m)
km

)
.

Note that convSd may or may not be a facet of Cd. Moreover, every
facet F ∈ F(Cd) can be represented as convSd with Sd defined in (12) with
some integers (10) and indices (11). Therefore, we arrive at the following
elementary albeit crucial relation: with probability one,

∑

F∈F(Cd)

g(F ) =
∑

k1+···+km=d
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

g(Sd)1{Sd∈F(Cd)}, (16)

where g : (Rd)d → R1 is an arbitrary symmetric, non-negative, measurable
function. Here, we write

g(F ) := g(xF
1 , . . . ,x

F
d ), where xF

1 , . . . ,x
F
d are the vertices of F .
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For the convex hull with the origin, the analogous relation is a little bit
more complicated: with probability one,

∑

F∈F(C0
d
)

g(F ) =
∑

k1+···+km=d
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

g(Sd)1{Sd∈F(C0
d
)} (17)

+
∑

k1+···+km=d−1
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

g(S0
d)1{S0

d
∈F(C0

d
)}.

We aim to calculate the expectations in the right-hand sides in (16)
and (17), which by taking g ≡ 1 will readily give us the expected number
of facets of Cd and Cd0. Moreover, by making a more subtle choice of g, we
will be able to find the expected volumes and surface areas of Cd and C0

d .
Our results will be expressed in terms of the unconditional and condi-

tional Gaussian persistence probabilities: for r ∈ R
1 let

pn(r) := P
[ k∑

i=1

Ni 6 r, k = 1, . . . , n
]
, (18)

qn(r) := P
[ k∑

i=1

Ni 6 r, k = 1, . . . , n |
n∑

i=1

Ni = r
]
,

where N1, . . . , Nn are independent standard Gaussian random variables.
Due to the symmetry of the distribution, for any r > 0 the definition of
qn(r) is equivalent to

qn(r) := P
[ k∑

i=1

Ni > 0, k = 1, . . . , n− 1 |
n∑

i=1

Ni = r
]
. (19)

Note that

p1(r) = Φ(r), q1(r) ≡ 1, (20)

and

pn(0) =
(2n− 1)!!

(2n)!!
, qn(0) =

1

n
, (21)

where Φ(r) =
r∫

−∞

ϕ(s) ds is the cumulative distribution of the standard

Gaussian density ϕ(r), and (21) was established by Sparre Andersen [20,21]
(who proved it in a setting much more general than the Gaussian one
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considered here; the first part of (21) was mentioned in the introduction,
see (2)).

For a linear hyperplane L ⊂ Rd denote by PL the operator of the or-
thogonal projection onto L. In particular, denote by Pd the operator of the
orthogonal projection onto the first d−1 coordinates:

Pd : x = (x1, . . . , xd−1, xd) 7→ (x1, . . . , xd−1, 0).

The d-dimensional volume is denoted by |·|. Some of the sets we consider
have dimension d−1, for them |·| stands for the (d−1)-dimensional volume.
For finite sets, | · | denotes cardinality.

Let S
d−1 ⊂ R

d denote the unit (d−1)-dimensional sphere centered at
the origin and equipped with the Lebesgue measure µ normalized to be
probabilistic. For u ∈ Sd−1 denote by u⊥ the linear hyperplane orthogonal
to u.

Now we are in position to formulate our main result.

Theorem 2.1. Let g : (Rd)d → R1 be some bounded measurable function

invariant with respect to translations and rotations.1 Consider some Sd

defined in (12) with some integers from (10) and indices from (11). Then,

E [g(Sd)1{convSd∈F(Cd)}] =
2d/2Γ

(
d+1
2

)
√
π

E
[
g(PdSd) |convPdSd|

]

×
∏

l : kl 6=0

[(
i
(l)
1

)−1/2((
i
(l)
2 −i

(l)
1

)
. . .
(
i
(l)
kl
−i

(l)
kl−1

))−3/2

·
(2(nl−i

(l)
kl
)−1)!!

(2(nl − i
(l)
kl
))!!

]

×
∞∫

−∞

exp

(
− r2

2

∑

l : kl 6=0

1

i
(l)
1

) ∏

l : kl=0

pnl
(r)

∏

l : kl 6=0

q
i
(l)
1
(r) dr (22)

and

E [g(Sd)1{convSd∈F(C0
d
)}] =

2d/2Γ
(
d+1
2

)
√
π

E
[
g(PdSd) |convPdSd|

]

×
∏

l : kl 6=0

[(
i
(l)
1

)−1/2((
i
(l)
2 −i

(l)
1

)
. . .
(
i
(l)
kl
−i

(l)
kl−1

))−3/2

·
(2(nl − i

(l)
kl
)−1)!!

(2(nl−i
(l)
kl
))!!

]

1By this we mean that g(a + Qx1, . . . , a + Qxd) = g(x1, . . . ,xd) for any
a,x1, . . . ,xd ∈ Rd and any orhtogonal matrix Q ∈ Rd×d.
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×
∞∫

0

exp

(
− r2

2

∑

l : kl 6=0

1

i
(l)
1

) ∏

l : kl=0

pnl
(r)

∏

l : kl 6=0

q
i
(l)
1
(r) dr. (23)

Also consider some S0
d defined in (15) with some integers from (13) and

indices from (14). Then,

E [g(S0
d)1{convS0

d
∈F(C0

d
)}] = 2

d+1
2 Γ
(d+ 1

2

)
E
[
g(PdS

0
d) |convPdS

0
d|
]

×
m∏

l=1

[(
i
(l)
1

(
i
(l)
2 − i

(l)
1

)
. . .
(
i
(l)
kl

− i
(l)
kl−1

))−3/2

·
(2(nl − i

(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]
, (24)

with the convention that for kl = 0, the factor in the product equals

(2nl − 1)!!/(2nl)!!.

The proof is based on an idea from [17] and given in Section 5. Now let us
derive some applications.

§3. Applications

3.1. Moments of Gaussian simplex volume. In the right-hand sides
of (22), (23), and (24), the terms

E
[
g(PdSd) |convPdSd|

]
, E

[
g(PdS

0
d) |convPdS

0
d|
]

are difficult to deal with. To get rid of them in the forthcoming applica-
tions, we will need formulae for the moments of |convPdSd|, |convPdS

0
d|. In

Section 6, we will obtain a much more general result of this type: we will
find all positive moments of a Gaussian simplex generated by several inde-
pendent Gaussian walks with arbitrarily weighted steps. Now we formulate
only the statement which is necessary for us.

Proposition 3.1. For any p > 0,

E |convPdSd|p =
d−1∏

i=1

Γ
(
i+p
2

)

Γ
(
i
2

)

×
[

2d−1

((d− 1)!)2

( ∑

l : kl 6=0

1

i
(l)
1

) ∏

l : kl 6=0

(
i
(l)
1

(
i
(l)
2 − i

(l)
1 ) . . .

(
i
(l)
kl

− i
(l)
kl−1

))
]p/2
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and

E |convPdS
0
d|p =

d−1∏

i=1

Γ
(
i+p
2

)

Γ
(
i
2

)

×
[

2d−1

((d− 1)!)2

∏

l : kl 6=0
l 6=0

(
i
(l)
1

(
i
(l)
2 − i

(l)
1 ) . . .

(
i
(l)
kl

− i
(l)
kl−1

))
]p/2

.

Proof. The first equation follows from Corollary 6.3, while the second one
follows from Corollary 6.4, see Section 6. �

3.2. Facets probabilities. The first direct application of Theorem 2.1
is a formula for the probability that convSd is a facet of Cd.

Theorem 3.2. Consider any Sd defined in (12) with some integers from

(10) and indices from (11). Then,

P[convSd ∈ F(Cd)] =
2√
2π

·
(∑

kl 6=0

1

i
(l)
1

)1/2

×
∏

kl 6=0

[
1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]

×
∞∫

−∞

exp

(
− r2

2

∑

kl 6=0

1

i
(l)
1

) ∏

kl=0

pnl
(r)

∏

kl 6=0

q
i
(l)
1
(r) dr

and

P[convSd ∈ F(C0
d)] =

2√
2π

·
(∑

kl 6=0

1

i
(l)
1

)1/2

×
∏

kl 6=0

[
1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]

×
∞∫

0

exp

(
− r2

2

∑

kl 6=0

1

i
(l)
1

) ∏

kl=0

pnl
(r)

∏

kl 6=0

q
i
(l)
1
(r) dr.
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Also consider any S0
d defined in (15) with some integers from (13) and

indices from (14). Then,

P[convS0
d ∈ F(C0

d)]

= 2

m∏

l=1

[
1

i
(l)
1

1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]
, (25)

with the convention that the factor in the product equals (2nl − 1)!!/(2nl)!!
for kl = 0.

Proof. The theorem readily follows from Theorem 2.1 by taking g ≡ 1
and applying Proposition 3.1 with p = 1. �

3.3. Average number of facets. The next direct application gives the
average number of facets of Cd and C0

d .

Theorem 3.3. We have

E |F(Cd)| =
∑

k1+···+km=d
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

P[convSd ∈ F(Cd)],

and

E |F(C0
d)| =

∑

k1+···+km=d
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

P[convSd ∈ F(C0
d)]

+
∑

k1+···+km=d−1
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

P[convS0
d ∈ F(C0

d)],

where the facets probabilities in the right-hand sides are calculated in The-

orem 3.2.

Proof. The theorem readily follows from (16) and (17) with g ≡ 1 by
taking the expectation. �

3.4. Facets containing the origin: distribution-free formula. It fol-
lows from the proof of Theorem 2.1 (see (40)) that (25) holds not only for
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the normally distributed steps, but for any symmetric continuously dis-
tributed ones. Thus we have the following distribution-free formula:

E |F0(C0
d)| = 2

∑

k1+···+km=d−1
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

m∏

l=1

[
1

i
(l)
1

1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]
,

where F0(·) stands for the set of facets containing the origin as a vertex
(empty if 0 is not a vertex).

3.5. Expected surface area. In this subsection we derive formulae for
the expected surface areas (i.e. (d−1)-dimensional content) of the bound-
aries of the convex hulls, bd Cd and bd C0

d . To this end, let us first apply
Theorem 2.1 with

g(x1, . . . ,xd) = |conv(x1, . . . ,xd)|

and then Proposition 3.1 with p = 2 together with the Legendre duplica-
tion formula

(d− 1)! = Γ(d) =
2d−1

√
π
Γ

(
d

2

)
Γ

(
d+ 1

2

)
. (26)

We obtain that for any Sd defined in (12) with some integers from (10)
and indices from (11),

E
[
|convSd|1{convSd∈F(Cd)}

]
=

1

2d/2−1Γ
(
d
2

)
∑

kl 6=0

1

i
(l)
1

×
∏

kl 6=0

[√
i
(l)
1 · 1√

i
(l)
2 − i

(l)
1

. . .
1√

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]

×
∞∫

−∞

exp

(
− r2

2

∑

kl 6=0

1

i
(l)
1

) ∏

kl=0

pnl
(r)

∏

kl 6=0

q
i
(l)
1
(r) dr (27)
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and

E
[
|convSd|1{convSd∈F(C0

d
)}

]
=

1

2d/2−1Γ
(
d
2

)
∑

kl 6=0

1

i
(l)
1

×
∏

kl 6=0

[√
i
(l)
1 · 1√

i
(l)
2 − i

(l)
1

. . .
1√

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]

×
∞∫

0

exp

(
− r2

2

∑

kl 6=0

1

i
(l)
1

) ∏

kl=0

pnl
(r)

∏

kl 6=0

q
i
(l)
1
(r) dr, (28)

and also for any S0
d defined in (15) with some integers from (13) and indices

from (14),

E
[
|convS0

d|1{convS0
d
∈F(C0

d
)}

]
=

√
2π

2d/2−1Γ
(
d
2

)

×
m∏

l=1

[
1√
i
(l)
1

1√
i
(l)
2 − i

(l)
1

. . .
1√

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]
, (29)

with the convention that the factor in the product equals (2nl − 1)!!/(2nl)!!
for kl = 0.

Now we are ready to derive the desired formula.

Theorem 3.4. We have

E | bd Cd| =
∑

k1+···+km=d
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

E
[
|convSd|1{convSd∈F(Cd)}

]
,

and

E | bd C0
d | =

∑

k1+···+km=d
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

E
[
|convSd|1{convSd∈F(C0

d
)}

]

+
∑

k1+···+km=d−1
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

E
[
|convS0

d|1{convS0
d
∈F(C0

d
)}

]
,

where the summands in the right-hand sides are calculated in (27), (28),
and (29).

Proof. The theorem is a direct corollary of (16) and (17). �
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3.6. Expected volume and other intrinsic volumes. Here, using the
result of the previous section we calculate the expected volumes of Cd
and C0

d .

Theorem 3.5. We have

E |Cd| =
Γ
(
d+1
2

)

d
√
π Γ
(
d
2

)

×
∑

k1+···+km=d+1
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

E
[
|convSd+1|1{convSd+1∈F(Cd+1)}

]
,

and

E |C0
d | =

Γ
(
d+1
2

)

d
√
π Γ
(
d
2

)

×
(

∑

k1+···+km=d+1
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

E
[
|convSd+1|1{convSd+1∈F(C0

d+1)}

]

+
∑

k1+···+km=d
06kl6nl, l=1,...,m

∑

16i
(l)
1 <···<i

(l)
kl

6nl

l=1,...,m : kl>0

E
[
|convS0

d+1|1{convS0
d+1∈F(C0

d+1)}

]
)
,

where the summands in the right-hand sides are calculated in (27), (28),
and (29) with d replaced by d+ 1.

Proof. It is well known that the orthogonal projection of the standard
Gaussian distribution onto a linear subspace is again the standard Gauss-
ian distribution of corresponding dimension. Thus for any fixed u ∈ Sd,

(Pu⊥S
(1)
i )n1

i=1, . . . , (Pu⊥S
(m)
i )nm

i=1

can be considered as a collection of independent Gaussian random walks
in Rd−1. In particular, we may think that

Pu⊥ Cd d
= Cd−1.

Recalling the Cauchy surface area formula (see, e.g., [19, Eq. (6.12)]) leads
here to

E | bd Cd| = E
2
√
π Γ
(
d+1
2

)

Γ
(
d
2

)
∫

Sd−1

|Pu⊥ Cd|µ(du) =
2
√
π Γ
(
d+1
2

)

Γ
(
d
2

) E |Cd−1|,
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E |Cd−1| =
Γ
(
d
2

)

2
√
π Γ
(
d+1
2

)E | bd Cd|,

and applying Theorem 3.4 concludes the proof. �

Similarly, by means of the Kubota formula, it is possible to calculate
all expected intrinsic volumes of Cd and C0

d. We skip the details here.

§4. Examples

In general, the factor in the right-hand sides of (22) and (23)

I1 :=

∞∫

−∞

exp

(
− r2

2

∑

l : kl 6=0

1

i
(l)
1

) ∏

l : kl=0

pnl
(r)

∏

l : kl 6=0

q
i
(l)
1
(r) dr,

I2 :=

∞∫

0

exp

(
− r2

2

∑

l : kl 6=0

1

i
(l)
1

) ∏

l : kl=0

pnl
(r)

∏

l : kl 6=0

q
i
(l)
1
(r) dr

(30)

cannot be simplified. However, there are several cases when they can.

4.1. Single random walk. Suppose that m = 1. Using the notation of
Subsection 1.3 we have

Cd = conv(S1, . . . , Sn), C0
d = conv(S0, S1, . . . , Sn).

Up to translations, Cd with n steps has the same distribution as C0
d with

n− 1 steps, so we can consider Cd only.
As in (10), fix d indices

1 6 i1 < · · · < id 6 n

and let

Sd :=

(
Si1 , . . . , Sid

)
, convSd := conv {Si1 , . . . , Sid} .
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In this case, I1, I2 defined in (30) reduce to

I1 =

∞∫

−∞

exp

(
− r2

2i1

)
qi1(r) dr =

√
2πi1pi1−1(0) =

√
2πi1

(2i1 − 3)!!

(2i1 − 2)!!
,

I2 =

∞∫

0

exp

(
− r2

2i1

)
qi1(r) dr =

√
2πi1pi1(0) =

√
2πi1

(2i1 − 1)!!

(2i1)!!
,

where we used (19) and (18), the law of total probability, and (21). Thus,
it follows from Theorem 3.3 and Theorem 3.2 that

E |F(Cd)| = 2
∑

16i1<···<id6n

1

i2 − i1
. . .

1

id − id−1

(2(n− id)− 1)!!

(2(n− id))!!

(2i1 − 3)!!

(2i1 − 2)!!
.

After a change of variables

j = i1, j1 = i2 − i1, . . . , jd−1 = id − id−1,

we obtain

E |F(Cd)| = 2
∑

j1+···+jd−16n−1
j1,...,jd−1>1

1

j1
. . .

1

jd−1

×
n−j1−···−jd−1∑

j=1

(2(n− j1 − · · · − jd−1 − j)− 1)!!

(2(n− j1 − · · · − jd−1 − j))!!

(2j − 3)!!

(2j − 2)!!

= 2
∑

j1+···+jd−16n−1
j1,...,jd−1>1

1

j1 . . . jd−1
,

where in the last step we used (4), and thus we recover (9) with n replaced
by n− 1.

In the same way, it is not difficult to show that in the case of a single
random walk Theorem 3.5 turns to the formula

E |Cd| =
1

d!

∑

j1+···+jd6n−1
j1,...,jd>1

1√
j1 . . . jd

,

see [23, Section 4.1].
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4.2. Gaussian polytopes. Suppose that n1 = · · · = nm = 1. Using the
notation of Subsection 1.3 we have

Cd = conv(X(1), X(2) . . . , X(m)), C0
d = conv(0, X(1), X(2) . . . , X(m)),

which are known as the Gaussian polytope and the Gaussian polytope

with 0 resp.
In this case, due to (20), I1 and I2 (defined in (30)) turn to

I1 = (2π)d/2
∞∫

−∞

Φm−d(r)ϕd(r) dr, I2 = (2π)d/2
∞∫

0

Φm−d(r)ϕd(r) dr.

Applying Theorem 3.3 readily gives the number of the averages facets for
Cd and C0

d :

E |F(Cd)| = 2
√
d (2π)

d−1
2

(
m

d

) +∞∫

−∞

Φm−d(r)ϕd(r) dr

and

E |F(C0
d)| =

(
m

d−1

)

2m−d−1
+ 2

√
d (2π)

d−1
2

(
m

d

) +∞∫

0

Φm−d(r)ϕd(r) dr.

The first formula has been obtained in [18] and later generalized in [9] to
faces of all dimensions. The second formula seems to be new.

Similarly, from Theorem 3.5 we readily obtain the formulae

E |Cd| =
(

m

d+ 1

)
(d+ 1)πd/2

Γ
(
d
2 + 1

)
+∞∫

−∞

Φm−d−1(r)ϕd+1(r) dr

and

E |C0
d | =

(
m
d

)

2m− d
2Γ
(
d
2 + 1

) +
(

m

d+ 1

)
(d+ 1)πd/2

Γ
(
d
2 + 1

)
∞∫

0

Φm−d−1(r)ϕd+1(r) dr,

which have been recently obtained in [13].
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§5. Proof of Theorem 2.1

5.1. Stochastic form of Blaschke–Petkantschin formula. We need
to integrate a non-negative measurable function of (d− 1)-tuples of points
in Rd. For some reasons, it is more convenient to integrate this function
first over the (d− 1)-tuples of points in a fixed linear hyperplane and then
integrate over the set of all hyperplanes. The corresponding transformation
formula is known as the linear Blaschke–Petkantschin formula (see [19,
Theorem 7.2.1]):

∫

(Rd)d−1

h(x1, . . . ,xd−1) dx1 . . . dxd−1

=
d!κd

2

∫

Sd−1

∫

(u⊥)d−1

h(x1, . . . ,xd−1)|conv(0,x1, . . . ,xd−1)|

× λu⊥( dx1) . . . λu⊥( dxd−1) dµ( du), (31)

where we write κd = πd/2/Γ(d2 + 1) for the volume of the d-dimensional
unit ball.

A similar affine version (see [19, Theorem 7.2.7] combined with [19,
Theorem 13.2.12.]) may be stated as follows:

∫

(Rd)d

h(x1, . . . ,xd) dx1 . . . dxd

= d!κd

∫

Sd−1

∞∫

0

∫

(u⊥+ru)d

h(x1, . . . ,xd)|conv(x1, . . . ,xd)|

× λu⊥( dx1) . . . λu⊥( dxd)λ( dr) dµ( du)

= d!κd

∫

Sd−1

∞∫

0

∫

(u⊥)d

h(x1 + ru, . . . ,xd + ru)|conv(x1, . . . ,xd)|

× λu⊥( dx1) . . . λu⊥( dxd)λ( dr) dµ( du). (32)

Using the Legendre duplication formula (see (26) with d−1 replaced by d)
it is convenient to modify the factor in the right-hand side as follows:

d!κd = 2dπ
d−1
2 Γ

(
d+ 1

2

)
. (33)
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We will also use the following version of the law of total expectation: for any
random vectors X1, . . . , Xn ∈ Rd having a joint distribution density, any
k ∈ {1, . . . , n} and any non-negative measurable functions h1 : (R

d)k → R

and h2 : (R
d)n → R we have

E [h1(X1, . . . , Xk)h2(X1, . . . , Xn)]

=

∫

(Rd)k

E [h2(X1, . . . , Xn) | (X1, . . . , Xk) = (x1, . . . ,xk)]

× h1(x1, . . . ,xk)fk(x1, . . . ,xk) dx1 . . . dxk,

where fk is the joint distribution density of X1, . . . , Xk.
Combining this with (31) for k = d − 1 and with (32) for k = d (we

assume that n>d) and using Fubini’s theorem together with (33) leads to

E [h1(X1, . . . , Xd−1)h2(X1, . . . , Xn)] = 2d−1π
d−1
2 Γ

(
d+ 1

2

)
(34)

×
∫

Sd−1

∫

(u⊥)d−1

E [h2(X1, . . . , Xn) | (X1, . . . , Xd−1) = (x1, . . . ,xd−1)]

× h1(x1, . . . ,xd−1)fd−1(x1, . . . ,xd−1)|conv(0,x1, . . . ,xd−1)|
× λu⊥( dx1) . . . λu⊥( dxd−1) dµ( du)

and

E [h1(X1, . . . , Xd)h2(X1, . . . , Xn)] = 2dπ
d−1
2 Γ

(
d+ 1

2

)
(35)

×
∫

Sd−1

∞∫

0

∫

(u⊥)d

E [h2(X1, . . . , Xn) | (X1, . . . , Xd) = (x1 + ru, . . . ,xd + ru)]

× h1(x1 + ru, . . . ,xd + ru)fd−1(x1 + ru, . . . ,xd + ru)

× |conv(x1, . . . ,xd)|λu⊥( dx1) . . . λu⊥( dxd)λ( dr) dµ( du).

Now we are ready to prove the theorem. It is convenient to start with
the proof of the last relation.
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5.2. Proof of (24). It follows from (34) and the translation invariance
of g that

E [g(S0
d)1{convS0

d
∈F(C0

d
)}] = 2d−1π

d−1
2 Γ

(
d+ 1

2

)
(36)

×
∫

Sd−1

∫

(u⊥)d−1

P[convS0
d ∈ F(C0

d) |S0
d = (0,x1, . . . ,xd−1)]

× g(0,x1, . . . ,xd−1)fS0
d
(x1, . . . ,xd−1)|conv(0,x1, . . . ,xd−1)|

× λu⊥( dx1) . . . λu⊥( dxd−1) dr dµ( du),

where f0
Sd

is the joint density of S0
d (without its zero component), that is,

fS0
d
(x1, . . . ,xd−1)=(2π)−d(d−1)/2

∏

l : kl 6=0

[
i
(l)
1 (i

(l)
2 −i

(l)
1 ) . . . (i

(l)
kl
−i

(l)
kl−1)

]−d/2

×exp

(
− 1

2

∑

l : kl 6=0
l>0

[
‖x(l)

1 ‖2

i
(l)
1

+
‖x(l)

2 −x
(l)
1 ‖2

i
(l)
2 − i

(l)
1

+. . .+
‖x(l)

kl
−x

(l)
kl−1‖2

i
(l)
kl

− i
(l)
kl−1

])
. (37)

Here, to make the expression more compact, we used the notation

x
(l)
i := xk1+···+kl−1+i for l > 0 such that kl 6= 0.

Let us calculate the probability under the integral in the right-hand side
of (36). Assuming that convS0

d has non-zero (d−1)-dimensional content
(and thus, spanS0

d = u⊥), which holds with probability 1, we obtain that
convS0

d ∈ F(C0
d) if and only if C0

d lies in the closed half-space with boundary
u⊥. Equivalently, the values of the projections of all random walks onto
spanu are simultaneously either non-negative or non-positive. Because of
the symmetry, the latter two events have the same probability. Thus,

P[convS0
d ∈ F(C0

d) |S0
d = (0,x1, . . . ,xd−1)]

= 2P
[
PuS

(1)
1 , . . . , PuS

(m)
nm

> 0
∣∣PuS

(l)

i
(l)
1

= · · · = PuS
(l)

i
(l)
kl

= 0 for l : kl > 0
]

= 2

m∏

l=1

P

[
PuS

(l)
1 , . . . , PuS

(l)
nl

> 0
∣∣PuS

(l)

i
(l)
1

= · · · = PuS
(l)

i
(l)
kl

= 0
]
.
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Here, we imply that if kl = 0, then the corresponding probability is un-
conditional, and therefore due to (2) equals

P

[
PuS

(l)
1 , . . . , PuS

(l)
nl

> 0
]
=

(2nl − 1)!!

(2nl)!!
.

Let us evaluate the conditional one. Since the increments of the random
walks are independent, for l such that kl 6= 0,

P

[
PuS

(l)
1 , . . . , PuS

(l)
nl

> 0
∣∣PuS

(l)

i
(l)
1

= · · · = PuS
(l)

i
(l)
kl

= 0
]

=

kl−1∏

j=0

P

[
PuS

(l)

i
(l)
j

+1
, . . . , PuS

(l)

i
(l)
j+1−1

> 0
∣∣PuS

(l)

i
(l)
j

= PuS
(l)

i
(l)
j+1

= 0
]

× P

[
PuS

(l)

i
(l)
kl

+1
, . . . , PuS

(l)
nl

> 0
∣∣PuS

(l)

i
(l)
kl

= 0
]
,

where we write i
(l)
0 := 0. It was proved by Sparre Andersen [21] that the

probability for a random walk bridge of length q to stay non-negative (or
equivalently non-positive) equals 1/q. Thus,

P

[
PuS

(l)

i
(l)
j
+1

, . . . , PuS
(l)

i
(l)
j+1−1

> 0 |PuS
(l)

i
(l)
j

=PuS
(l)

i
(l)
j+1

=0

]
=

1

i
(l)
j+1−i

(l)
j

. (38)

After time changing, the last part turns to the persistence probability of
the symmetric random walk, so due to (2),

P

[
PuS

(l)

i
(l)
kl

+1
, . . . , PuS

(l)
nl

> 0
∣∣PuS

(l)

i
(l)
kl

= 0
]

(39)

= P

[
Pu

(
S
(l)

i
(l)
kl

+1
− S

(l)

i
(l)
kl

)
, . . . , Pu

(
S(l)
nl

− S
(l)

i
(l)
kl

)
> 0
]
=

(
2
(
nl − i

(l)
kl

)
− 1
)
!!

(
2
(
nl − i

(l)
kl

))
!!

.

Combining the above we arrive at

P[convS0
d ∈ F(C0

d) |S0
d = (0,x1, . . . ,xd−1)] (40)

=2
∏

l : kl=0
l 6=0

[
(2nl−1)!!

(2nl)!!

] ∏

l : kl 6=0
l 6=0

[
1

i
(l)
1

1

i
(l)
2 −i

(l)
1

. . .
1

i
(l)
kl
−i

(l)
kl−1

(2(nl−i
(l)
kl
)−1)!!

(2(nl − i
(l)
kl
))!!

]
.
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Applying this to (36) and using Fubini’s theorem gives

E [g(S0
d)1{convS0

d
∈F(Cd)}] = 2dπ

d−1
2 Γ

(
d+ 1

2

) ∏

l : kl=0
l 6=0

[
(2nl − 1)!!

(2nl)!!

]
(41)

×
∏

l : kl 6=0
l 6=0

[
1

i
(l)
1

1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]

×
∫

Sd−1

∫

(u⊥)d−1

g(0,x1, . . . ,xd−1)fS0
d
(x1, . . . ,xd−1)|conv(0,x1, . . . ,xd−1)|

× λu⊥( dx1) . . . λu⊥( dxd−1) dr dµ( du).

Now, fix some u ∈ Sd−1. Let e1, . . . , ed−1 be an orthonormal basis in u⊥.
Let Q be an orthogonal matrix with the columns e1, . . . , ed−1, u:

Q := [e1, . . . , ed−1, u].

Since Q⊤u = (0, . . . , 0, 1), changing the coordinates

x1, . . . ,xd 7→ Qx1, . . . , Qxd

leads to
∫

(u⊥)d−1

g(0,x1, . . . ,xd−1)fSd
(x1, . . . ,xd−1) (42)

× |conv(0,x1, . . . ,xd−1)|λu⊥( dx1) . . . λu⊥( dxd)

=

∫

(Rd−1)d−1

g(0,x′
1, . . . ,x

′
d−1)fSd

(x′
1, . . . ,x

′
d)|

× |conv(0,x1, . . . ,xd−1)| dx1 . . . dxd−1,

where we used the rotational invariance of the volume, g and fSd
, and

for x = (x1, . . . , xd−1) we write x′ := (x1, . . . , xd−1, 0).

It is well known that the orthogonal projection of the standard Gaussian
distribution onto a linear subspace is again the standard Gaussian distri-
bution of corresponding dimension. Thus it follows from (37) (applied to
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dimension d− 1 as well) that the function

(2π)
d−1
2

∏

l : kl 6=0
l 6=0

[
i
(l)
1 (i

(l)
2 − i

(l)
1 ) . . . (i

(l)
kl

− i
(l)
kl−1

)
]1/2

fSd
(y′

1, . . . ,y
′
d−1)

coincides with the probability density function of PdS
0
d, where

(PdS
(1)
i )n1

i=1, . . . , (PdS
(m)
i )nm

i=1

is considered as a collection of m random walks in R
d−1. Therefore,

E
[
g(PdS

0
d)|convPdS

0
d|
]
= (2π)

d−1
2

∏

l : kl 6=0
l 6=0

[
i
(l)
1 (i

(l)
2 −i

(l)
1 ) . . . (i

(l)
kl
−i

(l)
kl−1

)
]1/2

×
∫

(Rd−1)d−1

g(0,x′
1, . . . ,x

′
d−1)fSd

(0,x′
1, . . . ,x

′
d−1)

× |conv(0,x1, . . . ,xd−1)| dx1 . . . dxd−1,

which together with (42) leads to
∫

(u⊥)d−1

g(0,x1, . . . ,xd−1)fS0
d
(x1, . . . ,xd−1) (43)

× |conv(0,x1, . . . ,xd−1)|λu⊥( dx1) . . . λu⊥( dxd−1)

=(2π)−
d−1
2

∏

l : kl 6=0
l 6=0

[
i
(l)
1 (i

(l)
2 −i

(l)
1 ) . . . (i

(l)
kl
−i

(l)
kl−1

)
]−1/2

E
[
g(PdS

0
d)|convPdS

0
d|
]
.

Integrating over Sd−1 and combining with (41) gives (24).

5.3. Proof of (23). It follows from (35) and the translation invariance
of g that

E [g(Sd)1{convSd ∈F(C0
d
)}] = 2dπ

d−1
2 Γ

(
d+ 1

2

)
(44)

×
∫

Sd−1

∞∫

0

∫

(u⊥)d

P[convSd ∈ F(C0
d) |Sd = (x1 + ru, . . . ,xd + ru)]

× g(x1, . . . ,xd) fSd
(x1 + ru, . . . ,xd + ru)

× |conv(x1, . . . ,xd)| λu⊥( dx1) . . . λu⊥( dxd) dr dµ( du),
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where fSd
is the joint density of Sd, that is,

fSd
(x1, . . . ,xd) = (2π)−d2/2

∏

l : kl 6=0

[
i
(l)
1 (i

(l)
2 − i

(l)
1 ) . . . (i

(l)
kl

− i
(l)
kl−1)

]−d/2

× exp

(
− 1

2

∑

l : kl 6=0

[
‖x(l)

1 ‖2

i
(l)
1

+
‖x(l)

2 −x
(l)
1 ‖2

i
(l)
2 − i

(l)
1

+. . .+
‖x(l)

kl
−x

(l)
kl−1‖2

i
(l)
kl

− i
(l)
kl−1

])
. (45)

As above,

x
(l)
i := xk1+···+kl−1+i for l > 0 such that kl 6= 0.

Let us calculate the probability under the integral in the right-hand side
of (44). Assuming that convSd has non-zero (d−1)-dimensional content
(and thus, aff Sd = u⊥ + ru), which holds with probability 1, we obtain
that convSd ∈ F(C0

d) if and only if C0
d lies in the closed half-space with

boundary u⊥ + ru containing the origin. Equivalently, the values of the
projections of all random walks onto spanu do not exceed r. Thus,

P[convSd ∈ F(C0
d) |Sd = (x1 + ru, . . . ,xd + ru)]

=P[PuS
(0)
1 , PuS

(1)
1 , . . . , PuS

(m)
nm

6r |PuS
(l)

i
(l)
1

=0, . . . , PuS
(l)

i
(l)
kl

=0, l : kl>0]

=

m∏

l=1

P[PuS
(0)
1 , PuS

(l)
1 , . . . , PuS

(l)
nl

6r |PuS
(l)

i
(l)
1

=r, . . . , PuS
(l)
i
k
(l)
l

=r]. (46)

Here, we imply that if kl = 0, then the corresponding probability is un-
conditional, and therefore equals

P[PuS
(l)
1 , . . . , PuS

(l)
nl

6 r] = pnl
(r).

Let us evaluate the conditional one. Since the increments of the random
walks are independent, for l such that kl 6= 0,

P

[
PuS

(l)
1 , . . . , PuS

(l)
nl

6 r |PuS
(l)

i
(l)
1

= r, . . . , PuS
(l)

i
(l)
kl

= r

]

= P

[
PuS

(l)
1 , . . . , PuS

(l)

i
(l)
1 −1

6 r |PuS
(l)

i
(l)
1

= r

]

×
kl−1∏

j=1

P

[
PuS

(l)

i
(l)
j

+1
, . . . , PuS

(l)

i
(l)
j+1−1

6 r |PuS
(l)

i
(l)
j

= PuS
(l)

i
(l)
j+1

= r

]
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× P

[
PuS

(l)

i
(l)
kl

+1
, . . . , PuS

(l)
nl

6 r |PuS
(l)

i
(l)
kl

= r

]
.

Let us consider each of the three parts in the right-hand side separately.
First, by definition,

P

[
PuS

(l)
1 , . . . , PuS

(l)

i
(l)
1 −1

6 r |PuS
(l)

i
(l)
1

= r

]
= qi1(r).

Second, as in (38),

P

[
PuS

(l)

i
(l)
j

+1
, . . . , PuS

(l)

i
(l)
j+1−1

6 r |PuS
(l)

i
(l)
j

= PuS
(l)

i
(l)
j+1

= r

]

= P

[
PuS

(l)

i
(l)
j

+1
, . . . , PuS

(l)

i
(l)
j+1−1

6 0 |PuS
(l)

i
(l)
j

= PuS
(l)

i
(l)
j+1

= 0

]

=
1

i
(l)
j+1 − i

(l)
j

.

Finally, as in (39),

P

[
PuS

(l)

i
(l)
kl

+1
, . . . , PuS

(l)
nl

6 r |PuS
(l)

i
(l)
kl

= r

]

= P

[
Pu

(
S
(l)

i
(l)
kl

+1
− S

(l)

i
(l)
kl

)
, . . . , Pu

(
S(l)
nl

− S
(l)

i
(l)
kl

)
6 0

]

=

(
2
(
nl − i

(l)
kl

)
− 1
)
!!

(
2
(
nl − i

(l)
kl

))
!!

.

Inserting all the above equalities into (44), through (46), leads to

E [g(Sd)1{convSd∈F(C0
d
)}] = 2dπ

d−1
2 Γ

(
d+ 1

2

)

×
∏

l : kl 6=0
l 6=0

[
1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]

×
∫

Sd−1

∞∫

0

∫

(u⊥)d

[ ∏

l : kl=0
l 6=0

pnl
(r)

][ ∏

l : kl 6=0
l 6=0

q
i
(l)
1
(r)

]
g(x1, . . . ,xd)

× fSd
(x1 + ru, . . . ,xd + ru) · |conv(x1, . . . ,xd)|

× λu⊥( dx1) . . . λu⊥( dxk) dr dµ( du).
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Since ru is orthogonal to x1, . . . ,xd, it follows from (45) that

fSd
(x1 + ru, . . . ,xd + ru) = exp


−r2

2

∑

l : kl 6=0

1

i
(l)
1


 fSd

(x1, . . . ,xd). (47)

Therefore,

E [g(Sd)1{convSd∈F(C0
d
)}] = 2dπ

d−1
2 Γ

(
d+ 1

2

)
(48)

×
∏

l : kl 6=0
l 6=0

[
1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]

×
∞∫

0

[ ∏

l : kl=0
l 6=0

pnl
(r)

][ ∏

l : kl 6=0

q
i
(l)
1
(r)

]
exp


−r2

2

∑

l : kl 6=0

1

i
(l)
1


 dr

×
∫

Sd−1

∫

(u⊥)d

g(x1, . . . ,xd)fSd
(x1, . . . ,xd)

× |conv(x1, . . . ,xd)| λu⊥( dx1) . . . λu⊥( dxd) dµ( du).

Similarly to (43) we obtain

∫

(u⊥)d−1

g(x1, . . . ,xd)fSd
(x1, . . . ,xd) (49)

× |conv(0,x1, . . . ,xd)|λu⊥( dx1) . . . λu⊥( dxd)

=(2π)−d/2
∏

l : kl 6=0
l 6=0

[
i
(l)
1 (i

(l)
2 −i

(l)
1 ). . .(i

(l)
kl
−i

(l)
kl−1

)
]−1/2

E
[
g(PdSd)|convPdSd|

]
.

Integrating over Sd−1 and combining with (48) gives (23).

5.4. Proof of (22). As above, it follows from (35) and the translation
invariance of g that

E [g(Sd)1{convSd ∈F(Cd)}] = 2dπ
d−1
2 Γ

(
d+ 1

2

)
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×
∫

Sd−1

∞∫

0

∫

(u⊥)d

P[convSd ∈ F(Cd) |Sd = (x1 + ru, . . . ,xd + ru)]

× g(x1, . . . ,xd) fSd
(x1 + ru, . . . ,xd + ru)

× |conv(x1, . . . ,xd)| λu⊥( dx1) . . . λu⊥( dxd) dr dµ( du),

where fSd
is the joint density of Sd defined in (45).

Let us calculate the probability under the integral. Assuming that
convSd has non-zero (d−1)-dimensional content (and thus, aff Sd = u⊥ +
ru), which holds with probability 1, we obtain that convSd ∈ F(Cd) if
and only if Cd lies in one of the two closed half-spaces whose boundary
coincides with u⊥ + ru. Equivalently, the values of the projections of all
random walks forming Cd onto spanu either do not exceed r or larger
than r simultaneously. Thus,

P[convSd ∈ F(Cd) |Sd = (x1 + ru, . . . ,xd + ru)] (50)

= P[PuS
(1)
1 , . . . , PuS

(m)
nm

6 r |PuS
(1)

i
(1)
1

= r, . . . , PuS
(m)

i
(m)
km

= r]

+ P[PuS
(1)
1 , . . . , PuS

(m)
nm

> r |PuS
(1)

i
(1)
1

= r, . . . , PuS
(m)

i
(m)
km

= r]

=

m∏

l=1

P[PuS
(l)
1 , . . . , PuS

(l)
nl

6 r |PuS
(l)

i
(l)
1

= r, . . . , PuS
(l)

i
(l)
kl

= r]

+

m∏

l=1

P[PuS
(l)
1 , . . . , PuS

(l)
nl

> r |PuS
(l)

i
(l)
1

= r, . . . , PuS
(l)

i
(l)
kl

= r].

It is enough to consider the first summand, for the second one, due to
the symmetry, can be obtained from it by replacing r by −r. As before,
we imply here that if kl = 0, then the corresponding probabilities are
unconditional, and thus equal by definition to

P[PuS
(l)
1 , . . . , PuS

(l)
nl

6 r] = pnl
(r).

Let us evaluate the conditional probabilities. Exactly as before, since the
increments of the random walks are independent, for any l such that kl 6= 0,

P

[
PuS

(l)
1 , . . . , PuS

(l)
nl

6 r |PuS
(l)

i
(l)
1

= r, . . . , PuS
(l)

i
(l)
kl

= r

]

= P

[
PuS
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1 , . . . , PuS

(l)

i
(l)
1 −1

6 r |PuS
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i
(l)
1

= r

]
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×
kl−1∏

j=1

P

[
PuS

(l)

i
(l)
j

+1
, . . . , PuS

(l)

i
(l)
j+1−1

6 r |PuS
(l)

i
(l)
j

= PuSi
(l)
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]

× P
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(l)

i
(l)
kl

+1
, . . . , PuS

(l)
nl

6 r |PuS
(l)

i
(l)
kl

= r

]
.

Let us again consider each of the three parts in the right-hand side sepa-
rately.
For the first parts, by definition,

P

[
PuS

(l)
1 , . . . , PuS

(l)

i
(l)
1 −1

6 r |PuS
(l)

i
(l)
1

= r

]
= qi1(r).

Then for the second part, as in (38),

P

[
PuS

(l)

i
(l)
j

+1
, . . . , PuS

(l)

i
(l)
j+1−1

6 r |PuS
(l)

i
(l)
j

= PuS
(l)

i
(l)
j+1
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]
=

1

i
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j+1 − i

(l)
j

.

Finally, for the third part, as in (39),

P

[
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kl

+1
, . . . , PuS

(l)
nl

6 r |PuS
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kl
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]
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(
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i
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kl
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kl
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, . . . , Pu

(
S(l)
nl

− S
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kl

)
> 0

]
=

(
2nl − i

(l)
kl
)− 1

)
!!

(
2(nl − i

(l)
kl
)
)
!!

.

Combining all these equalities gives an expression for the first summand in
the right-hand side of (50), and then changing r to −r gives an expression
for the second one. Summing up,

E [g(Sd)1{convSd∈F(Cd)}] = 2dπ
d−1
2 Γ

(
d+ 1

2

)

×
∏

l : kl 6=0
l 6=0

[
1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
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(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
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kl
))!!

]

×
∫

Sd−1

∞∫

0

∫

(u⊥)d

{[ ∏

l:kl=0
l 6=0

pnl
(r)

][ ∏

l:kl 6=0
l 6=0

q
i
(l)
1
(r)

]
+

[ ∏

l:kl=0
l 6=0

pnl
(−r)

][ ∏

l:kl 6=0
l 6=0

q
i
(l)
1
(−r)

]}

× g(x1, . . . ,xd) |conv(x1, . . . ,xd)| fSd
(x1+ru, . . . ,xd+ru)

× λu⊥( dx1) . . . λu⊥( dxk) dr dµ( du).
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Using (47), Fubini’s theorem, and the formula

∞∫

0

(h(r) + h(−r)) dr =

∞∫

−∞

h(r) dr, where h is even,

leads to

E [g(Sd)1{convSd∈F(Cd)}] = 2dπ
d−1
2 Γ

(
d+ 1

2

)

×
∏

l : kl 6=0
l 6=0

[
1

i
(l)
2 − i

(l)
1

. . .
1

i
(l)
kl

− i
(l)
kl−1

(2(nl − i
(l)
kl
)− 1)!!

(2(nl − i
(l)
kl
))!!

]

×
∞∫

−∞

[ ∏

l : kl=0
l 6=0

pnl
(r)

][ ∏

l : kl 6=0

q
i
(l)
1
(r)

]
exp


−r2

2

∑

l : kl 6=0

1

i
(l)
1


 dr

×
∫

Sd−1

∫

(u⊥)d

g(x1, . . . ,xd)fSd
(x1, . . . ,xd)

× |conv(x1, . . . ,xd)| λu⊥( dx1) . . . λu⊥( dxd) dµ( du).

Finally, applying (49) and integrating over Sd−1 gives (22).

§6. Volumes of weighted Gaussian simplices.

6.1. Formulation of result. Let

χ1, χ2, . . . , χd ∈ R
1

be independent random variables and suppose that for any k = 1, . . . , d, the
random variable χk has the chi distribution with k degrees of freedom (that
is, the distribution of the norm of the k-dimensional standard Gaussian
vector).

The main result of this section is the following formula for the volume
moments of the weighted Gaussian simplex.

Theorem 6.1. Fix some l = 1, . . . , d and let X0, X1, . . . , Xl ∈ Rd be d-
dimensional independent standard Gaussian vectors. Then for any
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σ0, . . . , σd > 0 and for any p > 0,

E |conv(σ0X0, . . . , σlXl)|p

=

[
2l/2σ0 . . . σl

l!

√
1

σ2
0

+ · · ·+ 1

σ2
l

]p d∏

i=d−l+1

Γ
(
i+p
2

)

Γ
(
i
2

) . (51)

The proof is given in the next subsection.

Remark 6.2. It is well-known that

Eχp
k = 2p/2

Γ((k + p)/2)

Γ(k/2)
. (52)

Therefore one might suggest that by the method of moments it follows
from (51) that

|conv(σ0X0, . . . , σlXl)|

d
=

2l/2

l!
σ0 . . . σl

(
1

σ2
0

+ · · ·+ 1

σ2
l

)1/2

χd−l+1 . . . χd. (53)

In our paper, we do not need this distributional identity, so we skip the de-
tailed proof. Moreover, we believe that it is possible to derive (53) directly,
without calculating the moments.2

Although Theorem 6.1 might be of independent interest, the main rea-
son why we need it is the following application to the convex hull of several
weighted random walks with a total number of steps equal to d+ 1.

Corollary 6.3. Let X0, X1, . . . , Xd ∈ Rd be d-dimensional independent

standard Gaussian vectors. Fix some l = 1, . . . , d and indices 0 = i0 <
i1 < · · · < il 6 d and consider the following l + 1 weighted random walks

defined as

Yi0 := σ0X0, Y1 := Yi0 + σ1X1, . . . , Yi1−1 := Yi1−2 + σi1−1Xi1−1,

Yi1 := σi1Xi1 , Yi1+1 := Yi1 +σi1+1Xi1+1, . . . , Yi2−1 := Yi2−2 +σi2−1Xi2−1,

. . . ,

Yil := σilXil , Yil+1 := Yil + σil+1Xil+1, . . . , Yd := Yd−1 + σidXd.

2Indeed, after we prepared the first version of this paper, it has been done in [14].



274 J. RANDON-FURLING, D. ZAPOROZHETS

Then the pth moment of the volume of a random simplex with vertices at

Y0, . . . , Yd is given by

E |conv(Y0, . . . , Yd)|p=
[
2d/2σ0 . . . σd

d!

√
1

σ2
i0

+. . .+
1

σ2
il

]p d∏

i=1

Γ
(
i+p
2

)

Γ
(
i
2

) . (54)

The proof is given in Subsection 6.3. Letting σ0 → 0 in (54) produces
the following formula.

Corollary 6.4. Under the assumptions of Corollary 6.3 with σ0 = 0 we

have

E |conv(0, Y1, . . . , Yd)|p =

[
2d/2σ1 . . . σd

d!

]p d∏

i=1

Γ
(
i+p
2

)

Γ
(
i
2

) .

6.2. Proof of Theorem 6.1. Let us consider the case l = d first, so the
task is to show that

E |conv(σ0X0, . . . , σdXd)|p

=

[
2d/2σ0 . . . σd

d!

√
1

σ2
0

+ · · ·+ 1

σ2
d

]p d∏

i=1

Γ
(
i+p
2

)

Γ
(
i
2

) . (55)

Let e0, e1, . . . , ed be the standard orthonormal basis in Rd+1. Consider a
d-dimensional simplex T ⊂ R

d+1 defined as

T := conv(σ0e0, σ1e1, . . . , σded).

Denote by A ∈ R
d×(d+1) a Gaussian matrix whose columns are X0,

X1, . . . , Xd:

A := [X0X1 . . .Xd].

It follows from [16, Proposition 4.1] that

E |AT |p = Edetp/2(AA⊤)

∫

Sd

|Pu⊥T |pµ(du). (56)

Note that AT = conv(σ0X0, σ1X1, . . . , σdXd) so the left-hand side of (56)

coincides with the left-hand side of (55). On the other hand, detp/2(AA⊤)
coincides with the volume of the parallelepiped spanned by the indepen-
dent standard Gaussian vectors Y1, . . . , Yd ∈ Rd+1 (corresponding to the
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rows of A). The moments of its volume are known (see, e.g., [6, Theo-
rem 2.2] or Corollary 6.7 below):

Edetp/2(AA⊤) = 2dp/2
d+1∏

i=2

Γ
(
i+p
2

)

Γ
(
i
2

) . (57)

There remains to calculate the integral in the right-hand side of (56).
Since T is contained in an affine hyperplane orthogonal to

w :=

(
1√
d+ 1

, . . . ,
1√
d+ 1

)
,

we have ∫

Sd

|Pu⊥T |pµ(du) = |T |p
∫

Sd

|〈u,w〉|pµ(du). (58)

It is known [8, page 737] that

|T | = σ0 . . . σd

d!

√
1

σ2
0

+ · · ·+ 1

σ2
d

. (59)

To calculate the integral in the right-hand side of (58), consider the stan-
dard Gaussian vector Y ∈ Rd+1. It is well-known that it can be decomposed
as

Y =
Y

|Y | · |Y | d
= U · χd+1,

where U is uniformly distributed over Sd independently of χd+1. Therefore,

E |〈Y,w〉|p = Eχp
d+1

∫

Sd

|〈u,w〉|pµ(du).

On the other hand, we know the moments of the standard Gaussian vari-
able 〈Y,w〉:

E |〈Y,w〉|p =
2p/2√
π
Γ

(
p+ 1

2

)
.

Thus the latter two relations together with (52) give
∫

Sd

|〈u,w〉|p µ(ddu) = Γ
(
d+1
2

)
Γ
(
p+1
2

)
√
πΓ
(

d+1+p
2

) ,
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which together with (58) and (59) leads to
∫

Sd

|Pu⊥T |pµ(du) = Γ
(
d+1
2

)
Γ
(
p+1
2

)
√
π(d!)pΓ

(
d+1+p

2

)σp
0 . . . σ

p
d

(
1

σ2
0

+ · · ·+ 1

σ2
d

)p/2

.

Now combining this with (56) and (57) and using Γ(1/2) =
√
π concludes

the proof of (55).
Now suppose that l < d. With probability one,

Wl := aff(σ0X0, . . . , σlXl)

is an affine l-plane (which we will always assume). Denote by OWl
the or-

thogonal projection of the origin onto Wl. The rotational symmetry prop-
erty of the standard Gaussian distribution implies that the linear l-plane

W̃l := WL −OWl

is uniformly distributed over the l-dimensional Grassmannian with re-
spect to the Haar measure independently of |conv(σ0X0, . . . , σlXl)|. Let
Pl : R

d → Rl denote the linear operator of the orthogonal projection
from Rd onto the first l coordinates:

Pl : x = (x1, . . . , xd−1, xd) 7→ (x1, . . . , xl),

and denote by P W̃l

l : W̃l → Rl its restriction to W̃l.
We have

|conv(σ1PlX1, . . . , σlPlXl)|

= |conv(P W̃l

l (σ0X1 −OWl
), . . . , P W̃l

l (σlXl −OWl
))|

= |conv(σ0X1 −OWl
, . . . , σlXl −OWl

)| · | detP W̃l

l |

= |conv(σ0X1, . . . , σlXl)| · | detP W̃l

l |.

With probability one, detP W̃l

l 6= 0. Therefore,

E |conv(σ1X1, . . . , σlXl)|p = E

[(
|conv(σ1PlX1, . . . , σlPlXl)|

| detPWl

l |

)p ]
(60)

= E |conv(σ1PlX1, . . . , σlPlXl)|p · E | detPWl

l |−p

=

[
2l/2σ0 . . . σl

l!

√
1

σ2
1

+ · · ·+ 1

σ2
l

]p l∏

i=1

Γ
(
i+p
2

)

Γ
(
i
2

) · E | detP W̃l

l |−p,
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where in the second step we used the independence of W̃l and
|conv(σ1X1, . . . , σlXl)| and in the last step we applied (55) with d re-
placed by l. The latter was possible because, as was mentioned above, the
orthogonal projection of the standard Gaussian distribution onto a lin-
ear subspace is again the standard Gaussian distribution of corresponding
dimension.

There remains to compute E | detP W̃l

l |−p. It is known (see, e.g., [6,
Theorem 2.3]) that

E |conv(X0, . . . , Xl)|p =
(l + 1)p/22pl/2

l!p

d∏

i=d−l+1

Γ
(
i+p
2

)

Γ
(
i
2

) .

Comparing this and (60) with σ0 = · · · = σl = 1 we obtain

E | detP W̃l

l |−p =

d∏

i=d−l+1

Γ
(
i+p
2

)

Γ
(
i
2

)
/

l∏

i=1

Γ
(
i+p
2

)

Γ
(
i
2

) ,

and inserting it into (60) finishes the proof.

6.3. Proof of Corollary 6.3. The following lemma must be known, how-
ever, we could not find a reference with the exact formulation, so for the
reader’s convenience we present a detailed proof.

Lemma 6.5. Fix some integers k, l > 0 such that k + l 6 d and let

X1, . . . , Xk ∈ Rd be independent standard Gaussian vectors, while Y1, . . . ,
Yl ∈ Rd be some arbitrary random vectors independent of X1, . . . , Xk.

Then,

|conv(0, X1, . . . , Xk, Y1, . . . , Yl)|

d
=

l!

(k + l)!
|conv(0, Y1, . . . , Yl)|

d−l∏

i=d−l−k+1

χi,

where the chi-distributed random variables are independent of (Y1, . . . , Yl).

Proof. The idea of the proof is well-known, see, e.g., [2, Chapter 7] or [15].
For i = 1, . . . , k, denote by Wk−i+l the linear span of Xi+1, . . . , Xk and
Y1, . . . , Yl:

Wk−i+l := span(Xi+1, . . . , Xk, Y1, . . . , Yl),
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and denote by dist(Xi,Wk−i+l) the distance between Xi and Wk−i+l. By
the “base times height” formula applied several times,

|conv(0, X1, . . . , Xk, Y1, . . . , Yl)|

=
dist(X1,Wk−1+l)

k + l
· |conv(0, X2, . . . , Xk, Y1, . . . , Yl)

=
dist(X1,Wk−1+l)

k + l
· dist(X2,Wk−2+l)

k − 1 + l
· |conv(0, X3, . . . , Xk, Y1, . . . , Yl)|

= ...

=
k∏

i=1

dist(X1,Wk−i+l)

k − i+ 1 + l
· |conv(0, Y1, . . . , Yl)|

=
l!

(k + l)!

k∏

i=1

dist(Xi,Wk−i+l) · |conv(0, Y1, . . . , Yl)|.

Now fix some i ∈ {1, . . . , k}. Since the distribution of Xi is independent of
(Xi+1, . . . , Xk, Y1, . . . , Yl) and spherically invariant, we have

dist(Xi,Wk−i+l)
d
= dist(Xi, E) = |PE⊥Xi|

for any fixed (k − i + l)-dimensional subspace E. Since Xi ∈ Rd is the
standard Gaussian vector, PE⊥Xi has the standard Gaussian distribution
in E ∼= Rd−k+i−l, which means that |PE⊥Xi| is chi-distributed with d −
k + i− l degrees of freedom, and the lemma follows. �

Integrating and applying (52) readily gives the following relation.

Corollary 6.6. Under assumptions of Lemma 6.5, for any p > 0 we have

E |conv(0, X1, . . . , Xk, Y1, . . . , Yl)|p

=

[
2k/2l!

(k + l)!

]p d−l∏

i=d−l−k+1

Γ
(
i+p
2

)

Γ
(
i
2

) E |conv(0, Y1, . . . , Yl)|p.

Taking l = 0 gives the expression for the moments of the volume of the
Gaussian simplex.

Corollary 6.7. Under assumptions of Lemma 6.5, for any p > 0 we have

E |conv(0, X1, . . . ,Xk)|p =

[
2k/2

k!

]p d∏

i=d−k+1

Γ
(
i+p
2

)

Γ
(
i
2

) .
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Now we are ready to prove Corollary 6.3.
By the simplex volume formula,

|conv(Y0, Y1, . . . , Yd)| = |conv(0, Y1 − Y0, Y2 − Y0, . . . , Yd − Y0)|

=
1

d!
| det[Y1 − Y0, Y2 − Y0, . . . , Yd − Y0].

Substracting the (i − 1)-th column from the i-th one subsequently for all
i = d, . . . , 2, except for i = il, . . . , i1, we obtain

|conv(Y0, . . . , Yd)| =
1

d!
| detA|,

where A ∈ R
d×d is a matrix whose columns with the indices i2, . . . , il equal

σi2Xi2 − σ0X0, . . . , σilXil − σ0X0, and for the remaining indices, the i-th
column equals σiXi:

A := [σ1X1, . . . , σi2−1Xi2−1, σi2Xi2 − σ0X0, σi2+1Xi2+1,

. . . , σil+1Xil+1, σilXil − σi0X0, σil+1Xil+1, . . . , σidXd].

Thus,

|conv(Y0, . . . , Yd)| = |conv(0, σ1X1, . . . , σi2−1Xi2−1, σi2Xi2

−σ0X0, σi2+1Xi2+1, . . . , σil+1Xil+1, σilXil−σi0X0, σil+1Xil+1, . . . , σidXd)|.

Applying Corollary 6.6 gives

E |conv(Y0, . . . , Yd)|p =

[
2(d−l+1)/2 (l − 1)!

d!

]p d−l∏

i=0

Γ
(
d−l+1−i+p

2

)

Γ
(
d−l+1−i

2

)

×
∏

i6=0,i2,...,il

σi · E |conv(0, σi2Xi2 − σ0X0, . . . , σilXil − σ0X0)|p.

Now Corollary 6.7 gives

E |conv(0, σi2Xi2 − σ0X0, . . . , σilXil − σ0X0)|p

= E |conv(σ0X0, σi2Xi2 , . . . , σilXil)|p

=

[
2(l−1)/2

(l − 1)!

]p l−1∏

i=1

Γ
(
d−l+1+i+p

2

)

Γ
(
d−l+1+i

2

) σp
0σ

p
1 . . . σ

p
d

(
1

σ2
0

+
1

σ2
i2

+ · · ·+ 1

σ2
il

)p/2

.

Combining the latter two inequalities finishes the proof.
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