Я. С. Голикова

О ВЫЧИСЛЕНИИ КОНСТАНТ В ЛЕММЕ О ПСЕВДОМЕТРИКЕ ДЛЯ ОДНОМЕРНОГО МЕТОДА ГЛАДКИХ ТРЕУГОЛЬНЫХ ФУНКЦИЙ

В настоящей работе рассматривается метод гладких треугольных функций, многомерный вариант которого представлен А. Ю. Зайцевым в [2]. Автор уже занималась вычислением констант для метода гладких треугольных функций в статье [3]. В данной работе получена зависимость постоянной от входных параметров леммы, позволяющей свести задачу об оценивании $\rho_h(F,G)$ к задаче об оценивании $\rho_{h,\tau}^{(J)}(F,G)$.

Пусть \mathfrak{F} — совокупность всех вероятностных распределений, заданных на σ -алгебре \mathfrak{B} борелевских подмножеств пространства \mathbf{R} . Для F, $G \in \mathfrak{F}$ будем обозначать $F(x), G(x), x \in \mathbf{R}$ — соответствующие функции распределения, $\rho(F,G) = \sup |F(x) - G(x)|$ — равномерное расстояние между функциями распределения.

Для произвольной \mathfrak{B} -измеримой ограниченной функции f и произвольного заданного на \mathfrak{B} конечного заряда $\mu \in \mathfrak{M}$ обозначим:

$$\Gamma_f(\mu) = \sup_{z \in \mathbf{R}} \left| \int_R f(x - z) \,\mu(dx) \right|,\tag{1}$$

а также:

$$\rho_f(F, G) = \Gamma_f(F - G). \tag{2}$$

Для любых $\mu \in \mathfrak{M}, F, G, H \in \mathfrak{F}$ (см. подробнее [2]) верно:

$$\rho_f(FH, GH) \leqslant \rho_f(F, G).$$

Нетрудно видеть, что $\rho_f(\cdot,\cdot)$ является псевдометрикой. Также часто встречаются метрики, которые могут быть записаны в виде:

$$d_{\mathcal{B}(F,G)} = \sup_{f \in \mathcal{B}} \rho_f(F, G),$$

где \mathcal{B} – достаточно богатый класс функций.

Ключевые слова: неравенства, метрика, оценка постоянной, функция концентрации, гладкие треугольные функции.

Работа выполнена при частичной финансовой поддержке грантов РФФИ-ННИО 20-51-12004 и РФФИ 19-01-00356.

Рассмотрим некоторую функцию $\varphi(x)$, $x \in \mathbf{R}$, обладающую следующими свойствами (см. [2]):

- а) $\varphi(x) = 0$ при $x \leq 0$;
- b) $\varphi(x) = 1$ при $x \geqslant 1$;
- с) $\varphi(x)$ строго возрастает при 0 < x < 1;
- e) $\varphi(x) = 1 \varphi(1-x)$ при $x \in \mathbf{R}$;
- f) $\varphi(x)$ бесконечно дифференцируема на всей прямой.

Ее график изображен на рисунке 1.

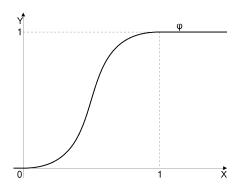


Рис. 1. График функции $\varphi(x)$.

Для $z, h, \tau, x \in \mathbf{R}, 0 < \tau < h$, определим функции

$$\varphi_{z,\tau}(x) = \varphi\left(\frac{x-z}{\tau}\right);$$
 (3)

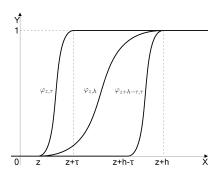
$$f_{z,h,\tau}(x) = f_{z,h,\tau}^{(0)}(x) = \varphi_{z,\tau}(x) - \varphi_{z,h}(x);$$

$$(4)$$

$$f_{z,h,\tau}^{(1)}(x) = \varphi_{z,h}(x) - \varphi_{z+h-\tau,\tau}(x); \qquad (5)$$

$$g_{z,h,\tau}(x) = \varphi_{z,\tau}(x) - \varphi_{z+h-\tau,\tau}(x) = f_{z,h,\tau}^{(0)}(x) + f_{z,h,\tau}^{(1)}(x).$$
 (6)

 $^{^{1}{}m B}$ зависимости от применения это требование может быть ослаблено.



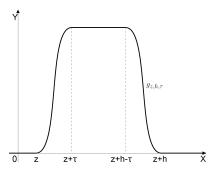


Рис. 2. Графики функций $\varphi_{\cdot,\cdot}(x)$.

Рис. 3. График функции $g_{z,h,\tau}(x)$.

Для $J \in \{1, 0\}, F, G \in \mathfrak{F}, \mu \in \mathfrak{M}, z, h, \tau, x \in \mathbf{R}, 0 < \tau \leqslant h$ положим:

$$\rho_{h,\tau}^{(J)}(F,G) = \rho_f(G,\,H); \quad \Gamma_{h,\tau}^{(J)}(\mu) = \Gamma_f(\mu), \text{ где } f = f_{0,h,\tau}^{(J)}; \tag{7}$$

$$d_{h,\tau}(F,G) = \rho_{g_{0,h,\tau}}(F,G); \tag{8}$$

$$\rho_h(G, H) = \rho_{\chi_{[0,h]}}(F, G),$$

где
$$\chi_A$$
 — индикаторная функция множества A . (9)

В дальнейшем мы будем опускать индекс (J) если J=0. Как правило, мы будем ограничивается оцениванием $\rho_{h,\tau}(\cdot,\cdot) = \rho_{h,\tau}^{(0)}(\cdot,\cdot)$ $\Gamma_{h,\tau}(\cdot) = \Gamma_{h,\tau}^{(0)}(\cdot)$ из соображений симметрии. Также введенные ранее характеристики содержательны только при $0 < \tau < h$, так как при $\tau = h \ f_{z,h,\tau}^{(J)}(x) \equiv 0$. Приведем несколько очевидных неравенств:

$$d_{h,\tau}(F,G) \le \rho_{h,\tau}^{(0)}(F,G) + \rho_{h,\tau}^{(1)}(F,G); \tag{10}$$

$$\Gamma_{h,\tau} \leqslant Q(F,h);$$
 (11)

$$\rho_h(F, G) \leq d_{h,\tau}(F, G) + 2 \max \{ Q(F, \tau), Q(G, \tau) \};$$
(12)

$$\rho_h(F, G) \leqslant \limsup_{\tau \to 0} d_{h,\tau}(F, Q); \tag{13}$$

$$\rho(F,G) \leqslant \limsup_{h \to \infty} \rho_h(F,G). \tag{14}$$

Следующая лемма позволяет сводить задачу об оценивании $\rho_h(F,G)$ к задаче об оценивании $\rho_{h,\tau}^{(J)}(F,G), J \in \{0,1\}.$

Пемма 1. Пусть $F, G \in \mathfrak{F}$. Для $h \in \mathbf{R}$ обозначим $\gamma_h = Q(U, h)$. Пусть при всех $J \in \{0, 1\}$ и при всех $\tau, h \in \mathbf{R}$, таких что $0 < \tau < h$, $\gamma_h \leq 4\gamma_\tau$ справедливо неравенство:

$$\rho_{h,\tau}^{(J)}(F,G) \leqslant C \cdot \varepsilon_1 \gamma_h^{\alpha}(|\ln \gamma_h| + 1)^{\beta} + \varepsilon_2(\tau), \tag{15}$$

где $\alpha > 0$, $\beta \geqslant 0$, $\varepsilon_1 \geqslant 0$, $\varepsilon_2(\tau)$ – невозрастающая функция параметра τ , а C – какая-то постоянная. Тогда при всех $J \in \{0,1\}$ и при всех τ , $h \in \mathbf{R}$, таких что $0 < \tau < h$ справедливы оценки:

$$\rho_{h,\tau}^{(J)}(F,G) \leqslant C \cdot c(\alpha,\beta)\varepsilon_1 A + \varepsilon_2(\tau)B; \tag{16}$$

$$\rho_h(F, G) \leqslant 2C \cdot c(\alpha, \beta)\varepsilon_1 A + 2\varepsilon_2(\tau)B + 2\max\left\{Q(F, \tau), Q(G, \tau)\right\}, (17)$$

 $e \partial e$

$$A = \gamma_h^{\alpha} (|\ln \gamma_h| + 1)^{\beta}, \ B = \frac{1}{\ln 2} \ln \frac{\gamma_h}{\gamma_{\tau}} + 1,$$

и если $\varepsilon_2(\tau) \equiv 0$, то $\rho_h(F, G) \leqslant 2C \cdot c(\alpha, \beta)\varepsilon_1 A$, а если $\gamma_0 > 0$, то

$$\rho_h(F, G) \leqslant 2C \cdot c(\alpha, b)\varepsilon_1 A + 2\varepsilon_1(0) \left(\frac{1}{\ln 2} \ln \frac{\gamma_h}{\gamma_0} + 1\right). \tag{18}$$

Сформулируем основной результат работы.

Теорема 1. В условиях леммы 1 можно положить

$$c(\alpha, \beta) = \sum_{l=0}^{l_0 - 1} 2^{-l\alpha} (l \ln 4 + 1)^{\beta} + \sum_{l=l_0}^{\infty} 2^{-l\alpha} (l \ln 2 + 1)^{\beta},$$
$$e \partial e \ l_0 = \max \left\{ 0, \left\lceil \frac{\beta}{\alpha} - 1 \right\rceil \right\}.$$

- Замечание 1. (1) Лемма 1 является одномерным случаем леммы 2.1 из работы А. Ю. Зайцева [2, §2] и для ее доказательства достаточно положить k=1.
 - (2) Лемма 1 является аналогом леммы 3.1 [1, гл. III] для случая гладких треугольных функций.
 - (3) Все сформулированные ранее неравенства и введенные величины являются одномерными аналогами соответствующих неравенств из [2, §2].
 - (4) При доказательстве теоремы 1 мы обратимся непосредственно к доказательству леммы 2.1 [2, §2].

Доказательство. Не нарушая общности, докажем неравенство (16) для $\rho_{h,\tau}(F,G)=\rho_{h,\tau}^{(0)}(F,G).$

Построим последовательность $\tau_0=h>\tau_1>\tau_2>\cdots>\tau_r>\tau_r+1=\tau$ по следующему правилу построения. Пусть точки $\tau_0,\ \tau_1,\ \tau_2,\ \ldots,\ \tau_l$ уже построены. Тогда если $Q(U,\tau_l)\leqslant 4\gamma_\tau$, то мы обозначим r=l и положим $\tau_{r+1}=\tau$. Если $Q(U,\tau_l)>4\gamma_\tau$, то очередная точка τ_{l+1} выбирается из условий $\frac{Q(U,\tau_l)}{4}\leqslant Q(U,\tau_{l+1})\leqslant \frac{Q(U,\tau_l)}{2}$ (это возможно так как максимальный скачок функции концентрации происходит в нуле). По построению $\tau=\tau_{r+1}<\tau_r<\cdots<\tau_1<\tau_0=h$, причем

$$Q(U, \tau_l) \le 4Q(U, \tau_{l+1}), \quad l = 0, \dots, r.$$
 (19)

Легко доказывается, что

$$\frac{\gamma_h}{4^l} \leqslant Q(U, \tau) \leqslant \frac{\gamma_h}{2^l}, \quad l = 0, \dots, r.$$
 (20)

В частности, $\gamma_{\tau} \leqslant Q(U, \tau_r) \leqslant \frac{\gamma_h}{2^r}$, следовательно:

$$r \leqslant \frac{1}{\ln 2} \ln \frac{\gamma_h}{\gamma_\tau}.\tag{21}$$

Из определения (4) функции $f_{z,h,\tau}(x)$ следует, что (см. рис. 4):

$$f_{z,h,\tau}(x) = \sum_{l=0}^{r} f_{z,\tau_{l},\tau_{l+1}}(x)$$
. (22)

Из (15), (19), (20) и условий леммы 1 следует, что:

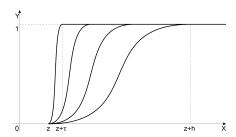


Рис. 4

$$\rho_{\tau_{l},\tau_{l+1}}(F,G) \leqslant C \cdot \varepsilon_{1} \gamma_{\tau_{l}}^{\alpha} (|\ln \gamma_{\tau_{l}}| + 1)^{\beta} + \underbrace{\varepsilon_{2}(\tau_{l+1})}_{\leqslant \varepsilon_{2}(\tau)}$$

$$\leqslant C \cdot \varepsilon_{1} \left(\frac{\gamma_{h}}{2^{l}}\right)^{\alpha} \left(\left|\ln \frac{\gamma_{h}}{4^{l}}\right| + 1\right)^{\beta} + \varepsilon_{2}(\tau)$$

$$= C \cdot \varepsilon_{1} \left(\frac{\gamma_{h}}{2^{l}}\right)^{\alpha} (|\ln \gamma_{h}| + l \ln 4 + 1)^{\beta} + \varepsilon_{2}(\tau). \tag{23}$$

Заметим, что если $\frac{\gamma_h}{2^l}$ относится к области возрастания функции $f(x)=x^{\alpha}(1-\ln x)^{\beta}$, то оценку (23) можно усилить до

$$\gamma_{\tau_l}^{\alpha}(|\ln \gamma_{\tau_l}| + 1)^{\beta} \leqslant \left(\frac{\gamma_h}{2^l}\right)^{\alpha} \left(\left|\ln \frac{\gamma_h}{2^l}\right| + 1\right)^{\beta} = \left(\frac{\gamma_h}{2^l}\right)^{\alpha} (|\ln \gamma_h| + l\ln 2 + 1)^{\beta}. \tag{25}$$

Функция $f(x) = x^{\alpha}(1 - \ln x)^{\beta}$ достигает своего максимума при $x = e^{1-\frac{\beta}{\alpha}}$, то есть неравенство (25) может быть применено при

$$l\geqslant \left\lceil\frac{\frac{\beta}{\alpha}-1}{\ln 2}\right\rceil \iff l\geqslant l_0=\max\biggl\{0,\left\lceil\frac{\frac{\beta}{\alpha}-1}{\ln 2}\right\rceil\biggr\}.$$

Из (21), (22), (24) и (25) следует

$$\rho_{h,\tau}(F, G) \leqslant \sum_{l=0}^{r} \rho_{\tau_{l},\tau_{l+1}}(F, G) \leqslant C \cdot \varepsilon_{1} \underbrace{\sum_{l=0}^{l_{0}-1} \left(\frac{\gamma_{h}}{2^{l}}\right)^{\alpha} (|\ln \gamma_{h}| + l\ln 4 + 1)^{\beta}}_{\Sigma_{1}}$$

$$+ C \cdot \varepsilon_1 \underbrace{\sum_{l=l_0}^{r} \left(\frac{\gamma_h}{2^l}\right)^{\alpha} (|\ln \gamma_h| + l \ln 2 + 1)^{\beta}}_{\Sigma_0} + \varepsilon_2(\tau) \frac{1}{\ln 2} \ln \frac{\gamma_h}{\gamma_{\tau}}.$$
 (26)

Осталось получить оценку вида $\Sigma_1 + \Sigma_2 < c(\alpha,\beta)\gamma_h^\alpha(|\ln\gamma_h|+1)^\beta$

$$c(\alpha, \beta) = \sup_{\gamma_h, r} \frac{\Sigma_1 + \Sigma_2}{\gamma_h^{\alpha} (|\ln \gamma_h| + 1)^{\beta}} = \sum_{l=0}^{l_0 - 1} 2^{-l\alpha} (l\ln 4 + 1)^{\beta} + \sum_{l=l_0}^{\infty} 2^{-l\alpha} (l\ln 2 + 1)^{\beta}$$
(27)

Выражение (27) верно, так как супремум достигается при $\gamma_h = 1$. Из (27), (26) получим неравенство (16):

$$\rho_{h,\tau}(F,G) \leqslant C \cdot c(\alpha,\beta) \varepsilon_1 \gamma_h^{\alpha} (|\ln \gamma_h| + 1)^{\beta} + \varepsilon_2(\tau) \frac{1}{\ln 2} \ln \frac{\gamma_h}{\gamma_{\tau}}.$$

С помощью формул (10), (12) из последнего неравенства получим неравенство (17), а неравенство (18) – с помощью формул (10) и (13).

В заключение приведем пример для $\alpha=\frac{1}{3}$ и $\beta=2$. Такие значения возникают, например, при оценке близости n и (n+1)-кратных сверток одномерных симметричных вероятностных распределений с отделенной от -1 характеристической функцией вида $\rho(F^n,F^{n+1})\leqslant \frac{c}{n}$ (см. $[1,\S 6]$).

Применив теорему 1 в случае $\alpha = \frac{1}{3}$ и $\beta = 2$, получим $l_0 = 8$ и

$$c(\alpha,\beta) = \sum_{l=0}^{7} 2^{\frac{-l}{3}} (l \ln 4 + 1)^2 + \sum_{l=8}^{\infty} 2^{\frac{-l}{3}} (l \ln 2 + 1)^2 \approx 180,67093894451472.$$

Список литературы

- 1. Т. В. Арак, А. Ю. Зайцев, Равномерные предельные теоремы для сумм независимых случайных величин. Тр. МИАН СССР **174** (1986), 3–214.
- 2. А. Ю. Зайцев, *К многомерному обобщению метода треугольных функций.* Зап. научн. семин. ЛОМИ **158** (1987), 81–104.
- 3. Я. С. Голикова, Вычисление констант в лемме о функциях w(x) и g(t) в методе гладких треугольных функций. Зап. научн. семин. ПОМИ **495** (2020), 135–146.

Golikova Ia. S. Calculation of constant values in pseudometric lemma at one-dimension method of smooth triangular functions.

In this paper, we consider the one-dimension method of smooth triangular functions. We obtain the dependence of the constant on the input parameters of the lemma, which allows us to reduce the problem of estimating $\rho_h(F, G)$ to the problem of estimating $\rho_{h,\tau}^{(J)}(F, G)$.

С.-Петербургский государственный университет, Университетская наб. 7/9 Балтийский государственный технический университет "ВОЕНМЕХ" им. Д. Ф. Устинова, 1-я Красноармейская, д.1 Санкт-Петербург, Россия E-mail: laviniaspb@gmail.com

Поступило 29 октября 2021 г.