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A SIMPLE OBSERVATION ON HEISENBERG-LIKE
UNCERTAINTY PRINCIPLES

ABSTRACT. A solution is given to a conjecture proposed recently
by Y. Wigderson and A. Wigderson concerning a “Heisenberg-like”
uncertainty principle. That conjecture is about the image of the map

fe W7 f € Z(R)\ {0}, where .(R) stands for the Schwartz
Fli2ll£1l2
class of functions on the real line. Also, a more general question is

answered, where the L2 norm is replaced by the L, norm in the
denominator.

§1. INTRODUCTION

The classical Heisenberg uncertainty principle says that

1£11211 711> < 4 ( / |xf(x)|zdx>” ’ ( [eier d,S)W

for a function f in #(R), the Schwartz space on real line, where f is the
Fourier transform defined on .%(R) by f(&) = [ f(z)e=?"#¢dz, and | f|,
R

is the L%-norm of f, that is, || f||§ = [ |f|?dz.

In a recent paper A. Wigderson and Y. Wigderson (see [5]) considered a
family of “Heisenberg-like” uncertainty principles, and posed the following
question.

Question 1.1 (see [5, Conjecture 4.13]). For 1 < ¢ < oo and g # 2, define
the following function Fj : .#(R) \ {0} — Rs,

_ W lllf Nl

F, = —.
o) £ 12l £

Is F, surjective?

Key words and phrases: Fouier analysis, uncertainty principles, Hausdorff-Young
inequality.
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In other words, the question is whether the image of the function Fj, is
all of Ryo. Note that, if the image is bounded from below by a constant
¢ > 0, then

. 1 .
11207112 < 21 llal g,

which could be viewed as a variant of the classical uncertainty principle.

In this note (see also [4]) we answer this question affirmatively when
2 < g < oo (the case of ¢ = oo was proved in [5]), and negatively when
1 < ¢ < 2. Also, we discuss a more general question.

The author presented these results at the conference “ComPlane: the
next generation” on June 17-18; 2021, see [4]. On July 19, 2021, a paper
by L. Huang, Z. Liu, J. Wu [3] containing mostly the same results was
published on ArXiv.

Our first result is the following.

Theorem 1.2. (i) If 2 < g < oo, then the image of Fy is all of Rso.
(ii) If 1 < ¢ < 2, then the image of Fy is bounded below by 1, i.e., Fo(f) > 1
for any f € 7 (R) \ {0}.

We also consider the general case of the function

1£ 11/ 1lg
Fq}p f =,
v I 1lp L1l

and obtain the following claim.

feZR)\{0},

Theorem 1.3. Let 1 < g < p < oo. Then,
(1) zf% + % > 1, then image of F, , is an infinite subinterval of [1,00);

(ii) of % + % < 1, then the image of Fy p, is (0,00).

Remark 1.4. The case of 1 < p < ¢ < oo follows immediately from

Theorem 1.3: it suffices to observe that F}, ,(f) = %m

Note that the bound 1 in Theorem 1.3 (i) is far from optimal. In fact,
in the proof the Hausdorff-Young inequality is used:

1l < £l pell,2],

which is weaker than Beckner’s theorem [1], which gives

11l < /@) /@) f .

We did not pursue this direction as it seems that finding the infimum of the
image of F} ;, is more difficult than determining whether it is surjective.
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§2. PRELIMINARIES

Let us recall the topology on .Z(R). For «, 5 € N, define

pap(f) = igg\w dng( z)|.

Let {p;},; be an enumeration of {pa g}a sen, and define the following
metric on . (R):

N~ o-i Pilf —9)
Z; 1+P1f 9)

J
Under this metric, the space (. (R), d) is complete, so .7 (R) is a Fréchet
space. A sequence {fn} C Z(R) converges to f € (R) in .#(R) if d(fy, f)
goes to 0 as n tends to infinity.

The following facts are basic properties of . (R) and the Fourier trans-
form on .7(R) (see, e.g., [2]).

Fact 2.1. First, the Fourier transform f — f is a homeomorphism from
& onto itself. Second, if the functions {f,},>1 and f belong to .#(R),
and if f, converges to f in Z(R), then f, converges to f in LP for all
1 < p < oo. Therefore, the mapping f — || f||, is continuous on .(R) for
all 1 <p < oo

Proof. For a proof, see [2], Proposition 2.2.6 and Corollary 2.2.15. O

Combining these facts, we see that the mapping f — || f || is continuous
as a composition of two continuous mappings, so the mapping f +— Fy(f)
is continuous from . (R) \ {0} to Rs(. As a metric space, .7 (R) \ {0} is
connected, because . (R) is a Fréchet space with dim.#(R) = co. Recall
that between two metric spaces, the image of a connected set by a con-
tinuous map is also connected. Now the connected sets in R are intervals,
and we conclude that

Proposition 2.2. The image of Fy is an interval on Ry.

Our goal now is to study the endpoints of Im F,. But first, we show
what can be obtained by calculating F,(f) for a family of simple functions
f that was already used in [5]. For a > 1, define functions f, by

fa (.’L‘) _ e—n(az—l)xze—Zwiax2 .
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Clearly, the function f, belongs to (R), and one can calculate its
Fourier transform:

0=y () oo (2 )

Since [, e’ dg = 1, we get, for any 1 < ¢ < oo,

1 i R . St A\
HfaHLq_<q(a2—1)) ’ fa|Lq_\/a2+1(\/Q(a2_1)> |
So, we get

:M: (1>1/q<a2+1>1/q—1/2
FQ(fa) ||fa||2 \/§ q a2_1
Y 1/q—1/2
:\@(1> q<t+1) q . al=t>1.
q t—1

Notice that the mapping ¢ +— % is monotone decreasing on (1, 00),

so if 1/q > 1/2, the image of the mapping t — (%)1/‘1_1/2 ,t>1,1s
(1,00). Similarly, if 1/¢ < 1/2, then the image of the above mapping is
(0,1). In conclusion, by testing the functions f, on F,, we get the following
statement.

Proposition 2.3. (i) If 1 < ¢ < 2, then at least (\/5(%)%,00) C Im Fj.

(i) If 2 < q < o0, then at least (0,v2(1)7) C Im F,.

§3. THE CASE OF 2 < g < 00 FOR Fj,

In this section, we always assume that 2 < ¢ < oo, and we will prove
that Im F, = (0,00). By Proposition 2.3, we only need to construct a
sequence {f,}n C 7 (R) so that F,(f,) — oo as n goes to infinity. We use
a construction from [5]. Let ¢ > 0, and define the function

1 z2 .
golr) = —= €T + e

\/E
Clearly, g. € Z(R), and g. = g. for all ¢ > 0, therefore Fy(g.) =

(%)2. A direct calculation shows that

Ve —|—1’

2c
1

lgelld = V2 + c>0. (1)
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Now, we estimate ||g.||2. By definition, one has

4 2
ooz = { [ (307375t cost g nemmnirn) g |
c
Notice that (Zl ai)q/2 P iag/Q when ¢/2 > 1, therefore

11/2 2
”95”3 }{/ <1> equ 492 ¢ —mqc’z® 1 91/2651 (C2+1/02)$2dx} a
C

:{C)q/z\/;/?jth“\/(;jtzq/?m}q- (2)

In conclusion, for all ¢ > 0, we have
|| ||2>{1 e 1 g, 2Dz }5>(1 q1>2/‘1
Jellg 2 —F=C 2+ —=C "+ —F——/—= 2 ez
Ve Vi Vi Vet +1 Vi
1 1/q
= (q) A (3)
Combining (1) and (3), we get

1 1 cl_%
Fl](gc) > ( >

q f+%

Finally, we have F,(g.) — 00 as ¢ — 00 .

§4. THE CASE OF 1 < ¢ <2 FOR F

In this section, we always assume that 1 < ¢ < 2. In fact, the case of
q < 2 is easier. Let ¢’ be the exponent conjugate to ¢q. Holder’s inequality

implies
1/2
171l < 1205157
The Hausdorff-Young inequality states that, for 1 < ¢
[fllar < fllg,  fe
Therefore, by choosing g = f € .7 we get [|g]ly < llgllq, ie.,

1/2 A
I < | FNL2.

< 2, we have
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Combining these inequalities, we get

£l < A1l A1,

which implies that “f”;‘l"ﬁ”q > 1 for any f € Z(R)\ {0}.
2

§5. THE GENERAL CASE OF F},,

In this section, we discuss the general case of the function
_ Il fllg
1o 111l

First, we see what we could get by using the functions f, from §2:

fa(m) _ e—ﬂ-(az—l)xze—2ﬂ'iax2 . a> 1.

l1<g<p<oo.

Fq,p(f)

A direct calculation shows that for each 1 < g < oo,

B 1 2 f _1) a?+1 v
I = (=) Wl = @+ 072 (i)

Replacing ¢ by p, we obtain
1))V (a? +1\7T77 (1/q)Ve [t+1\7 » ,

= —_— , t=a">1.
(1/p)t/P\a?—1 t—1

Fyp(fa) = ~ (1/p)i/r

So we get <8;Zq);1jz , oo) ClIm F, ).

5.1. Theorem 1.3, case (i). We prove (i) of Theorem 1.3: ]%4’% > L
Note that ¢ < 2 in this case. We divide it into two subcases: ¢ < p < 2
and ¢ < 2 < p. These two subcases are a little bit different, although the

results are the same.

5.1.1. The case of ¢ < p < 2. First, we write p as a convex combination
of ¢ and 2:

p=X+(1-N2, 0<A<l.
Then, [|f[P = [[f]*]f|3~M2 Notice that + € (1,00). By Holder’s in-
equality (A + (1 — ) = 1), we have

1/p—1/2 1/a—1/p

1£1lp < IFllg"™ 7 LA ll "2 (4)
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Inequality (4) is also fulfilled for f,

1/p—1/2 1/9—1/p

17l < 170877 A3, 5)

Combining the above two inequalities and the definition of Fy, ,, we get

1/a—1/p
1Al Fllg | Va-1/p
Fop(f) 2 <A = (Fq(f)) T4—1/2
£l 12
Finally, notice that %Z:}g >0,s0if 1 < ¢ < p < 2, then we come back

to the case of 1 < ¢ < 2, p =2 in §4, which asserts that the image of F} is
bounded below by 1. Therefore, the image of Fy ;, is bounded below by 1.

5.1.2. The case of ¢ < 2 < p. Since 1 < p/ < 2, ||fll, < ||f|l, by the
Hausdorff-Young inequality, which shows that
1AWl flla < AFllallfllq
VAl ~ 17 £

But this case was treated in Subsection 5.1.1, as 1 < ¢ < p’ < 2.

= Fq,p’(f)-

5.2. Theorem 1.3, case (ii). Now we discuss the case of % + % < 1.

Recall that ¢ < p, therefore p > 2. Here we use the function g. from §3.
Recall that for ¢ > 0,

1 _ gz 2.2
gc(z):%e 02_|_\/Ee7rc:n’ 9e = YJe-

Inequality (2) implies that (p > 2)
1 1 o(p+1)/2 2 2_1\2/p
T RO W U i S
VP VP VP Vet+1 VP

as ¢ — 0.

Similarly, for ¢ > 1, we have
q g g
(a1 4 az +a3)? < r11a)<:{1,3q/21}(6112 +a3 + ag),
so we merely reverse inequality (2) and get

¢ <4, whenqg=2.

1 1 2
2 <=+ 2 + = <
Hg”q \ﬁ \@ \@ C4+1
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For ¢ < 2 and ¢ — oo we get
(g+1)/2 7 1—4\ 2/q
el <{1cl—% L Ly 2“6} N ( ) |
lve T va Vi Vetl

and, finally, for ¢ > 2 and ¢ — co we have
(q+1)/2 2 a_1\ 2/q
e e V()

' ViV Vi Va1

Consequently, as ¢ goes to infinity, we have
lgellg/llgell} < Cp.g 2H/a+H/P=1
2 2 2(1/p—1/q)
when ¢ < 2, and |[|g.||;/llgcll; < Cpq c when ¢ > 2, where Cp, 4

depends only on p and ¢. Finally, note simply that 1/¢+1/p —1 < 0 and
1/p—1/q <0, 50 limesoo [lgcll3/ |13 = O
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