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Abstract. A solution is given to a conjecture proposed recently
by Y. Wigderson and A. Wigderson concerning a “Heisenberg-like”
uncertainty principle. That conjecture is about the image of the map

f 7→ ‖f‖q‖f̂‖q
‖f‖2‖f̂‖2

, f ∈ S (R)\{0}, where S (R) stands for the Schwartz
class of functions on the real line. Also, a more general question is
answered, where the L2 norm is replaced by the Lp norm in the
denominator.

§1. Introduction

The classical Heisenberg uncertainty principle says that

‖f‖2‖f̂‖2 6 4π

(∫
|xf(x)|2dx

)1/2(∫
|ξf̂(ξ)|2dξ

)1/2

for a function f in S (R), the Schwartz space on real line, where f̂ is the
Fourier transform defined on S (R) by f̂(ξ) =

∫
R
f(x)e−2πixξdx, and ‖f‖q

is the Lq-norm of f , that is, ‖f‖qq =
∫
R |f |

qdx.
In a recent paper A. Wigderson and Y. Wigderson (see [5]) considered a

family of “Heisenberg-like” uncertainty principles, and posed the following
question.

Question 1.1 (see [5, Conjecture 4.13]). For 1 < q 6∞ and q 6= 2, define
the following function Fq : S (R) \ {0} → R>0,

Fq(f) :=
‖f‖q‖f̂‖q
‖f‖2‖f̂‖2

.

Is Fq surjective?

Key words and phrases: Fouier analysis, uncertainty principles, Hausdorff–Young
inequality.
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In other words, the question is whether the image of the function Fq is
all of R>0. Note that, if the image is bounded from below by a constant
c > 0, then

‖f‖2‖f̂‖2 6
1

c
‖f‖q‖f̂‖q,

which could be viewed as a variant of the classical uncertainty principle.
In this note (see also [4]) we answer this question affirmatively when

2 < q < ∞ (the case of q = ∞ was proved in [5]), and negatively when
1 < q < 2. Also, we discuss a more general question.

The author presented these results at the conference “ComPlane: the
next generation” on June 17–18, 2021, see [4]. On July 19, 2021, a paper
by L. Huang, Z. Liu, J. Wu [3] containing mostly the same results was
published on ArXiv.

Our first result is the following.

Theorem 1.2. (i) If 2 < q <∞, then the image of Fq is all of R>0.
(ii) If 1 < q < 2, then the image of Fq is bounded below by 1, i.e., Fq(f) > 1
for any f ∈ S (R) \ {0}.

We also consider the general case of the function

Fq,p(f) =
‖f‖q‖f̂‖q
‖f‖p‖f̂‖p

, f ∈ S (R) \ {0},

and obtain the following claim.

Theorem 1.3. Let 1 < q < p <∞. Then,
(i) if 1

p +
1
q > 1, then image of Fq,p is an infinite subinterval of [1,∞);

(ii) if 1
p +

1
q < 1, then the image of Fq,p is (0,∞).

Remark 1.4. The case of 1 < p < q < ∞ follows immediately from
Theorem 1.3: it suffices to observe that Fp,q(f) = 1

Fq,p(f)
.

Note that the bound 1 in Theorem 1.3 (i) is far from optimal. In fact,
in the proof the Hausdorff–Young inequality is used:

‖f̂‖p′ 6 ‖f‖p , p ∈ [1, 2],

which is weaker than Beckner’s theorem [1], which gives

‖f̂‖p′ 6
√

(p1/p)/(p′)1/p′‖f‖p.

We did not pursue this direction as it seems that finding the infimum of the
image of Fq,p is more difficult than determining whether it is surjective.
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§2. Preliminaries

Let us recall the topology on S (R). For α, β ∈ N, define

ρα,β(f) = sup
x∈R

∣∣xα dβ

dxβ
f(x)

∣∣.
Let {ρj}j be an enumeration of {ρα,β}α,β∈N, and define the following

metric on S (R):

d(f, g) =

∞∑
j=1

2−j
ρj(f − g)

1 + ρj(f − g)
.

Under this metric, the space (S (R), d) is complete, so S (R) is a Fréchet
space. A sequence {fn} ⊂ S (R) converges to f ∈ S (R) in S (R) if d(fn, f)
goes to 0 as n tends to infinity.

The following facts are basic properties of S (R) and the Fourier trans-
form on S (R) (see, e.g., [2]).

Fact 2.1. First, the Fourier transform f 7→ f̂ is a homeomorphism from
S onto itself. Second, if the functions {fn}n>1 and f belong to S (R),
and if fn converges to f in S (R), then fn converges to f in Lp for all
1 6 p 6∞. Therefore, the mapping f 7→ ‖f‖p is continuous on S (R) for
all 1 6 p 6∞.

Proof. For a proof, see [2], Proposition 2.2.6 and Corollary 2.2.15. �

Combining these facts, we see that the mapping f 7→ ‖f̂‖p is continuous
as a composition of two continuous mappings, so the mapping f 7→ Fq(f)
is continuous from S (R) \ {0} to R>0. As a metric space, S (R) \ {0} is
connected, because S (R) is a Fréchet space with dimS (R) = ∞. Recall
that between two metric spaces, the image of a connected set by a con-
tinuous map is also connected. Now the connected sets in R are intervals,
and we conclude that

Proposition 2.2. The image of Fq is an interval on R>0.

Our goal now is to study the endpoints of Im Fq. But first, we show
what can be obtained by calculating Fq(f) for a family of simple functions
f that was already used in [5]. For a > 1, define functions fa by

fa(x) = e−π(a
2−1)x2

e−2πiax
2

.
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Clearly, the function fa belongs to S (R), and one can calculate its
Fourier transform:

f̂a(ξ) =
1

a+ i
exp

(
−πξ2(a2 − 1)

(a2 + 1)2

)
exp

(
− 2πiξ2

a

(a2 + 1)2

)
.

Since
∫
R e−πx

2

dx = 1, we get, for any 1 6 q <∞,

∣∣∣∣fa∣∣∣∣Lq = ( 1√
q(a2 − 1)

) 1
q

,
∣∣∣∣f̂a∣∣∣∣Lq = 1√

a2 + 1

(
a2 + 1√
q(a2 − 1)

) 1
q

.

So, we get

Fq(fa) =
‖fa‖q‖f̂a‖q
‖fa‖2

=
√
2

(
1

q

)1/q(
a2 + 1

a2 − 1

)1/q−1/2

=
√
2

(
1

q

)1/q(
t+ 1

t− 1

)1/q−1/2

, a2 = t > 1.

Notice that the mapping t 7→ t+1
t−1 is monotone decreasing on (1,∞),

so if 1/q > 1/2, the image of the mapping t 7→ ( t+1
t−1 )

1/q−1/2 , t > 1, is
(1,∞). Similarly, if 1/q < 1/2, then the image of the above mapping is
(0, 1). In conclusion, by testing the functions fa on Fq, we get the following
statement.

Proposition 2.3. (i) If 1 < q < 2, then at least
(√

2( 1q )
1
q ,∞

)
⊂ Im Fq.

(ii) If 2 < q <∞, then at least
(
0,
√
2( 1q )

1
q
)
⊂ Im Fq.

§3. The case of 2 < q <∞ for Fq

In this section, we always assume that 2 < q < ∞, and we will prove
that Im Fq = (0,∞). By Proposition 2.3, we only need to construct a
sequence {fn}n ⊂ S (R) so that Fq(fn)→∞ as n goes to infinity. We use
a construction from [5]. Let c > 0, and define the function

gc(x) =
1√
c
e−π

x2

c2 +
√
c e−πc

2x2

.

Clearly, gc ∈ S (R), and ĝc = gc for all c > 0, therefore Fq(gc) =(‖gc‖q
‖gc‖2

)2. A direct calculation shows that

‖gc‖22 =
√
2 +

2c√
c4 + 1

, c > 0. (1)
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Now, we estimate ‖gc‖2q. By definition, one has

‖gc‖2q =
{∫ (

1

c
e−2π

x2

c2 + c e−2πc
2x2

+ 2e−π(c
2+1/c2)x2

) q
2

dx

} 2
q

.

Notice that
(∑

i ai
)q/2
>
∑
i a
q/2
i when q/2 > 1, therefore

‖gc‖2q >
{∫ (

1

c

)q/2
e−πq

x2

c2 + cq/2 e−πqc
2x2

+ 2q/2e
−πq
2 (c2+1/c2)x2

dx

} 2
q

=

{(
1

c

)q/2
1√
q/c2

+ cq/2
1√
qc2

+ 2q/2
1√

q(c2 + 1/c2)/2

} 2
q

. (2)

In conclusion, for all c > 0, we have

‖gc‖2q >
{

1
√
q
c1−

q
2 +

1
√
q
c
q
2−1 +

2(q+1)/2

√
q

c√
c4 + 1

} 2
q

>

(
1
√
q
c
q
2−1
)2/q

=

(
1

q

)1/q

c1−
2
q . (3)

Combining (1) and (3), we get

Fq(gc) >

(
1

q

)1/q
c1−

2
q

√
2 + 2c√

c4+1

.

Finally, we have Fq(gc)→∞ as c→∞ .

§4. The case of 1 < q < 2 for Fq

In this section, we always assume that 1 < q < 2. In fact, the case of
q < 2 is easier. Let q′ be the exponent conjugate to q. Hölder’s inequality
implies

‖f‖2 6 ‖f‖1/2q ‖f‖
1/2
q′ .

The Hausdorff–Young inequality states that, for 1 6 q 6 2, we have

‖f̂‖q′ 6 ‖f‖q , f ∈ S .

Therefore, by choosing g = f̂ ∈ S we get ‖ĝ‖q′ 6 ‖g‖q, i.e.,

‖f‖1/2q′ 6 ‖f̂‖
1/2
q .
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Combining these inequalities, we get

‖f‖2 6 ‖f‖1/2q ‖f̂‖1/2q ,

which implies that ‖f‖q‖f̂‖q‖f‖22
> 1 for any f ∈ S (R) \ {0}.

§5. The general case of Fp,q

In this section, we discuss the general case of the function

Fq,p(f) =
‖f‖q‖f̂‖q
‖f‖p‖f̂‖p

, 1 < q < p <∞.

First, we see what we could get by using the functions fa from §2:

fa(x) = e−π(a
2−1)x2

e−2πiax
2

, a > 1.

A direct calculation shows that for each 1 < q <∞,

‖fa‖q =
(

1

q(a2 − 1)

) 1
2q

, ‖f̂a‖q = (a2 + 1)−1/2
(

a2 + 1√
q(a2 − 1)

) 1
q

.

Replacing q by p, we obtain

Fq,p(fa) =
(1/q)1/q

(1/p)1/p

(
a2 + 1

a2 − 1

) 1
q−

1
p

=
(1/q)1/q

(1/p)1/p

(
t+ 1

t− 1

) 1
q−

1
p

, t = a2 > 1.

So we get
(

(1/q)1/q

(1/p)1/p
,∞
)
⊂ Im Fq,p.

5.1. Theorem 1.3, case (i). We prove (i) of Theorem 1.3: 1
p + 1

q > 1.
Note that q < 2 in this case. We divide it into two subcases: q < p < 2
and q < 2 6 p. These two subcases are a little bit different, although the
results are the same.

5.1.1. The case of q < p < 2. First, we write p as a convex combination
of q and 2:

p = λq + (1− λ)2 , 0 < λ < 1.

Then,
∫
|f |p =

∫
|f |λq|f |(1−λ)2. Notice that 1

λ ∈ (1,∞). By Hölder’s in-
equality (λ+ (1− λ) = 1), we have

‖f‖p 6 ‖f‖
1/p−1/2
1/q−1/2
q ‖f‖

1/q−1/p
1/q−1/2

2 . (4)
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Inequality (4) is also fulfilled for f̂ ,

‖f̂‖p 6 ‖f̂‖
1/p−1/2
1/q−1/2
q ‖f̂‖

1/q−1/p
1/q−1/2

2 . (5)

Combining the above two inequalities and the definition of Fq,p, we get

Fq,p(f) >

(
‖f‖q‖f̂‖q
‖f‖2‖f̂‖2

) 1/q−1/p
1/q−1/2

=
(
Fq(f)

) 1/q−1/p
1/q−1/2 .

Finally, notice that 1/q−1/p
1/q−1/2 > 0, so if 1 < q < p < 2, then we come back

to the case of 1 < q < 2, p = 2 in §4, which asserts that the image of Fq is
bounded below by 1. Therefore, the image of Fq,p is bounded below by 1.

5.1.2. The case of q < 2 6 p. Since 1 < p′ 6 2, ‖f̂‖p 6 ‖f‖p′ by the
Hausdorff–Young inequality, which shows that

‖f‖q‖f̂‖q
‖f‖p‖f̂‖p

>
‖f‖q‖f̂‖q
‖f̂‖p′‖f‖p′

= Fq,p′(f).

But this case was treated in Subsection 5.1.1, as 1 < q 6 p′ < 2.

5.2. Theorem 1.3, case (ii). Now we discuss the case of 1
p + 1

q < 1.
Recall that q < p, therefore p > 2. Here we use the function gc from §3.
Recall that for c > 0,

gc(x) =
1√
c
e−π

x2

c2 +
√
c e−πc

2x2

, gc = ĝc.

Inequality (2) implies that (p > 2)

‖gc‖2p >
{

1
√
p
c1−

p
2 +

1
√
p
c
p
2−1 +

2(p+1)/2

√
p

c√
c4 + 1

} 2
p

∼
(
c
p
2−1
√
p

)2/p

,

as c→∞.

Similarly, for q > 1, we have

(a1 + a2 + a3)
q
2 6 max{1, 3q/2−1}

(
a
q
2
1 + a

q
2
2 + a

q
2
3

)
,

so we merely reverse inequality (2) and get

‖gc‖2q 6
1√
2
+

1√
2
+

2√
2

c√
c4 + 1

6 4 , when q = 2.
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For q < 2 and c→∞ we get

‖gc‖2q 6
{

1
√
q
c1−

q
2 +

1
√
q
c
q
2−1 +

2(q+1)/2

√
q

c√
c4 + 1

} 2
q

∼
(
c1−

q
2

√
q

)2/q

,

and, finally, for q > 2 and c→∞ we have

‖gc‖2q631−
2
q

{
1
√
q
c1−

q
2+

1
√
q
c
q
2−1+

2(q+1)/2

√
q

c√
c4 + 1

} 2
q

∼ 31−
2
q

(
c
q
2−1
√
q

)2/q

.

Consequently, as c goes to infinity, we have

‖gc‖2q/‖gc‖2p 6 Cp,q c2(1/q+1/p−1)

when q 6 2, and ‖gc‖2q/‖gc‖2p 6 Cp,q c
2(1/p−1/q) when q > 2, where Cp,q

depends only on p and q. Finally, note simply that 1/q + 1/p− 1 < 0 and
1/p− 1/q < 0, so limc→∞ ‖gc‖2q/‖gc‖2p = 0.
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