Yiyu Tang

A SIMPLE OBSERVATION ON HEISENBERG-LIKE UNCERTAINTY PRINCIPLES

ABSTRACT. A solution is given to a conjecture proposed recently by Y. Wigderson and A. Wigderson concerning a "Heisenberg-like" uncertainty principle. That conjecture is about the image of the map $f \mapsto \frac{\|f\|_q \|\hat{f}\|_q}{\|f\|_2 \|\hat{f}\|_2}, f \in \mathscr{S}(\mathbb{R}) \setminus \{0\}$, where $\mathscr{S}(\mathbb{R})$ stands for the Schwartz class of functions on the real line. Also, a more general question is answered, where the L_2 norm is replaced by the L_p norm in the denominator.

§1. INTRODUCTION

The classical Heisenberg uncertainty principle says that

$$||f||_2 ||\hat{f}||_2 \leq 4\pi \left(\int |xf(x)|^2 \mathrm{d}x\right)^{1/2} \left(\int |\xi\hat{f}(\xi)|^2 \mathrm{d}\xi\right)^{1/2}$$

for a function f in $\mathscr{S}(\mathbb{R})$, the Schwartz space on real line, where \hat{f} is the Fourier transform defined on $\mathscr{S}(\mathbb{R})$ by $\hat{f}(\xi) = \int_{\mathbb{D}} f(x) \mathrm{e}^{-2\pi \mathrm{i} x \xi} \mathrm{d} x$, and $\|f\|_q$

is the L^q -norm of f, that is, $||f||_q^q = \int_{\mathbb{R}} |f|^q dx$.

In a recent paper A. Wigderson and Y. Wigderson (see [5]) considered a family of "Heisenberg-like" uncertainty principles, and posed the following question.

Question 1.1 (see [5, Conjecture 4.13]). For $1 < q \leq \infty$ and $q \neq 2$, define the following function $F_q : \mathscr{S}(\mathbb{R}) \setminus \{0\} \to \mathbb{R}_{>0}$,

$$F_q(f) := \frac{\|f\|_q \|\hat{f}\|_q}{\|f\|_2 \|\hat{f}\|_2}.$$

Is F_q surjective?

 $Key\ words\ and\ phrases:$ Fou
ier analysis, uncertainty principles, Hausdorff–Young inequality.

In other words, the question is whether the image of the function F_q is all of $\mathbb{R}_{>0}$. Note that, if the image is bounded from below by a constant c > 0, then

$$|f||_2 \|\hat{f}\|_2 \leqslant \frac{1}{c} \|f\|_q \|\hat{f}\|_q,$$

which could be viewed as a variant of the classical uncertainty principle.

In this note (see also [4]) we answer this question affirmatively when $2 < q < \infty$ (the case of $q = \infty$ was proved in [5]), and negatively when 1 < q < 2. Also, we discuss a more general question.

The author presented these results at the conference "ComPlane: the next generation" on June 17–18, 2021, see [4]. On July 19, 2021, a paper by L. Huang, Z. Liu, J. Wu [3] containing mostly the same results was published on ArXiv.

Our first result is the following.

Theorem 1.2. (i) If $2 < q < \infty$, then the image of F_q is all of $\mathbb{R}_{>0}$. (ii) If 1 < q < 2, then the image of F_q is bounded below by 1, i.e., $F_q(f) \ge 1$ for any $f \in \mathscr{S}(\mathbb{R}) \setminus \{0\}$.

We also consider the general case of the function

$$F_{q,p}(f) = \frac{\|f\|_q \|f\|_q}{\|f\|_p \|\hat{f}\|_p}, \quad f \in \mathscr{S}(\mathbb{R}) \setminus \{0\},$$

and obtain the following claim.

Theorem 1.3. Let $1 < q < p < \infty$. Then, (i) if $\frac{1}{p} + \frac{1}{q} \ge 1$, then image of $F_{q,p}$ is an infinite subinterval of $[1,\infty)$;

(ii) if $\frac{1}{p} + \frac{1}{q} < 1$, then the image of $F_{q,p}$ is $(0,\infty)$.

Remark 1.4. The case of $1 follows immediately from Theorem 1.3: it suffices to observe that <math>F_{p,q}(f) = \frac{1}{F_{q,p}(f)}$.

Note that the bound 1 in Theorem 1.3 (i) is far from optimal. In fact, in the proof the Hausdorff–Young inequality is used:

$$\|\hat{f}\|_{p'} \leq \|f\|_p, \quad p \in [1, 2],$$

which is weaker than Beckner's theorem [1], which gives

$$\|\hat{f}\|_{p'} \leq \sqrt{(p^{1/p})/(p')^{1/p'}} \|f\|_p.$$

We did not pursue this direction as it seems that finding the infimum of the image of $F_{q,p}$ is more difficult than determining whether it is surjective.

§2. Preliminaries

Let us recall the topology on $\mathscr{S}(\mathbb{R})$. For $\alpha, \beta \in \mathbb{N}$, define

$$\rho_{\alpha,\beta}(f) = \sup_{x \in \mathbb{R}} \left| x^{\alpha} \frac{\mathrm{d}^{\beta}}{\mathrm{d}x^{\beta}} f(x) \right|.$$

Let $\{\rho_j\}_j$ be an enumeration of $\{\rho_{\alpha,\beta}\}_{\alpha,\beta\in\mathbb{N}}$, and define the following metric on $\mathscr{S}(\mathbb{R})$:

$$d(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\rho_j(f-g)}{1+\rho_j(f-g)}.$$

Under this metric, the space $(\mathscr{S}(\mathbb{R}), d)$ is complete, so $\mathscr{S}(\mathbb{R})$ is a Fréchet space. A sequence $\{f_n\} \subset \mathscr{S}(\mathbb{R})$ converges to $f \in \mathscr{S}(\mathbb{R})$ in $\mathscr{S}(\mathbb{R})$ if $d(f_n, f)$ goes to 0 as n tends to infinity.

The following facts are basic properties of $\mathscr{S}(\mathbb{R})$ and the Fourier transform on $\mathscr{S}(\mathbb{R})$ (see, e.g., [2]).

Fact 2.1. First, the Fourier transform $f \mapsto \hat{f}$ is a homeomorphism from \mathscr{S} onto itself. Second, if the functions $\{f_n\}_{n \ge 1}$ and f belong to $\mathscr{S}(\mathbb{R})$, and if f_n converges to f in $\mathscr{S}(\mathbb{R})$, then f_n converges to f in L^p for all $1 \le p \le \infty$. Therefore, the mapping $f \mapsto ||f||_p$ is continuous on $\mathscr{S}(\mathbb{R})$ for all $1 \le p \le \infty$.

Proof. For a proof, see [2], Proposition 2.2.6 and Corollary 2.2.15. \Box

Combining these facts, we see that the mapping $f \mapsto \|\hat{f}\|_p$ is continuous as a composition of two continuous mappings, so the mapping $f \mapsto F_q(f)$ is continuous from $\mathscr{S}(\mathbb{R}) \setminus \{0\}$ to $\mathbb{R}_{>0}$. As a metric space, $\mathscr{S}(\mathbb{R}) \setminus \{0\}$ is connected, because $\mathscr{S}(\mathbb{R})$ is a Fréchet space with dim $\mathscr{S}(\mathbb{R}) = \infty$. Recall that between two metric spaces, the image of a connected set by a continuous map is also connected. Now the connected sets in \mathbb{R} are intervals, and we conclude that

Proposition 2.2. The image of F_q is an interval on $\mathbb{R}_{>0}$.

Our goal now is to study the endpoints of Im F_q . But first, we show what can be obtained by calculating $F_q(f)$ for a family of simple functions f that was already used in [5]. For a > 1, define functions f_a by

$$f_a(x) = e^{-\pi (a^2 - 1)x^2} e^{-2\pi i ax^2}.$$

Clearly, the function f_a belongs to $\mathscr{S}(\mathbb{R})$, and one can calculate its Fourier transform:

$$\hat{f}_a(\xi) = \frac{1}{a+i} \exp\left(\frac{-\pi\xi^2(a^2-1)}{(a^2+1)^2}\right) \exp\left(-2\pi i\xi^2 \frac{a}{(a^2+1)^2}\right).$$

Since $\int_{\mathbb{R}} e^{-\pi x^2} dx = 1$, we get, for any $1 \leq q < \infty$,

$$\left|\left|f_{a}\right|\right|_{L^{q}} = \left(\frac{1}{\sqrt{q(a^{2}-1)}}\right)^{\frac{1}{q}}, \quad \left|\left|\hat{f}_{a}\right|\right|_{L^{q}} = \frac{1}{\sqrt{a^{2}+1}} \left(\frac{a^{2}+1}{\sqrt{q(a^{2}-1)}}\right)^{\frac{1}{q}}.$$

So, we get

$$F_q(f_a) = \frac{\|f_a\|_q \|\hat{f}_a\|_q}{\|f_a\|^2} = \sqrt{2} \left(\frac{1}{q}\right)^{1/q} \left(\frac{a^2+1}{a^2-1}\right)^{1/q-1/2}$$
$$= \sqrt{2} \left(\frac{1}{q}\right)^{1/q} \left(\frac{t+1}{t-1}\right)^{1/q-1/2}, \quad a^2 = t > 1.$$

Notice that the mapping $t \mapsto \frac{t+1}{t-1}$ is monotone decreasing on $(1, \infty)$, so if 1/q > 1/2, the image of the mapping $t \mapsto (\frac{t+1}{t-1})^{1/q-1/2}$, t > 1, is $(1, \infty)$. Similarly, if 1/q < 1/2, then the image of the above mapping is (0, 1). In conclusion, by testing the functions f_a on F_q , we get the following statement.

Proposition 2.3. (i) If 1 < q < 2, then at least $\left(\sqrt{2}\left(\frac{1}{q}\right)^{\frac{1}{q}}, \infty\right) \subset \text{Im } F_q$. (ii) If $2 < q < \infty$, then at least $\left(0, \sqrt{2}\left(\frac{1}{q}\right)^{\frac{1}{q}}\right) \subset \text{Im } F_q$.

§3. The case of $2 < q < \infty$ for F_q

In this section, we always assume that $2 < q < \infty$, and we will prove that Im $F_q = (0, \infty)$. By Proposition 2.3, we only need to construct a sequence $\{f_n\}_n \subset \mathscr{S}(\mathbb{R})$ so that $F_q(f_n) \to \infty$ as n goes to infinity. We use a construction from [5]. Let c > 0, and define the function

$$g_c(x) = \frac{1}{\sqrt{c}} e^{-\pi \frac{x^2}{c^2}} + \sqrt{c} e^{-\pi c^2 x^2}.$$

Clearly, $g_c \in \mathscr{S}(\mathbb{R})$, and $\hat{g_c} = g_c$ for all c > 0, therefore $F_q(g_c) = \left(\frac{\|g_c\|_q}{\|g_c\|_2}\right)^2$. A direct calculation shows that

$$\|g_c\|_2^2 = \sqrt{2} + \frac{2c}{\sqrt{c^4 + 1}}, \quad c > 0.$$
⁽¹⁾

Now, we estimate $||g_c||_q^2$. By definition, one has

$$||g_c||_q^2 = \left\{ \int \left(\frac{1}{c} e^{-2\pi \frac{x^2}{c^2}} + c e^{-2\pi c^2 x^2} + 2e^{-\pi (c^2 + 1/c^2)x^2} \right)^{\frac{q}{2}} \mathrm{d}x \right\}^{\frac{2}{q}}.$$

Notice that $\left(\sum_{i} a_{i}\right)^{q/2} \ge \sum_{i} a_{i}^{q/2}$ when q/2 > 1, therefore

$$\|g_{c}\|_{q}^{2} \ge \left\{ \int \left(\frac{1}{c}\right)^{q/2} e^{-\pi q \frac{x^{2}}{c^{2}}} + c^{q/2} e^{-\pi q c^{2} x^{2}} + 2^{q/2} e^{\frac{-\pi q}{2} (c^{2} + 1/c^{2}) x^{2}} dx \right\}^{\frac{\pi}{q}} \\ = \left\{ \left(\frac{1}{c}\right)^{q/2} \frac{1}{\sqrt{q/c^{2}}} + c^{q/2} \frac{1}{\sqrt{qc^{2}}} + 2^{q/2} \frac{1}{\sqrt{q(c^{2} + 1/c^{2})/2}} \right\}^{\frac{2}{q}}.$$
 (2)

In conclusion, for all c > 0, we have

$$\|g_{c}\|_{q}^{2} \geq \left\{\frac{1}{\sqrt{q}}c^{1-\frac{q}{2}} + \frac{1}{\sqrt{q}}c^{\frac{q}{2}-1} + \frac{2^{(q+1)/2}}{\sqrt{q}}\frac{c}{\sqrt{c^{4}+1}}\right\}^{\frac{2}{q}} \geq \left(\frac{1}{\sqrt{q}}c^{\frac{q}{2}-1}\right)^{2/q} = \left(\frac{1}{q}\right)^{1/q}c^{1-\frac{2}{q}}.$$
(3)

Combining (1) and (3), we get

$$F_q(g_c) \geqslant \left(\frac{1}{q}\right)^{1/q} \frac{c^{1-\frac{2}{q}}}{\sqrt{2} + \frac{2c}{\sqrt{c^4+1}}}.$$

Finally, we have $F_q(g_c) \to \infty$ as $c \to \infty$.

§4. The case of
$$1 < q < 2$$
 for F_q

In this section, we always assume that 1 < q < 2. In fact, the case of q < 2 is easier. Let q' be the exponent conjugate to q. Hölder's inequality implies

$$||f||_2 \leq ||f||_q^{1/2} ||f||_{q'}^{1/2}$$

The Hausdorff–Young inequality states that, for $1 \leqslant q \leqslant 2$, we have

$$\|\widehat{f}\|_{q'} \leqslant \|f\|_q, \quad f \in \mathscr{S}.$$

Therefore, by choosing $g = \hat{f} \in \mathscr{S}$ we get $\|\hat{g}\|_{q'} \leq \|g\|_q$, i.e.,

$$\|f\|_{q'}^{1/2} \le \|\hat{f}\|_{q}^{1/2}$$

Combining these inequalities, we get

$$||f||_2 \leq ||f||_q^{1/2} ||\hat{f}||_q^{1/2},$$

which implies that $\frac{\|f\|_q \|\hat{f}\|_q}{\|f\|_2^2} \ge 1$ for any $f \in \mathscr{S}(\mathbb{R}) \setminus \{0\}$.

§5. The general case of $F_{p,q}$

In this section, we discuss the general case of the function

$$F_{q,p}(f) = \frac{\|f\|_q \|\hat{f}\|_q}{\|f\|_p \|\hat{f}\|_p}, \quad 1 < q < p < \infty$$

First, we see what we could get by using the functions f_a from §2:

$$f_a(x) = e^{-\pi (a^2 - 1)x^2} e^{-2\pi i ax^2}, \quad a > 1.$$

A direct calculation shows that for each $1 < q < \infty$,

$$||f_a||_q = \left(\frac{1}{q(a^2-1)}\right)^{\frac{1}{2q}}, \quad ||\hat{f}_a||_q = (a^2+1)^{-1/2} \left(\frac{a^2+1}{\sqrt{q(a^2-1)}}\right)^{\frac{1}{q}}.$$

Replacing q by p, we obtain

$$F_{q,p}(f_a) = \frac{(1/q)^{1/q}}{(1/p)^{1/p}} \left(\frac{a^2+1}{a^2-1}\right)^{\frac{1}{q}-\frac{1}{p}} = \frac{(1/q)^{1/q}}{(1/p)^{1/p}} \left(\frac{t+1}{t-1}\right)^{\frac{1}{q}-\frac{1}{p}}, \quad t = a^2 > 1.$$

So we get $\left(\frac{(1/q)^{1/q}}{(1/p)^{1/p}}, \infty\right) \subset \text{Im } F_{q,p}.$

5.1. Theorem 1.3, case (i). We prove (i) of Theorem 1.3: $\frac{1}{p} + \frac{1}{q} \ge 1$. Note that q < 2 in this case. We divide it into two subcases: $q and <math>q < 2 \le p$. These two subcases are a little bit different, although the results are the same.

5.1.1. The case of q . First, we write p as a convex combination of q and 2:

$$p = \lambda q + (1 - \lambda)2, \quad 0 < \lambda < 1.$$

Then, $\int |f|^p = \int |f|^{\lambda q} |f|^{(1-\lambda)2}$. Notice that $\frac{1}{\lambda} \in (1,\infty)$. By Hölder's inequality $(\lambda + (1-\lambda) = 1)$, we have

$$\|f\|_{p} \leqslant \|f\|_{q}^{\frac{1/p-1/2}{1/q-1/2}} \|f\|_{2}^{\frac{1/q-1/p}{1/q-1/2}}.$$
(4)

Inequality (4) is also fulfilled for \hat{f} ,

$$\|\hat{f}\|_{p} \leqslant \|\hat{f}\|_{q}^{\frac{1/p-1/2}{1/q-1/2}} \|\hat{f}\|_{2}^{\frac{1/q-1/p}{1/q-1/2}}.$$
(5)

Combining the above two inequalities and the definition of $F_{q,p}$, we get

$$F_{q,p}(f) \ge \left(\frac{\|f\|_q \|\hat{f}\|_q}{\|f\|_2 \|\hat{f}\|_2}\right)^{\frac{1/q-1/p}{1/q-1/2}} = \left(F_q(f)\right)^{\frac{1/q-1/p}{1/q-1/2}}.$$

Finally, notice that $\frac{1/q-1/p}{1/q-1/2} > 0$, so if 1 < q < p < 2, then we come back to the case of 1 < q < 2, p = 2 in §4, which asserts that the image of F_q is bounded below by 1. Therefore, the image of $F_{q,p}$ is bounded below by 1.

5.1.2. The case of $q < 2 \leq p$. Since $1 < p' \leq 2$, $\|\hat{f}\|_p \leq \|f\|_{p'}$ by the Hausdorff-Young inequality, which shows that

$$\frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|f\|_{p}\|\hat{f}\|_{p}} \ge \frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|\hat{f}\|_{p'}\|f\|_{p'}} = F_{q,p'}(f).$$

But this case was treated in Subsection 5.1.1, as $1 < q \leq p' < 2$.

5.2. Theorem 1.3, case (ii). Now we discuss the case of $\frac{1}{p} + \frac{1}{q} < 1$. Recall that q < p, therefore p > 2. Here we use the function g_c from §3. Recall that for c > 0,

$$g_c(x) = \frac{1}{\sqrt{c}} e^{-\pi \frac{x^2}{c^2}} + \sqrt{c} e^{-\pi c^2 x^2}, \quad g_c = \hat{g}_c.$$

Inequality (2) implies that (p > 2)

$$|g_c||_p^2 \ge \left\{\frac{1}{\sqrt{p}}c^{1-\frac{p}{2}} + \frac{1}{\sqrt{p}}c^{\frac{p}{2}-1} + \frac{2^{(p+1)/2}}{\sqrt{p}}\frac{c}{\sqrt{c^4+1}}\right\}^{\frac{2}{p}} \sim \left(\frac{c^{\frac{p}{2}-1}}{\sqrt{p}}\right)^{2/p},$$

as $c \to \infty$.

Similarly, for q > 1, we have

$$(a_1 + a_2 + a_3)^{\frac{q}{2}} \leqslant \max\{1, 3^{q/2-1}\} \left(a_1^{\frac{q}{2}} + a_2^{\frac{q}{2}} + a_3^{\frac{q}{2}}\right),$$

so we merely reverse inequality (2) and get

$$|g_c||_q^2 \leq \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{2}{\sqrt{2}} \frac{c}{\sqrt{c^4 + 1}} \leq 4$$
, when $q = 2$.

For q < 2 and $c \to \infty$ we get

$$\|g_c\|_q^2 \leqslant \left\{\frac{1}{\sqrt{q}}c^{1-\frac{q}{2}} + \frac{1}{\sqrt{q}}c^{\frac{q}{2}-1} + \frac{2^{(q+1)/2}}{\sqrt{q}}\frac{c}{\sqrt{c^4+1}}\right\}^{\frac{2}{q}} \sim \left(\frac{c^{1-\frac{q}{2}}}{\sqrt{q}}\right)^{2/q},$$

and, finally, for q>2 and $c\to\infty$ we have

$$\|g_c\|_q^2 \leqslant 3^{1-\frac{2}{q}} \left\{ \frac{1}{\sqrt{q}} c^{1-\frac{q}{2}} + \frac{1}{\sqrt{q}} c^{\frac{q}{2}-1} + \frac{2^{(q+1)/2}}{\sqrt{q}} \frac{c}{\sqrt{c^4+1}} \right\}^{\frac{2}{q}} \sim 3^{1-\frac{2}{q}} \left(\frac{c^{\frac{q}{2}-1}}{\sqrt{q}} \right)^{2/q}.$$

Consequently, as c goes to infinity, we have

$$||g_c||_q^2 / ||g_c||_p^2 \leq C_{p,q} c^{2(1/q+1/p-1)}$$

when $q \leq 2$, and $\|g_c\|_q^2 / \|g_c\|_p^2 \leq C_{p,q} c^{2(1/p-1/q)}$ when q > 2, where $C_{p,q}$ depends only on p and q. Finally, note simply that 1/q + 1/p - 1 < 0 and 1/p - 1/q < 0, so $\lim_{c \to \infty} \|g_c\|_q^2 / \|g_c\|_p^2 = 0$.

References

- 1. W. Bechner, Inequalities in Fourier analysis. Ann. Math. 102 (1975), 159-182.
- L. Grafakos, *Classical Fourier Analysis* (3rd edition), Graduate Texts in Mathematics, Vol. 249, Springer, 2014.
- 3. L. Huang, Z. Liu, J. Wu, Quantum smooth uncertainty principles for von Neumann bi-algebras, https://arxiv.org/abs/2107.09057, July 19, 2021.
- 4. Y. Tang, Poster talk at the conference "ComPlane: the next generation", June 17-18, 2021, https://sites.google.com/view/oudynamicalsystems/complane
- 5. Y. Wigderson, A. Wigderson, *The uncertainty principle: variations on a theme.* Bull. Amer. Math. Soc. **58**, No. 2 (2021), 225–261.

LAMA (UMR CNRS 8050), Université Gustave Eiffel,

Поступило 21 октября 2021 г.

5 Bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, France

E-mail: yurinana1997@gmail.com