Yiyu Tang

A SIMPLE OBSERVATION ON HEISENBERG-LIKE UNCERTAINTY PRINCIPLES

Abstract

A solution is given to a conjecture proposed recently by Y. Wigderson and A. Wigderson concerning a "Heisenberg-like" uncertainty principle. That conjecture is about the image of the map $f \mapsto \frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|f\|_{2}\|\hat{f}\|_{2}}, f \in \mathscr{S}(\mathbb{R}) \backslash\{0\}$, where $\mathscr{S}(\mathbb{R})$ stands for the Schwartz class of functions on the real line. Also, a more general question is answered, where the L_{2} norm is replaced by the L_{p} norm in the denominator.

§1. Introduction

The classical Heisenberg uncertainty principle says that

$$
\|f\|_{2}\|\hat{f}\|_{2} \leqslant 4 \pi\left(\int|x f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int|\xi \hat{f}(\xi)|^{2} \mathrm{~d} \xi\right)^{1 / 2}
$$

for a function f in $\mathscr{S}(\mathbb{R})$, the Schwartz space on real line, where \hat{f} is the Fourier transform defined on $\mathscr{S}(\mathbb{R})$ by $\hat{f}(\xi)=\int_{\mathbb{R}} f(x) \mathrm{e}^{-2 \pi \mathrm{i} x \xi} \mathrm{~d} x$, and $\|f\|_{q}$ is the L^{q}-norm of f, that is, $\|f\|_{q}^{q}=\int_{\mathbb{R}}|f|^{q} \mathrm{~d} x$.

In a recent paper A. Wigderson and Y. Wigderson (see [5]) considered a family of "Heisenberg-like" uncertainty principles, and posed the following question.

Question 1.1 (see [5, Conjecture 4.13]). For $1<q \leqslant \infty$ and $q \neq 2$, define the following function $F_{q}: \mathscr{S}(\mathbb{R}) \backslash\{0\} \rightarrow \mathbb{R}_{>0}$,

$$
F_{q}(f):=\frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|f\|_{2}\|\hat{f}\|_{2}}
$$

Is F_{q} surjective?

[^0]In other words, the question is whether the image of the function F_{q} is all of $\mathbb{R}_{>0}$. Note that, if the image is bounded from below by a constant $c>0$, then

$$
\|f\|_{2}\|\hat{f}\|_{2} \leqslant \frac{1}{c}\|f\|_{q}\|\hat{f}\|_{q}
$$

which could be viewed as a variant of the classical uncertainty principle.
In this note (see also [4]) we answer this question affirmatively when $2<q<\infty$ (the case of $q=\infty$ was proved in [5]), and negatively when $1<q<2$. Also, we discuss a more general question.

The author presented these results at the conference "ComPlane: the next generation" on June 17-18, 2021, see [4]. On July 19, 2021, a paper by L. Huang, Z. Liu, J. Wu [3] containing mostly the same results was published on ArXiv.

Our first result is the following.
Theorem 1.2. (i) If $2<q<\infty$, then the image of F_{q} is all of $\mathbb{R}_{>0}$.
(ii) If $1<q<2$, then the image of F_{q} is bounded below by 1 , i.e., $F_{q}(f) \geqslant 1$ for any $f \in \mathscr{S}(\mathbb{R}) \backslash\{0\}$.

We also consider the general case of the function

$$
F_{q, p}(f)=\frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|f\|_{p}\|\hat{f}\|_{p}}, \quad f \in \mathscr{S}(\mathbb{R}) \backslash\{0\}
$$

and obtain the following claim.
Theorem 1.3. Let $1<q<p<\infty$. Then,
(i) if $\frac{1}{p}+\frac{1}{q} \geqslant 1$, then image of $F_{q, p}$ is an infinite subinterval of $[1, \infty)$;
(ii) if $\frac{1}{p}+\frac{1}{q}<1$, then the image of $F_{q, p}$ is $(0, \infty)$.

Remark 1.4. The case of $1<p<q<\infty$ follows immediately from Theorem 1.3: it suffices to observe that $F_{p, q}(f)=\frac{1}{F_{q, p}(f)}$.

Note that the bound 1 in Theorem 1.3 (i) is far from optimal. In fact, in the proof the Hausdorff-Young inequality is used:

$$
\|\hat{f}\|_{p^{\prime}} \leqslant\|f\|_{p}, \quad p \in[1,2],
$$

which is weaker than Beckner's theorem [1], which gives

$$
\|\hat{f}\|_{p^{\prime}} \leqslant \sqrt{\left(p^{1 / p}\right) /\left(p^{\prime}\right)^{1 / p^{\prime}}}\|f\|_{p}
$$

We did not pursue this direction as it seems that finding the infimum of the image of $F_{q, p}$ is more difficult than determining whether it is surjective.

§2. Preliminaries

Let us recall the topology on $\mathscr{S}(\mathbb{R})$. For $\alpha, \beta \in \mathbb{N}$, define

$$
\rho_{\alpha, \beta}(f)=\sup _{x \in \mathbb{R}}\left|x^{\alpha} \frac{\mathrm{d}^{\beta}}{\mathrm{d} x^{\beta}} f(x)\right| .
$$

Let $\left\{\rho_{j}\right\}_{j}$ be an enumeration of $\left\{\rho_{\alpha, \beta}\right\}_{\alpha, \beta \in \mathbb{N}}$, and define the following metric on $\mathscr{S}(\mathbb{R})$:

$$
d(f, g)=\sum_{j=1}^{\infty} 2^{-j} \frac{\rho_{j}(f-g)}{1+\rho_{j}(f-g)}
$$

Under this metric, the space $(\mathscr{S}(\mathbb{R}), d)$ is complete, so $\mathscr{S}(\mathbb{R})$ is a Fréchet space. A sequence $\left\{f_{n}\right\} \subset \mathscr{S}(\mathbb{R})$ converges to $f \in \mathscr{S}(\mathbb{R})$ in $\mathscr{S}(\mathbb{R})$ if $d\left(f_{n}, f\right)$ goes to 0 as n tends to infinity.

The following facts are basic properties of $\mathscr{S}(\mathbb{R})$ and the Fourier transform on $\mathscr{S}(\mathbb{R})$ (see, e.g., [2]).
Fact 2.1. First, the Fourier transform $f \mapsto \hat{f}$ is a homeomorphism from \mathscr{S} onto itself. Second, if the functions $\left\{f_{n}\right\}_{n \geqslant 1}$ and f belong to $\mathscr{S}(\mathbb{R})$, and if f_{n} converges to f in $\mathscr{S}(\mathbb{R})$, then f_{n} converges to f in L^{p} for all $1 \leqslant p \leqslant \infty$. Therefore, the mapping $f \mapsto\|f\|_{p}$ is continuous on $\mathscr{S}(\mathbb{R})$ for all $1 \leqslant p \leqslant \infty$.

Proof. For a proof, see [2], Proposition 2.2.6 and Corollary 2.2.15.
Combining these facts, we see that the mapping $f \mapsto\|\hat{f}\|_{p}$ is continuous as a composition of two continuous mappings, so the mapping $f \mapsto F_{q}(f)$ is continuous from $\mathscr{S}(\mathbb{R}) \backslash\{0\}$ to $\mathbb{R}_{>0}$. As a metric space, $\mathscr{S}(\mathbb{R}) \backslash\{0\}$ is connected, because $\mathscr{S}(\mathbb{R})$ is a Fréchet space with $\operatorname{dim} \mathscr{S}(\mathbb{R})=\infty$. Recall that between two metric spaces, the image of a connected set by a continuous map is also connected. Now the connected sets in \mathbb{R} are intervals, and we conclude that

Proposition 2.2. The image of F_{q} is an interval on $\mathbb{R}_{>0}$.
Our goal now is to study the endpoints of $\operatorname{Im} F_{q}$. But first, we show what can be obtained by calculating $F_{q}(f)$ for a family of simple functions f that was already used in [5]. For $a>1$, define functions f_{a} by

$$
f_{a}(x)=\mathrm{e}^{-\pi\left(a^{2}-1\right) x^{2}} \mathrm{e}^{-2 \pi \mathrm{i} a x^{2}} .
$$

Clearly, the function f_{a} belongs to $\mathscr{S}(\mathbb{R})$, and one can calculate its Fourier transform:

$$
\hat{f}_{a}(\xi)=\frac{1}{a+\mathrm{i}} \exp \left(\frac{-\pi \xi^{2}\left(a^{2}-1\right)}{\left(a^{2}+1\right)^{2}}\right) \exp \left(-2 \pi \mathrm{i} \xi^{2} \frac{a}{\left(a^{2}+1\right)^{2}}\right)
$$

Since $\int_{\mathbb{R}} \mathrm{e}^{-\pi x^{2}} \mathrm{~d} x=1$, we get, for any $1 \leqslant q<\infty$,

$$
\left\|f_{a}\right\|_{L^{q}}=\left(\frac{1}{\sqrt{q\left(a^{2}-1\right)}}\right)^{\frac{1}{q}}, \quad\left\|\hat{f}_{a}\right\|_{L^{q}}=\frac{1}{\sqrt{a^{2}+1}}\left(\frac{a^{2}+1}{\sqrt{q\left(a^{2}-1\right)}}\right)^{\frac{1}{q}} .
$$

So, we get

$$
\begin{aligned}
F_{q}\left(f_{a}\right) & =\frac{\left\|f_{a}\right\|_{q}\left\|\hat{f}_{a}\right\|_{q}}{\left\|f_{a}\right\|^{2}}=\sqrt{2}\left(\frac{1}{q}\right)^{1 / q}\left(\frac{a^{2}+1}{a^{2}-1}\right)^{1 / q-1 / 2} \\
& =\sqrt{2}\left(\frac{1}{q}\right)^{1 / q}\left(\frac{t+1}{t-1}\right)^{1 / q-1 / 2}, \quad a^{2}=t>1
\end{aligned}
$$

Notice that the mapping $t \mapsto \frac{t+1}{t-1}$ is monotone decreasing on $(1, \infty)$, so if $1 / q>1 / 2$, the image of the mapping $t \mapsto\left(\frac{t+1}{t-1}\right)^{1 / q-1 / 2}, t>1$, is $(1, \infty)$. Similarly, if $1 / q<1 / 2$, then the image of the above mapping is $(0,1)$. In conclusion, by testing the functions f_{a} on F_{q}, we get the following statement.

Proposition 2.3. (i) If $1<q<2$, then at least $\left(\sqrt{2}\left(\frac{1}{q}\right)^{\frac{1}{q}}, \infty\right) \subset \operatorname{Im} F_{q}$.
(ii) If $2<q<\infty$, then at least $\left(0, \sqrt{2}\left(\frac{1}{q}\right)^{\frac{1}{q}}\right) \subset \operatorname{Im} F_{q}$.

§3. THE CASE OF $2<q<\infty$ FOR F_{q}

In this section, we always assume that $2<q<\infty$, and we will prove that $\operatorname{Im} F_{q}=(0, \infty)$. By Proposition 2.3, we only need to construct a sequence $\left\{f_{n}\right\}_{n} \subset \mathscr{S}(\mathbb{R})$ so that $F_{q}\left(f_{n}\right) \rightarrow \infty$ as n goes to infinity. We use a construction from [5]. Let $c>0$, and define the function

$$
g_{c}(x)=\frac{1}{\sqrt{c}} \mathrm{e}^{-\pi \frac{x^{2}}{c^{2}}}+\sqrt{c} \mathrm{e}^{-\pi c^{2} x^{2}}
$$

Clearly, $g_{c} \in \mathscr{S}(\mathbb{R})$, and $\hat{g}_{c}=g_{c}$ for all $c>0$, therefore $F_{q}\left(g_{c}\right)=$ $\left(\frac{\left\|g_{c}\right\|_{q}}{\left\|g_{c}\right\|_{2}}\right)^{2}$. A direct calculation shows that

$$
\begin{equation*}
\left\|g_{c}\right\|_{2}^{2}=\sqrt{2}+\frac{2 c}{\sqrt{c^{4}+1}}, \quad c>0 \tag{1}
\end{equation*}
$$

Now, we estimate $\left\|g_{c}\right\|_{q}^{2}$. By definition, one has

$$
\left\|g_{c}\right\|_{q}^{2}=\left\{\int\left(\frac{1}{c} \mathrm{e}^{-2 \pi \frac{x^{2}}{c^{2}}}+c \mathrm{e}^{-2 \pi c^{2} x^{2}}+2 \mathrm{e}^{-\pi\left(c^{2}+1 / c^{2}\right) x^{2}}\right)^{\frac{q}{2}} \mathrm{~d} x\right\}^{\frac{2}{q}}
$$

Notice that $\left(\sum_{i} a_{i}\right)^{q / 2} \geqslant \sum_{i} a_{i}^{q / 2}$ when $q / 2>1$, therefore

$$
\begin{align*}
\left\|g_{c}\right\|_{q}^{2} & \geqslant\left\{\int\left(\frac{1}{c}\right)^{q / 2} \mathrm{e}^{-\pi q \frac{x^{2}}{c^{2}}}+c^{q / 2} \mathrm{e}^{-\pi q c^{2} x^{2}}+2^{q / 2} \mathrm{e}^{\frac{-\pi q}{2}\left(c^{2}+1 / c^{2}\right) x^{2}} \mathrm{~d} x\right\}^{\frac{2}{q}} \\
& =\left\{\left(\frac{1}{c}\right)^{q / 2} \frac{1}{\sqrt{q / c^{2}}}+c^{q / 2} \frac{1}{\sqrt{q c^{2}}}+2^{q / 2} \frac{1}{\sqrt{q\left(c^{2}+1 / c^{2}\right) / 2}}\right\}^{\frac{2}{q}} \tag{2}
\end{align*}
$$

In conclusion, for all $c>0$, we have

$$
\begin{align*}
\left\|g_{c}\right\|_{q}^{2} & \geqslant\left\{\frac{1}{\sqrt{q}} c^{1-\frac{q}{2}}+\frac{1}{\sqrt{q}} c^{\frac{q}{2}-1}+\frac{2^{(q+1) / 2}}{\sqrt{q}} \frac{c}{\sqrt{c^{4}+1}}\right\}^{\frac{2}{q}} \geqslant\left(\frac{1}{\sqrt{q}} c^{\frac{q}{2}-1}\right)^{2 / q} \\
& =\left(\frac{1}{q}\right)^{1 / q} c^{1-\frac{2}{q}} \tag{3}
\end{align*}
$$

Combining (1) and (3), we get

$$
F_{q}\left(g_{c}\right) \geqslant\left(\frac{1}{q}\right)^{1 / q} \frac{c^{1-\frac{2}{q}}}{\sqrt{2}+\frac{2 c}{\sqrt{c^{4}+1}}}
$$

Finally, we have $F_{q}\left(g_{c}\right) \rightarrow \infty$ as $c \rightarrow \infty$.

§4. The CASE OF $1<q<2$ FOR F_{q}

In this section, we always assume that $1<q<2$. In fact, the case of $q<2$ is easier. Let q^{\prime} be the exponent conjugate to q. Hölder's inequality implies

$$
\|f\|_{2} \leqslant\|f\|_{q}^{1 / 2}\|f\|_{q^{\prime}}^{1 / 2}
$$

The Hausdorff-Young inequality states that, for $1 \leqslant q \leqslant 2$, we have

$$
\|\hat{f}\|_{q^{\prime}} \leqslant\|f\|_{q}, \quad f \in \mathscr{S}
$$

Therefore, by choosing $g=\hat{f} \in \mathscr{S}$ we get $\|\hat{g}\|_{q^{\prime}} \leqslant\|g\|_{q}$, i.e.,

$$
\|f\|_{q^{\prime}}^{1 / 2} \leqslant\|\hat{f}\|_{q}^{1 / 2}
$$

Combining these inequalities, we get

$$
\|f\|_{2} \leqslant\|f\|_{q}^{1 / 2}\|\hat{f}\|_{q}^{1 / 2}
$$

which implies that $\frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|f\|_{2}^{2}} \geqslant 1$ for any $f \in \mathscr{S}(\mathbb{R}) \backslash\{0\}$.

§5. The general case of $F_{p, q}$

In this section, we discuss the general case of the function

$$
F_{q, p}(f)=\frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|f\|_{p}\|\hat{f}\|_{p}}, \quad 1<q<p<\infty
$$

First, we see what we could get by using the functions f_{a} from $\S 2$:

$$
f_{a}(x)=\mathrm{e}^{-\pi\left(a^{2}-1\right) x^{2}} \mathrm{e}^{-2 \pi \mathrm{i} a x^{2}}, \quad a>1 .
$$

A direct calculation shows that for each $1<q<\infty$,

$$
\left\|f_{a}\right\|_{q}=\left(\frac{1}{q\left(a^{2}-1\right)}\right)^{\frac{1}{2 q}}, \quad\left\|\hat{f}_{a}\right\|_{q}=\left(a^{2}+1\right)^{-1 / 2}\left(\frac{a^{2}+1}{\sqrt{q\left(a^{2}-1\right)}}\right)^{\frac{1}{q}}
$$

Replacing q by p, we obtain
$F_{q, p}\left(f_{a}\right)=\frac{(1 / q)^{1 / q}}{(1 / p)^{1 / p}}\left(\frac{a^{2}+1}{a^{2}-1}\right)^{\frac{1}{q}-\frac{1}{p}}=\frac{(1 / q)^{1 / q}}{(1 / p)^{1 / p}}\left(\frac{t+1}{t-1}\right)^{\frac{1}{q}-\frac{1}{p}}, \quad t=a^{2}>1$.
So we get $\left(\frac{(1 / q)^{1 / q}}{(1 / p)^{1 / p}}, \infty\right) \subset \operatorname{Im} F_{q, p}$.
5.1. Theorem 1.3, case (i). We prove (i) of Theorem 1.3: $\frac{1}{p}+\frac{1}{q} \geqslant 1$. Note that $q<2$ in this case. We divide it into two subcases: $q<p<2$ and $q<2 \leqslant p$. These two subcases are a little bit different, although the results are the same.
5.1.1. The case of $q<p<2$. First, we write p as a convex combination of q and 2 :

$$
p=\lambda q+(1-\lambda) 2, \quad 0<\lambda<1
$$

Then, $\int|f|^{p}=\int|f|^{\lambda q}|f|^{(1-\lambda) 2}$. Notice that $\frac{1}{\lambda} \in(1, \infty)$. By Hölder's inequality $(\lambda+(1-\lambda)=1)$, we have

$$
\begin{equation*}
\|f\|_{p} \leqslant\|f\|_{q}^{\frac{1 / p-1 / 2}{1 / q-1 / 2}}\|f\|_{2}^{\frac{1 / q-1 / p}{1 / q-1 / 2}} \tag{4}
\end{equation*}
$$

Inequality (4) is also fulfilled for \hat{f},

$$
\begin{equation*}
\|\hat{f}\|_{p} \leqslant\|\hat{f}\|_{q}^{\frac{1 / p-1 / 2}{1 / q-1 / 2}}\|\hat{f}\|_{2}^{\frac{1 / q-1 / p}{1 / q-1 / 2}} \tag{5}
\end{equation*}
$$

Combining the above two inequalities and the definition of $F_{q, p}$, we get

$$
F_{q, p}(f) \geqslant\left(\frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|f\|_{2}\|\hat{f}\|_{2}}\right)^{\frac{1 / q-1 / p}{1 / q-1 / 2}}=\left(F_{q}(f)\right)^{\frac{1 / q-1 / p}{1 / q-1 / 2}}
$$

Finally, notice that $\frac{1 / q-1 / p}{1 / q-1 / 2}>0$, so if $1<q<p<2$, then we come back to the case of $1<q<2, p=2$ in $\S 4$, which asserts that the image of F_{q} is bounded below by 1 . Therefore, the image of $F_{q, p}$ is bounded below by 1 .
5.1.2. The case of $q<2 \leqslant p$. Since $1<p^{\prime} \leqslant 2,\|\hat{f}\|_{p} \leqslant\|f\|_{p^{\prime}}$ by the Hausdorff-Young inequality, which shows that

$$
\frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|f\|_{p}\|\hat{f}\|_{p}} \geqslant \frac{\|f\|_{q}\|\hat{f}\|_{q}}{\|\hat{f}\|_{p^{\prime}}\|f\|_{p^{\prime}}}=F_{q, p^{\prime}}(f)
$$

But this case was treated in Subsection 5.1.1, as $1<q \leqslant p^{\prime}<2$.
5.2. Theorem 1.3, case (ii). Now we discuss the case of $\frac{1}{p}+\frac{1}{q}<1$. Recall that $q<p$, therefore $p>2$. Here we use the function g_{c} from $\S 3$. Recall that for $c>0$,

$$
g_{c}(x)=\frac{1}{\sqrt{c}} \mathrm{e}^{-\pi \frac{x^{2}}{c^{2}}}+\sqrt{c} \mathrm{e}^{-\pi c^{2} x^{2}}, \quad g_{c}=\hat{g}_{c} .
$$

Inequality (2) implies that $(p>2)$

$$
\left\|g_{c}\right\|_{p}^{2} \geqslant\left\{\frac{1}{\sqrt{p}} c^{1-\frac{p}{2}}+\frac{1}{\sqrt{p}} c^{\frac{p}{2}-1}+\frac{2^{(p+1) / 2}}{\sqrt{p}} \frac{c}{\sqrt{c^{4}+1}}\right\}^{\frac{2}{p}} \sim\left(\frac{c^{\frac{p}{2}-1}}{\sqrt{p}}\right)^{2 / p}
$$

$$
\text { as } c \rightarrow \infty .
$$

Similarly, for $q>1$, we have

$$
\left(a_{1}+a_{2}+a_{3}\right)^{\frac{q}{2}} \leqslant \max \left\{1,3^{q / 2-1}\right\}\left(a_{1}^{\frac{q}{2}}+a_{2}^{\frac{q}{2}}+a_{3}^{\frac{q}{2}}\right)
$$

so we merely reverse inequality (2) and get

$$
\left\|g_{c}\right\|_{q}^{2} \leqslant \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{2}} \frac{c}{\sqrt{c^{4}+1}} \leqslant 4, \quad \text { when } q=2 .
$$

For $q<2$ and $c \rightarrow \infty$ we get

$$
\left\|g_{c}\right\|_{q}^{2} \leqslant\left\{\frac{1}{\sqrt{q}} c^{1-\frac{q}{2}}+\frac{1}{\sqrt{q}} c^{\frac{q}{2}-1}+\frac{2^{(q+1) / 2}}{\sqrt{q}} \frac{c}{\sqrt{c^{4}+1}}\right\}^{\frac{2}{q}} \sim\left(\frac{c^{1-\frac{q}{2}}}{\sqrt{q}}\right)^{2 / q}
$$

and, finally, for $q>2$ and $c \rightarrow \infty$ we have

$$
\left\|g_{c}\right\|_{q}^{2} \leqslant 3^{1-\frac{2}{q}}\left\{\frac{1}{\sqrt{q}} c^{1-\frac{q}{2}}+\frac{1}{\sqrt{q}} c^{\frac{q}{2}-1}+\frac{2^{(q+1) / 2}}{\sqrt{q}} \frac{c}{\sqrt{c^{4}+1}}\right\}^{\frac{2}{q}} \sim 3^{1-\frac{2}{q}}\left(\frac{c^{\frac{q}{2}-1}}{\sqrt{q}}\right)^{2 / q} .
$$

Consequently, as c goes to infinity, we have

$$
\left\|g_{c}\right\|_{q}^{2} /\left\|g_{c}\right\|_{p}^{2} \leqslant C_{p, q} c^{2(1 / q+1 / p-1)}
$$

when $q \leqslant 2$, and $\left\|g_{c}\right\|_{q}^{2} /\left\|g_{c}\right\|_{p}^{2} \leqslant C_{p, q} c^{2(1 / p-1 / q)}$ when $q>2$, where $C_{p, q}$ depends only on p and q. Finally, note simply that $1 / q+1 / p-1<0$ and $1 / p-1 / q<0$, so $\lim _{c \rightarrow \infty}\left\|g_{c}\right\|_{q}^{2} /\left\|g_{c}\right\|_{p}^{2}=0$.

References

. W. Bechner, Inequalities in Fourier analysis. - Ann. Math. 102 (1975), 159-182.
2. L. Grafakos, Classical Fourier Analysis (3rd edition), Graduate Texts in Mathematics, Vol. 249, Springer, 2014.
3. L. Huang, Z. Liu, J. Wu, Quantum smooth uncertainty principles for von Neumann bi-algebras, https://arxiv.org/abs/2107.09057, July 19, 2021.
4. Y. Tang, Poster talk at the conference "ComPlane: the next generation", June 1718, 2021, https://sites.google.com/view/oudynamicalsystems/complane
5. Y. Wigderson, A. Wigderson, The uncertainty principle: variations on a theme. Bull. Amer. Math. Soc. 58, No. 2 (2021), 225-261.

LAMA (UMR CNRS 8050),
Université Gustave Eiffel,
5 Bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, France
E-mail: yurinana1997@gmail.com

[^0]: Key words and phrases: Fouier analysis, uncertainty principles, Hausdorff-Young inequality.

