А. Б. Александров

ОБ ОПЕРАТОРНО ЛИПШИЦЕВОЙ НОРМЕ ФУНКЦИИ z^n НА КОНЕЧНЫХ ПОДМНОЖЕСТВАХ ЕДИНИЧНОЙ ОКРУЖНОСТИ

§1. Введение

Пусть $\mathrm{Lip}(\mathfrak{F})$ обозначает пространство всех липшицевых функций, заданных на подмножестве \mathfrak{F} комплексной плоскости \mathbb{C} , т. е. множество всех функций $f:\mathfrak{F}\to\mathbb{C}$, удовлетворяющих условию

$$|f(z) - f(w)| \leqslant C|z - w| \tag{1.1}$$

для некоторой константы C=C(f) и для всех $z,w\in\mathfrak{F}$. Обозначим через $\|f\|_{\mathrm{Lip}(\mathfrak{F})}$ наименьшую из констант $C\geqslant 0$, удовлетворяющих условию (1.1).

Непрерывная функция f на множестве $\mathfrak F$ называется one pamopho numuu e e o u, если существует константа C такая, что

$$||f(N_1) - f(N_2)|| \le C||N_1 - N_2|| \tag{1.2}$$

для любых нормальных операторов N_1 и N_2 в гильбертовом пространстве \mathcal{H} таких, что $\sigma(N_1), \sigma(N_2) \subset \mathfrak{F}$, где $\|T\|$ и $\sigma(T)$ обозначают соответственно операторную норму и спектр оператора T, действующего в гильбертовом пространстве \mathcal{H} . Множество всех операторно липшицевых функций на \mathfrak{F} обозначим через $\mathrm{OL}(\mathfrak{F})$. Пусть $\|f\|_{\mathrm{OL}(\mathfrak{F})}$ обозначает наименьшую из констант $C \geqslant 0$, удовлетворяющих условию (1.2).

Если функция f задана на более широком множестве, чем \mathfrak{F} , то для краткости мы будем писать $f \in \mathrm{OL}(\mathfrak{F})$ и $\|f\|_{\mathrm{OL}(\mathfrak{F})}$ вместо $f|_{\mathfrak{F}} \in \mathrm{OL}(\mathfrak{F})$ и $\|f|_{\mathfrak{F}}\|_{\mathrm{OL}(\mathfrak{F})}$. Мы будем писать $\|f\|_{\mathrm{OL}(\mathfrak{F})} = +\infty$, если $f \notin \mathrm{OL}(\mathfrak{F})$. Эти же соглашения будут действовать и для пространства $\mathrm{Lip}(\mathfrak{F})$.

Ясно, что $OL(\mathfrak{F}) \subset Lip(\mathfrak{F})$ и $\|\cdot\|_{Lip(\mathfrak{F})} \leqslant \|\cdot\|_{OL(\mathfrak{F})}$. Известно, что равенство $OL(\mathfrak{F}) = Lip(\mathfrak{F})$ выполняется только для конечных множеств \mathfrak{F} .

 $^{{\}it Knioчeesie}\ {\it cnoea}$: операторно липшицевы функции.

Исследование выполнено за счёт гранта Российского научного фонда No. 18-11-00053, https://rscf.ru/project/18-11-00053/.

Мы не требуем замкнутости множества \mathfrak{F} , хотя случай произвольного множества \mathfrak{F} по существу сводится к случаю замкнутого множества \mathfrak{F} . Это связано с тем, что любая функция $f \in \text{Lip}(\mathfrak{F})$ продолжается единственным образом до липшицевой функции на замыкание множества clos \mathfrak{F} . Таким образом, пространство $\text{Lip}(\mathfrak{F})$ отождествляется естественным образом с пространством $\text{Lip}(\text{clos }\mathfrak{F})$, а пространство $\text{OL}(\mathfrak{F})$ – с пространством $\text{OL}(\text{clos }\mathfrak{F})$.

В основном мы будем рассматривать случай, когда $\mathfrak{F} \subset \mathbb{T}$, где \mathbb{T} обозначает единичную окружность, т.е. $\mathbb{T} \stackrel{\text{def}}{=} \{z \in \mathbb{C} : |z| = 1\}$. В этом случае операторы N_1 и N_2 в формуле (1.2) являются унитарными.

Некоторые результаты этой статьи относятся и к случаю, когда $\mathfrak{F} \subset \mathbb{R}$. Тогда соответствующие нормальные операторы N_1 и N_2 являются самосопряжёнными.

Более подробную информацию об операторно липшицевых функциях можно найти в обзоре [2].

Хорошо известно, что $\|z^n\|_{\mathrm{OL}(\mathbb{T})} = \|z^n\|_{\mathrm{Lip}(\mathbb{T})} = |n|$ для любого $n \in \mathbb{Z}$. Действительно, $\|z^n\|_{\mathrm{OL}(\mathbb{T})} \geqslant \|z^n\|_{\mathrm{Lip}(\mathbb{T})} = |n|$. Остаётся доказать, что $\|z^n\|_{\mathrm{OL}(\mathbb{T})} \leqslant |n|$. Случай отрицательного n легко сводится к случаю положительного n, поскольку $\overline{z^n} = z^{-n}$ при $z \in \mathbb{T}$. Для положительного n нужное нам неравенство вытекает из следующего тождества

$$U^{n} - V^{n} = \sum_{k=1}^{n} U^{n-k} (U - V) V^{k-1}$$

для любых унитарных операторов U и V, см. [1], где рассмотрены и другие примеры функций, у которых операторно липшицева норма совпадает с обычной липшицевой нормой. Аналогично для любого бесконечного подмножества $\mathfrak F$ окружности $\mathbb T$ имеют место следующие равенства: $\|z^n\|_{\mathrm{OL}(\mathfrak F)} = \|z^n\|_{\mathrm{Lip}(\mathfrak F)} = |n|$ для любого $n \in \mathbb Z$.

Чтобы убедиться в этом, достаточно заметить, что $||z^n||_{\text{Lip}(\mathfrak{F})} = |n|$ для любого бесконечного множества $\mathfrak{F}, \mathfrak{F} \subset \mathbb{T}$, и воспользоваться очевидными неравенствами $||z^n||_{\text{Lip}(\mathfrak{F})} \leqslant ||z^n||_{\text{OL}(\mathfrak{F})} \leqslant ||z^n||_{\text{OL}(\mathfrak{F})} = |n|$.

Пусть Λ — непустое конечное подмножество единичной окружности \mathbb{T} . Тогда ясно, что $\|z^n\|_{\mathrm{Lip}(\Lambda)} < |n|$, если $|n| \geqslant 2$.

Для операторно липшицевой нормы это, вообще говоря, неверно.

Мы докажем, что неравенство $\|z^n\|_{\mathrm{OL}(\Lambda)} < |n|$ выполняется в том и только в том случае, когда $|\Lambda| < 2|n|$, где $|\Lambda|$ обозначает число элементов множества Λ . Таким образом, $\|z^n\|_{\mathrm{OL}(\Lambda)} = |n|$ в том и только в том случае, когда $|\Lambda| \geqslant 2|n|$ (теорема 3.1).

Нам понадобится описание операторно липшицевых функций в терминах мультипликаторов Шура.

Пусть \mathcal{S} и \mathcal{T} – произвольные множества. Обозначим через $\mathcal{B}(\mathcal{S} \times \mathcal{T})$ пространство всех матриц $A = \{a(s,t)\}_{(s,t) \in \mathcal{S} \times \mathcal{T}}$, задающих ограниченный оператор из $\ell^2(\mathcal{T})$ в $\ell^2(\mathcal{S})$. Пусть $\|\{a(s,t)\}_{(s,t) \in \mathcal{S} \times \mathcal{T}}\|$ обозначает норму соответствующего оператора из $\ell^2(\mathcal{T})$ в $\ell^2(\mathcal{S})$. С каждой парой матриц A и B вида $A = \{a(s,t)\}_{(s,t) \in \mathcal{S} \times \mathcal{T}}$ и $B = \{b(s,t)\}_{(s,t) \in \mathcal{S} \times \mathcal{T}}$ можно связать их произведение Шура $A \star B \stackrel{\text{def}}{=} \{a(s,t)b(s,t)\}_{(s,t) \in \mathcal{S} \times \mathcal{T}}$. Матрица $M = \{m(s,t)\}_{(s,t) \in \mathcal{S} \times \mathcal{T}}$ называется мультипликатором Шура пространства $\mathcal{B}(\mathcal{S} \times \mathcal{T})$, если $M \star A \in \mathcal{B}(\mathcal{S} \times \mathcal{T})$ для любой матрицы $A \in \mathcal{B}(\mathcal{S} \times \mathcal{T})$. Пусть $\mathfrak{M}(\mathcal{S} \times \mathcal{T})$ обозначает пространство всех мультипликаторов Шура пространства $\mathcal{B}(\mathcal{S} \times \mathcal{T})$. Положим

$$\|M\|_{\mathfrak{M}(\mathcal{S}\times\mathcal{T})}\stackrel{\mathrm{def}}{=}\sup\{\|M\star A\|:A\in\mathcal{B}(\mathcal{S}\times\mathcal{T}),\|A\|_{\mathcal{B}(\mathcal{S}\times\mathcal{T})}\leqslant1\}.$$

С каждой матрицей $M=\{m(s,t)\}_{(s,t)\in\mathcal{S} imes\mathcal{T}}$ мы связываем также следующую величину:

$$||M||_{\mathfrak{M}_0(\mathcal{S}\times\mathcal{T})} \stackrel{\text{def}}{=} \sup\{||M\star A|| : A \in \mathcal{B}(\mathcal{S}\times\mathcal{T}), ||A|| \leqslant 1, \ a(t,t) = 0$$

$$\text{при всех } t \in \mathcal{S}\cap\mathcal{T}\}.$$

Пусть $\mathfrak{M}_0(\mathcal{S} \times \mathcal{T})$ – множество всех матриц $M = \{m(s,t)\}_{(s,t) \in \mathcal{S} \times \mathcal{T}}$ таких, что $\|M\|_{\mathfrak{M}_0(\mathcal{S} \times \mathcal{T})} < +\infty$.

Обычно мы будем писать $\|M\|_{\mathfrak{M}}$ и $\|M\|_{\mathfrak{M}_0}$ вместо $\|M\|_{\mathfrak{M}(\mathcal{S}\times\mathcal{T})}$ и $\|M\|_{\mathfrak{M}_0(\mathcal{S}\times\mathcal{T})}$ соответственно, когда понятно, о каких множествах \mathcal{S} и \mathcal{T} идёт речь.

С каждой функцией f, заданной на множестве $\mathfrak{F}, \mathfrak{F} \subset \mathbb{C}$, мы связываем функцию $\mathfrak{D}_0 f : \mathfrak{F} \times \mathfrak{F} \to \mathbb{C}$,

$$(\mathfrak{D}_0 f)(z,w) \stackrel{\mathrm{def}}{=} \begin{cases} \dfrac{f(z)-f(w)}{z-w}, & \mathrm{если} \quad z \neq w, \\ 0, & \mathrm{если} \quad z = w. \end{cases}$$

Мы будем использовать следующее хорошо известное описание операторно липшицевых функций, см., например, теорему 3.3.2 в обзоре [2].

Теорема 1.1. Пусть f – непрерывная функция на подмножестве \mathfrak{F} комплексной плоскости \mathbb{C} . Предположим, что множество \mathfrak{F} является подмножеством прямой или окружности. Тогда $f \in \mathrm{OL}(\mathfrak{F})$ в

том и только в том случае, когда $\mathfrak{D}_0 f \in \mathfrak{M}_0(\mathfrak{F} \times \mathfrak{F})$, при этом имеет место равенство $\|f\|_{\mathrm{OL}(\mathfrak{F})} = \|\mathfrak{D}_0 f\|_{\mathfrak{M}_0(\mathfrak{F} \times \mathfrak{F})}$.

Нам понадобится ещё одно хорошо известное утверждение, относящееся к операторно липшицевым функциям, см., например, теорему 3.1.2 в обзоре [2].

Теорема 1.2. Пусть $f \in OL(\mathfrak{F})$, где \mathfrak{F} – подмножество комплексной плоскости \mathbb{C} , лежащее на окружности или прямой. Предположим, что N – нормальный оператор, действующий в гильбертовом пространстве \mathcal{H} , причём $\sigma(N) \subset \mathfrak{F}$. Тогда

$$||f(N)R - Rf(N)|| \le ||f||_{OL(\mathfrak{F})} ||NR - RN||$$

для любого оператора R, действующего в гильбертовом пространстве \mathcal{H} .

§2. Оценки норм некоторых мультипликаторов Шура

Пусть \mathcal{T}_n обозначает пространство всех комплексных тригонометрических полиномов на единичной окружности \mathbb{T} степени не выше n, где $n \in \mathbb{Z}, n \geqslant 0$. Другими словами, \mathcal{T}_n – это пространство всех комплексных функций на единичной окружности \mathbb{T} , принадлежащих линейной оболочке семейства функций $\{z^k\}_{k=-n}^n$ на окружности \mathbb{T} . Ясно, что семейство $\{z^k\}_{k=-n}^n$ является базисом пространства \mathcal{T}_n и dim $\mathcal{T}_n = 2n+1$.

Мы приведём здесь в удобном для нас виде некоторые простейшие свойства тригонометрических полиномов. Заметим, что функция $f: \mathbb{T} \to \mathbb{C}$ принадлежит пространству \mathcal{T}_n в том и только в том случае, когда существует многочлен P такой что $\deg P \leqslant 2n$ и $f(z) = z^{-n}P(z)$ для всех $z \in \mathbb{T}$. Отсюда мгновенно вытекает следующее хорошо известное утверждение.

Лемма 2.1. Пусть $\Lambda \subset \mathbb{T}$, причём $|\Lambda| = 2n-1$, где $n \in \mathbb{N}$. Тогда отображение $f \mapsto f|_{\Lambda}$ является линейным изоморфизмом пространства \mathcal{T}_{n-1} на пространство $\ell^{\infty}(\Lambda)$.

Пусть Λ — конечное подмножество единичной окружности \mathbb{T} . Две различные точки ζ и ξ множества Λ будем называть соседними, если существует дуга J окружности \mathbb{T} такая, что $J \cap \Lambda = \{\zeta, \xi\}$.

Лемма 2.2. Пусть $\Lambda\subset\mathbb{T}$, причём $|\Lambda|=2n$, где $n\in\mathbb{N}$. Тогда существует ненулевая вещественная мера μ на Λ такая, что $\int\limits_{\Lambda}f\ d\mu=0$

для всех $f \in \mathcal{T}_{n-1}$. Мера μ определяется однозначно c точностью до ненулевого вещественного множителя. Кроме того, она обладает следующим свойством: $\mu(\{\zeta\})\mu(\{\xi\}) < 0$ для любых соседних точек ζ и ξ множества Λ .

Доказательство. Обозначим через M_{Λ} пространство всех мер μ на Λ таких, что $\int_{\mathbb{T}} f \, d\mu = 0$ для всех $f \in \mathcal{T}_{n-1}$. Из леммы 2.1 следует, что $\dim\{f|_{\Lambda}: f \in \mathcal{T}_{n-1}\} = 2n-1$. Следовательно, $\dim M_{\Lambda} = 1$. Заметим, что $\overline{\mathcal{T}_{n-1}} = \mathcal{T}_{n-1}$. Таким образом, $\overline{M(\Lambda)} = M(\Lambda)$. Отсюда следует, что пространство M_{Λ} содержит ненулевую вещественную меру.

Таким образом, мы доказали, что существует ненулевая вещественная мера μ на Λ такая, что $\int_{\Lambda} f \, d\mu = 0$ для всех $f \in \mathcal{T}_{n-1}$. Такая мера единственна с точностью до ненулевого вещественного множителя, поскольку $\dim M_{\Lambda} = 1$.

Заметим ещё, что из леммы 2.1 следует, что $\mu(\{\zeta\}) \neq 0$ для любой точки $\zeta \in \Lambda$ и для любой ненулевой меры $\mu \in M_{\Lambda}$.

Остаётся доказать, что $\mu(\{\zeta\})\mu(\{\xi\})<0$ для соседних точек ζ и ξ множества Λ . Возьмём ненулевой вещественный тригонометрический многочлен $f\in\mathcal{T}_{n-1}$ такой, что $f(\lambda)=0$ для всех $\lambda\in\Lambda\setminus\{\zeta,\xi\}$. Ясно, что $\{z\in\mathbb{T}:f(z)=0\}=\Lambda\setminus\{\zeta,\xi\}$, поскольку ненулевой тригонометрический полином $f\in\mathcal{T}_{n-1}$ не может иметь больше, чем 2n-2 корня. Таким образом, $0=\int\limits_{\Lambda}f\,d\mu=f(\zeta)\mu(\{\zeta\})+f(\xi)\mu(\{\xi\})$. Возьмём дугу J окружности $\mathbb T$ такую, что $J\cap\Lambda=\{\zeta,\xi\}$. Ясно, что функция f знакопостоянна на дуге J. В частности, $f(\zeta)f(\xi)>0$. Следовательно, $\mu(\{\zeta\})\mu(\{\xi\})<0$.

Пусть Λ – подмножество единичной окружности \mathbb{T} , состоящее из 2n элементов. Множество Λ можно разбить на два n-элементных множества Λ_1 и Λ_2 таким образом, чтобы точки ζ и ξ не были соседними точками множества Λ для любых $\zeta, \xi \in \Lambda_1$ и для любых $\zeta, \xi \in \Lambda_2$. Такое разбиение множества Λ будем называть стандартным разбиением на два n-элементных множества.

Теорема 2.3. Пусть Λ – подмножество единичной окружности \mathbb{T} , состоящее из 2n элементов, где $n \in \mathbb{N}$. Рассмотрим стандартное разбиение множества Λ на два n-элементных множества Λ_1 и Λ_2 .

Tог ∂a

$$\left\| \left\{ \frac{\zeta^n - \xi^n}{\zeta - \xi} \right\}_{\zeta \in \Lambda_1, \xi \in \Lambda_2} \right\|_{\mathfrak{M}(\Lambda_1 \times \Lambda_2)} = n.$$

Доказательство. Занумеруем точки множеств Λ_1 и Λ_2 последовательностями $\{z_k\}_{k=1}^n$ и $\{w_k\}_{k=1}^n$ соответственно. Из леммы 2.2 следует, что существуют две последовательности положительных чисел $\{\alpha_k\}_{k=1}^n$ и $\{\beta_k\}_{k=1}^n$ такие, что

$$\sum_{k=1}^{n} \alpha_k^2 = \sum_{k=1}^{n} \beta_k^2 = 1$$

И

$$\sum_{k=1}^{n} z_k^m \alpha_k^2 = \sum_{k=1}^{n} w_k^m \beta_k^2$$
 (2.1)

для всех целых m таких, что |m| < n.

Положим

$$M = \left\{ \frac{z_j^n - w_k^n}{z_j - w_k} \right\}_{1 \leqslant j, k \leqslant n}.$$

Нам нужно доказать, что $||M||_{\mathfrak{M}} = n$.

Матрица M представима в виде $M = \sum\limits_{l=0}^{n-1} M_l,$ где

$$M_l = \{z_j^{n-1-l} w_k^l\}_{1 \le j, k \le n}.$$

Ясно, что

$$||M||_{\mathfrak{M}} \leqslant \sum_{l=0}^{n-1} ||M_l||_{\mathfrak{M}} = n.$$

Докажем теперь противоположное неравенство.

Пусть U и V обозначают диагональные матрицы размеров $n \times n$ с диагональными элементами z_1, z_2, \dots, z_n и w_1, w_2, \dots, w_n соответственно

Заметим, что

$$M \star X = \sum_{l=0}^{n-1} M_l \star X = \sum_{l=0}^{n-1} U^{n-1-l} X V^l.$$

Положим
$$\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$
 и $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$.

Из равенств (2.1) вытекает, что $(V^j\beta,V^k\beta)=(U^j\alpha,U^k\alpha)$ для всех $j,k\in\mathbb{Z}$ таких, что $0\leqslant j,k< n$. Отсюда и из того, что каждая из двух систем векторов $\{U^j\alpha\}_{j=0}^{n-1}$ и $\{V^j\beta\}_{j=0}^{n-1}$ полна в \mathbb{C}^n , вытекает, что существует унитарная матрица X размеров $n\times n$ такая, что $X(V^j\beta)=U^j\alpha$ при всех $j\in\mathbb{Z}$ таких, что $0\leqslant j< n$.

Имеем:

$$(M\star X)\beta = \sum_{l=0}^{n-1} U^l X V^{n-1-l} \beta = \sum_{l=0}^{n-1} U^l U^{n-1-l} \alpha = n U^{n-1} \alpha.$$

Отсюда следует, что $\|M\star X\|\geqslant n$. Следовательно, $\|M\|_{\mathfrak{M}}\geqslant n$.

Следствие 2.4. Пусть Λ – подмножество окружности \mathbb{T} , состоящее по крайней мере из 2n элементов, где $n \in \mathbb{N}$. Тогда

$$\left\| \left\{ \frac{\zeta^n - \xi^n}{\zeta - \xi} \right\}_{\zeta, \xi \in \Lambda} \right\|_{\mathfrak{M}_0(\Lambda \times \Lambda)} = n.$$

Доказательство. Ясно, что

$$\left\|\left\{\frac{\zeta^n-\xi^n}{\zeta-\xi}\right\}_{\zeta,\xi\in\Lambda}\right\|_{\mathfrak{M}_0(\Lambda\times\Lambda)}\leqslant \left\|\left\{\frac{\zeta^n-\xi^n}{\zeta-\xi}\right\}_{\zeta,\xi\in\mathbb{T}}\right\|_{\mathfrak{M}_0(\mathbb{T}\times\mathbb{T})}=\|z^n\|_{\mathrm{OL}(\mathbb{T})}=n.$$

Оценку снизу достаточно получить в случае, когда Λ состоит из 2n элементов. Для такого множества Λ имеем:

$$\left\| \left\{ \frac{\zeta^n - \xi^n}{\zeta - \xi} \right\}_{\zeta, \xi \in \Lambda} \right\|_{\mathfrak{M}_0(\Lambda \times \Lambda)} \geqslant \left\| \left\{ \frac{\zeta^n - \xi^n}{\zeta - \xi} \right\}_{\zeta \in \Lambda_1, \xi \in \Lambda_2} \right\|_{\mathfrak{M}(\Lambda_1 \times \Lambda_2)} = n,$$

гле Λ_1 и Λ_2 обозначают то же, что в теореме 2.3.

Теорема 2.5. Пусть $\{z_j\}_{j=1}^{2n-1}$ – последовательность точек единичной окружности $\mathbb T$ такая, что $z_j \neq z_k$ при $j \neq k$, где $n \in \mathbb N$. Положим $W \stackrel{\mathrm{def}}{=} \{w_{jk}\}_{1 \leqslant j,k \leqslant 2n-1}$, где

$$w_{jk} \stackrel{\text{def}}{=} \begin{cases} \frac{z_j^n - z_k^n}{z_j - z_k}, & \textit{ecau} \ j \neq k, \\ nz_j^{n-1}, & \textit{ecau} \ j = k. \end{cases}$$

 $Tor \partial a \|W\|_{\mathfrak{M}_0} < n.$

Доказательство. Можно считать, что n>1. Пусть U — диагональная матрица размеров $(2n-1)\times (2n-1)$ с диагональными элементами z_1,z_2,\ldots,z_{2n-1} . Тогда $W=\sum\limits_{l=0}^{n-1}W_l$, где $W_l=\{z_j^{n-1-l}z_k^l\}_{1\leqslant j,k\leqslant 2n-1}$. Ясно, что $\|W\|_{\mathfrak{M}_0}\leqslant n$.

Предположим, что $\|W\|_{\mathfrak{M}_0}=n$. Тогда существует матрица $X=\{x_{jk}\}_{1\leqslant j,k\leqslant 2n-1}$ такая, что $x_{jj}=0$ для всех $j,\,1\leqslant j\leqslant 2n-1,\,\|X\|=1$ и $\|W\star X\|\geqslant n$. Заметим, что $W\star X=\sum\limits_{l=0}^{n-1}U^{n-1-l}XU^l$. Возьмём вектор $e\in\mathbb{C}^{2n-1}$ такой, что $\|e\|=1$ и $\|(W\star X)e\|\geqslant n$. Тогда

$$n \le \|(W \star X)e\| = \left\| \sum_{l=0}^{n-1} U^{n-1-l} X U^l e \right\| \le \sum_{l=0}^{n-1} \|U^{n-1-l} X U^l e\| \le n.$$

Отсюда следует, что $U^{n-1-l}XU^le=U^{n-1}Xe$ для всех $l\in\mathbb{Z}$ таких, что $0\leqslant l\leqslant n-1$, т.е. $XU^le=U^lXe$ для всех $l\in\mathbb{Z}$ таких, что $0\leqslant l\leqslant n-1$. Заметим, что равенство $\|Xx\|=\|x\|$ для $x\in\mathbb{C}^{2n-1}$ выполняется в том и только в том случае, когда $x\in\mathrm{Ker}(I-X^*X)$. Здесь и далее мы отождествляем матрицу с соответствующим линейным оператором на \mathbb{C}^{2n-1} . В частности, I обозначает тождественный оператор на \mathbb{C}^{2n-1} . Пусть $\mathfrak L$ обозначает линейную оболочку последовательности векторов $\{U^le\}_{l=0}^{n-1}$. Мы доказали, что сужение оператора X на подпространство $\mathfrak L$ является изометрическим оператором. Следовательно,

$$(XU^l e, XU^m e) = (U^l e, U^m e)$$
(2.2)

для любых $l, m \in \mathbb{Z}$ таких, что $0 \leq l, m \leq n-1$.

Пусть
$$e = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{2n-1} \end{pmatrix}$$
 и $Xe = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{2n-1} \end{pmatrix}$.

Тогда

$$X \begin{pmatrix} z_1^l \alpha_1 \\ z_2^l \alpha_2 \\ \vdots \\ z_{2n-1}^l \alpha_{2n-1} \end{pmatrix} = \begin{pmatrix} z_1^l \beta_1 \\ z_2^l \beta_2 \\ \vdots \\ z_{2n-1}^l \beta_{2n-1} \end{pmatrix}$$

для всех $l, 0 \le l < n$. Следовательно, равенство (2.2) влечёт:

$$\sum_{j=1}^{2n-1} z_j^{l-m} |\beta_j|^2 = \sum_{j=1}^{2n-1} z_j^{l-m} |\alpha_j|^2$$

для всех $l,m\in\mathbb{Z}$ таких, что $0\leqslant l,m\leqslant n-1.$ Это означает, что

$$\sum_{j=1}^{2n-1} f(z_j)(|\alpha_j|^2 - |\beta_j|^2) = 0$$

для всех $f\in\mathcal{T}_{n-1}.$ Отсюда и из леммы 2.1 получаем, что $|\alpha_j|^2=|\beta_j|^2$ для всех $j\in\mathbb{N}, j\leqslant 2n-1.$

Положим

$$\tau_j = \begin{cases} \beta_j^{-1} \alpha_j, & \text{если } \beta_j \neq 0, \\ 1, & \text{если } \beta_j = 0. \end{cases}$$

Обозначим через D_{τ} диагональную матрицу размеров $(2n-1)\times (2n-1)$ с диагональными элементами $\{\tau_j\}_{j=1}^{2n-1}$. Положим $X_{\tau}=D_{\tau}X$. Тогда

$$X_{\tau} \begin{pmatrix} z_1^k \alpha_1 \\ z_2^k \alpha_2 \\ \vdots \\ z_{2n-1}^k \alpha_{2n-1} \end{pmatrix} = \begin{pmatrix} z_1^k \alpha_1 \\ z_2^k \alpha_2 \\ \vdots \\ z_{2n-1}^k \alpha_{2n-1} \end{pmatrix}$$

для всех k, $0 \le k < n$.

Пусть $J=\{j\in\mathbb{N}:j\leqslant 2n-1,\alpha_j\neq 0\}$. Рассмотрим сначала случай, когда $|J|\geqslant n$. Тогда $\dim \mathrm{Ker}(X_{\tau}-I)\geqslant n$ и мы получаем противоречие, поскольку

$$0 = \operatorname{trace} X = \operatorname{trace} X_{\tau} \ge n - (n-1)||X_{\tau}|| = 1.$$

Рассмотрим теперь случай, когда |J| < n. Заметим, что |J| > 0, поскольку $\sum\limits_{j=1}^{2n-1} |\alpha_j|^2 = 1$. Рассмотрим матрицу $\{\tau_j x_{jk}\}_{j,k\in J}$. Ясно, что эта матрица единичная. Следовательно, $\tau_j x_{jj} = 1$ для всех $j\in J$ и мы приходим к противоречию, поскольку $x_{jj} = 0$ для всех $j, 1\leqslant j\leqslant 2n-1$. \square

§3. Вычисление операторно липшицевой нормы $\|z^n\|_{\mathrm{OL}(\Lambda)}$ для некоторых подмножеств Λ окружности $\mathbb T$

Из теоремы 1.1, следствия 2.4 и теоремы 2.5 мгновенно вытекает следующее утверждение.

Теорема 3.1. Пусть $\Lambda \subset \mathbb{T}$ и $n \in \mathbb{N}$. Тогда следующие два утверждения равносильны:

- i) $|\Lambda| \geqslant 2n$,
- ii) $||z^n||_{\mathrm{OL}(\Lambda)} = n$.

Эта теорема позволяет вычислить норму $\|z^n\|_{\mathrm{OL}(\Lambda)}$ в случае, когда $\Lambda\subset\mathbb{T}$ и множество Λ является множеством вершин правильного N-угольника.

Не умаляя общности, можно считать, что $\Lambda \ni 1$. В этом случае $\Lambda = \mathbb{T}_{\mathbb{N}}$, если только $|\Lambda| \geqslant 3$, где \mathbb{T}_N обозначает множество всех корней N-ой степени из единицы.

Заметим, что для нас представляет интерес только случай, когда $|\Lambda| \geqslant 4$, поскольку нетрудно проверить, что $||f||_{\mathrm{OL}(\Lambda)} = ||f||_{\mathrm{Lip}(\Lambda)}$ для любой функции f на любом множестве Λ , $\Lambda \subset \mathbb{C}$, если $|\Lambda| \leqslant 3$.

Пусть $a \in \mathbb{R}$ и $X \subset \mathbb{R}$. Обозначим через $\mathrm{dist}(a,X)$ расстояние от точки a до множества X, т. е. $\mathrm{dist}(a,X) = \inf\{|x-a| : x \in X\}$.

Теорема 3.2. Пусть $N \in \mathbb{N}$. Тогда $||z^n||_{\mathrm{OL}(\mathbb{T}_N)} = \mathrm{dist}(n, N\mathbb{Z})$ для любого $n \in \mathbb{Z}$.

Доказательство. Заметим, что каждая из функций $n \mapsto \|z^n\|_{\mathrm{OL}(\mathbb{T}_N)}$ $(n \in \mathbb{Z})$ и $n \mapsto \mathrm{dist}(n, N\mathbb{Z})$ $(n \in \mathbb{Z})$ чётна и имеет период N. Таким образом, достаточно ограничиться случаем, когда $0 \leqslant 2n \leqslant N$. В этом случае нужное нам равенство следует из теоремы 3.1.

Рассмотрим ещё один случай, когда легко можно явно вычислить норму $\|z^n\|_{\mathrm{OL}(\Lambda)}.$

Теорема 3.3. Пусть $\Lambda \subset \mathbb{T}$. Предположим, что $|\Lambda| = n+1$ и $\Lambda \supset \mathbb{T}_n$, где $n \in \mathbb{N}$. Тогда $||z^n||_{\mathrm{OL}(\Lambda)} = ||z^n||_{\mathrm{Lip}(\Lambda)}$.

Нам понадобится следующая элементарная лемма, которую мы приводим здесь без доказательства.

Лемма 3.4. Пусть $T = \{t_{jk}\}_{0 \le j,k \le n}$. Предположим, что $t_{00} = 0$ и $t_{jk} = 0$, если $\min(j,k) \geqslant 1$. Тогда

$$||T|| = \max\left(\left(\sum_{j=1}^{n} |t_{j0}|^2\right)^{1/2}, \left(\sum_{k=1}^{n} |t_{0k}|^2\right)^{1/2}\right).$$

Следствие 3.5. Пусть $M = \{m_{jk}\}_{0 \leqslant j,k \leqslant n}$. Предположим, что $m_{00} = 0$ и $m_{jk} = 0$, если $\min(j,k) \geqslant 1$. Тогда $\|M\|_{\mathfrak{M}_0} = \max_{0 \leqslant i,k \leqslant n} |m_{jk}|$.

Доказательство. Пусть $X = \{x_{jk}\}_{0 \leqslant j,k \leqslant n}$. Применяя лемму 3.4 к матрице $M \star X$, получаем

$$||M \star X|| = \max\left(\left(\sum_{j=1}^{n} |m_{j0}|^{2} |x_{j0}|^{2}\right)^{1/2}, \left(\sum_{k=1}^{n} |m_{0k}|^{2} |x_{0k}|^{2}\right)^{1/2}\right)$$

$$\leq \left(\max_{0 \leq j, k \leq n} |m_{jk}|\right) \cdot \max\left(\left(\sum_{j=1}^{n} |x_{j0}|^{2}\right)^{1/2}, \left(\sum_{k=1}^{n} |x_{0k}|^{2}\right)^{1/2}\right).$$

Следовательно,

$$||M||_{\mathfrak{M}_0} \leqslant ||M||_{\mathfrak{M}} \leqslant \max_{0 \leqslant i,k \leqslant n} |m_{jk}|.$$

Противоположное неравенство очевидно, поскольку

$$||M||_{\mathfrak{M}_0} \geqslant \max_{0 \leqslant j,k \leqslant n, j \neq k} |m_{jk}| = \max_{0 \leqslant j,k \leqslant n} |m_{jk}|.$$

Вместо того, чтобы доказывать теорему 3.3, мы докажем следующее более общее утверждение, которое можно рассматривать как дополнение к статье [1], поскольку оно даёт ещё один класс функций, для которого операторно липшицева норма совпадает с обычной липшицевой нормой.

Теорема 3.6. Пусть f – функция, заданная на подмножестве Λ , $\Lambda \subset \mathbb{C}$, лежащем на окружности или на прямой. Предположим, что $|f(\Lambda)| = 2$ и существует число $a \in \mathbb{C}$ такое, что $|f^{-1}(a)| = 1$. Тогда $||f||_{\mathrm{OL}(\Lambda)} = ||f||_{\mathrm{Lip}(\Lambda)}$.

Доказательство. Достаточно рассмотреть случай конечного множества Λ . Пусть $f(\Lambda) = \{a,b\}$ и $f^{-1}(a) = \zeta_0$. Занумеруем точки множества $\Lambda \setminus \{\zeta_0\}$ последовательностью $\{\zeta_k\}_{k=1}^n$. Положим $m_{jk} = \mathfrak{D}_0 f(\zeta_j, \zeta_k)$, где $0 \leq j,k \leq n$. Рассмотрим матрицу $M = \{m_{jk}\}_{0 \leq j,k \leq n}$. Заметим,

что $m_{00} = 0$ и $m_{jk} = 0$, если $\min(j,k) \geqslant 1$. Ясно, что $||f||_{\text{Lip}(\Lambda)} = \max_{0 \leqslant j,k \leqslant n} |m_{jk}|$. Кроме того, $||f||_{\text{OL}(\Lambda)} = ||M||_{\mathfrak{M}_0}$ в силу теоремы 1.1. Остаётся сослаться на следствие 3.5.

§4. Вычисление нормы $\|e^{{ m i}sx}\|_{{ m OL}(\Lambda)}$ для некоторых множеств Λ специального вида

Хорошо известно, что $\|e^{{\rm i}sx}\|_{{\rm OL}(\mathbb{R})}=|s|$ для любого $s\in\mathbb{R},$ см., например, [2].

Пусть Λ – произвольное подмножество вещественной прямой $\mathbb R$. Тогде имеют место следующие очевидные тождества:

$$||e^{isx}||_{OL(\Lambda)} = ||e^{isx}||_{OL(\Lambda+c)}$$
 (4.1)

для любых чисел $s,c\in\mathbb{R}$ и

$$||e^{\mathbf{i}sax}||_{\mathrm{OL}(\Lambda)} = |a| \cdot ||e^{\mathbf{i}sx}||_{\mathrm{OL}(a\Lambda)} \tag{4.2}$$

для любых чисел $s, a \in \mathbb{R}$.

Заметим ещё, что если

$$\inf\{|\alpha - \beta| : \alpha, \beta \in \Lambda; \alpha \neq \beta\} = 0, \tag{4.3}$$

то $\|e^{{\rm i}sx}\|_{{\rm OL}(\Lambda)}=|s|$ для любого числа $s\in\mathbb{R}$. Действительно, условие (4.3) влечёт: $\|e^{{\rm i}sx}\|_{{\rm Lip}(\Lambda)}=|s|$. Таким образом, $|s|=\|e^{{\rm i}sx}\|_{{\rm Lip}(\Lambda)}\leqslant \|e^{{\rm i}sx}\|_{{\rm OL}(\Lambda)}\leqslant \|e^{{\rm i}sx}\|_{{\rm OL}(\mathbb{R})}=|s|$.

В частности, $\|e^{\mathrm{i}sx}\|_{\mathrm{Lip}(\Lambda)} = |s|$ для любого $s \in \mathbb{R}$, если множество Λ не является замкнутым.

В этом параграфе мы вычислим норму $\|e^{{
m i}sx}\|_{{
m OL}(\Lambda)}$ в случае, когда множество Λ является множеством значений бесконечной арифметической прогрессии.

Обозначим через $M(\mathbb{T})$ пространство всех (конечных) комплексных борелевских мер на единичной окружности \mathbb{T} . Пусть $\widehat{\mu}(n)$ обозначает n-й коэффициент Фурье меры $\mu \in M(\mathbb{T})$, где $n \in \mathbb{Z}$.

Следующее утверждение хорошо известно, см., например, [3].

Теорема 4.1. Пусть $\mu \in M(\mathbb{T})$. Тогда

$$\|\{\widehat{\mu}(m-n)\}\|_{\mathfrak{M}(\mathbb{Z}^2)} = \|\mu\|_{M(\mathbb{T})}.$$

Нам понадобится ещё одно (скорее всего известное) утверждение, которое является простым следствием теоремы 4.1.

Теорема 4.2. Пусть $\mu \in M(\mathbb{T})$. Тогда

$$\|\{\widehat{\mu}(m-n)\}\|_{\mathfrak{M}_0(\mathbb{Z}^2)} = \inf_{c \in \mathbb{C}} \|\mu - c\mathbf{m}\|_{M(\mathbb{T})},$$

 $rde\ \mathbf{m}$ обозначает нормированную меру Лебега на единичной окружности $\mathbb{T}.$

Доказательство. Неравенство

$$\|\{\widehat{\mu}(m-n)\}\|_{\mathfrak{M}_0(\mathbb{Z}^2)}\leqslant \inf_{c\in\mathbb{C}}\|\mu-c\mathbf{m}\|_{M(\mathbb{T})}$$

легко вытекает из теоремы 4.1. Докажем противоположное неравенство. Пусть $f \in C(\mathbb{T})$, причём $|f| \leqslant 1$ всюду и $\widehat{f}(0) = 0$. Тогда $\|\{\widehat{f}(m-n)\}\| \leqslant 1$. Следовательно, $\|\{\widehat{\mu}(m-n)\}\|_{\mathfrak{M}_0(\mathbb{Z}^2)} \geqslant \|\{\widehat{f}(m-n)\widehat{\mu}(m-n)\}\|$ или, что то же самое, $\|\{\widehat{\mu}(m-n)\}\|_{\mathfrak{M}_0(\mathbb{Z}^2)} \geqslant \|f*\mu\|_{C(\mathbb{T})}$. Остаётся заметить, что $\|f*\mu\|_{C(\mathbb{T})} \geqslant |\int_{\mathbb{T}} f(\overline{\zeta}) \, d\mu(\zeta)|$ и

$$\sup \left\{ \left| \int_{\mathbb{T}} f \, d\mu \right| : f \in C(\mathbb{T}), \|f\|_{C(\mathbb{T})} \leqslant 1, \widehat{f}(0) = 0 \right\} = \inf_{c \in \mathbb{C}} \|\mu - c\mathbf{m}\|_{M(\mathbb{T})}. \quad \Box$$

Следующую теорему можно рассматривать как версию теоремы 3.2 для подмножеств вещественной прямой.

Теорема 4.3. Пусть $s \in \mathbb{R}$. Тогда

$$||e^{isx}||_{OL(\mathbb{Z})} = dist(s, 2\pi\mathbb{Z}).$$

Доказательство. Каждая из функций $s \mapsto \|e^{\mathrm{i}sx}\|_{\mathrm{OL}(\mathbb{Z})}$ $(s \in \mathbb{R})$ и $s \mapsto \mathrm{dist}(s, 2\pi\mathbb{Z})$ $(s \in \mathbb{R})$ является чётной и 2π -периодической. Таким образом, достаточно доказать, что $\|e^{\mathrm{i}sx}\|_{\mathrm{OL}(\mathbb{Z})} = s$ при $s \in [0, \pi]$.

В силу теоремы 1.1 имеем:

$$||e^{isx}||_{\mathrm{OL}(\mathbb{Z})} = ||(\mathfrak{D}_0 e^{isx})(m,n)||_{\mathfrak{M}_0(\mathbb{Z}^2)} = ||e^{-isn}(\mathfrak{D}_0 e^{isx})(m,n)||_{\mathfrak{M}_0(\mathbb{Z}^2)}$$
$$= ||\Psi_s(m-n)||_{\mathfrak{M}_0(\mathbb{Z}^2)}, \tag{4.4}$$

где

$$\Psi_s(k) = \begin{cases} \frac{e^{\mathrm{i}ks}-1}{k}, & \text{если} \ k \in \mathbb{Z} \setminus \{0\}, \\ 0, & \text{если} \ k = 0. \end{cases}$$

Разлагая функцию $\mathrm{i}(\pi-t)$ в ряд Фурье на промежутке $[0,2\pi),$ получим

$$\sum_{n \neq 0} \frac{e^{int}}{n} = i(\pi - t) \quad (0 < t < 2\pi)$$

И

$$\sum_{n \neq 0} \frac{e^{int}}{n} = i(3\pi - t) \quad (2\pi < t < 4\pi).$$

Следовательно,

$$\sum_{n \neq 0} \frac{e^{\mathrm{i} s n} e^{\mathrm{i} n t}}{n} = \sum_{n \neq 0} \frac{e^{\mathrm{i} n (t+s)}}{n} = \begin{cases} \mathrm{i} (\pi-s-t), & \text{если } 0 < t < 2\pi-s, \\ \mathrm{i} (3\pi-s-t), & \text{если } 2\pi-s < t < 2\pi. \end{cases}.$$

Таким образом,

$$h_s(t) \stackrel{\mathrm{def}}{=} \sum_{n \neq 0} \frac{(e^{\mathrm{i} s n} - 1)e^{\mathrm{i} n t}}{n} = egin{cases} -\mathrm{i} s, & \mathrm{ec} \text{ли } 0 < t < 2\pi - s, \\ \mathrm{i}(2\pi - s), & \mathrm{ec} \text{ли } 2\pi - s < t < 2\pi. \end{cases}$$

Следовательно, $\hat{h}_s(n) = \Psi_s(n)$. Теперь из теоремы 4.2 и тождества (4.4) следует, что

$$||e^{isx}||_{OL(\mathbb{Z})} = \inf_{c \in \mathbb{C}} \frac{1}{2\pi} \int_{0}^{2\pi} |h_s(t) - c| dt.$$

Остаётся заметить, что

$$\inf_{c \in \mathbb{C}} \frac{1}{2\pi} \int_{0}^{2\pi} |h_s(t) - c| \, dt = \frac{1}{2\pi} \int_{0}^{2\pi} |h_s(t) + is| \, dt = s,$$

если
$$s \in [0, \pi]$$
.

Теперь мы можем вычислить норму $\|e^{isx}\|_{OL(\Lambda)}$ в случае, когда бесконечное множество $\Lambda, \Lambda \subset \mathbb{R}$, является множеством значений произвольной арифметической прогрессии.

Теорема 4.4. Пусть $s, a, c \in \mathbb{R}$, причём $a \neq 0$. Тогда

$$||e^{isx}||_{\mathrm{OL}(a\mathbb{Z}+c)} = \frac{1}{|a|}\operatorname{dist}(as, 2\pi\mathbb{Z}) = \operatorname{dist}(s, 2\pi a^{-1}\mathbb{Z}).$$

Доказательство. Достаточно заметить, что

$$\|e^{isx}\|_{OL(a\mathbb{Z}+c)} = \|e^{isx}\|_{OL(a\mathbb{Z})} = \frac{1}{|a|} \|e^{isax}\|_{OL(\mathbb{Z})} = \frac{1}{|a|} \operatorname{dist}(as, 2\pi\mathbb{Z}). \quad \Box$$

Следствие 4.5. Пусть $s,a,c\in\mathbb{R}$, причём $a\neq 0$. Тогда

$$||e^{\mathrm{i}sx}||_{\mathrm{OL}(a\mathbb{N}+c)} = \frac{1}{|a|}\operatorname{dist}(as, 2\pi\mathbb{Z}) = \operatorname{dist}(s, 2\pi a^{-1}\mathbb{Z}).$$

Доказательство. Можно считать, что c=0. Заметим, что

$$||e^{isx}||_{\mathrm{OL}(a\mathbb{N}-an)} = ||e^{isx}||_{\mathrm{OL}(a\mathbb{N})}$$

для любого $n \in \mathbb{N}$. Следовательно,

$$||e^{\mathbf{i}sx}||_{\mathrm{OL}(a\mathbb{N})} = \sup_{n \in \mathbb{N}} ||e^{\mathbf{i}sx}||_{\mathrm{OL}(a\mathbb{N}-an)} = ||e^{\mathbf{i}sx}||_{\mathrm{OL}(a\mathbb{Z})}.$$

Следствие 4.6. Пусть $\Lambda \subset a\mathbb{Z} + c$, где $a, c \in \mathbb{R}$, причём $a \neq 0$. Предположим, что для любого натурального числа n существует число $\lambda \in \Lambda$ такое, что $\lambda + ka \in \Lambda$ для всех $k \in \mathbb{N}$ таких, что $k \leqslant n$. Тогда

$$||e^{isx}||_{OL(\Lambda)} = \frac{1}{|a|}\operatorname{dist}(as, 2\pi\mathbb{Z}) = \operatorname{dist}(s, 2\pi a^{-1}\mathbb{Z})$$

 $npu\ ecex\ s \in \mathbb{R}.$

Доказательство. Достаточно доказать, что

$$||e^{\mathrm{i}sx}||_{\mathrm{OL}(\Lambda)} \geqslant \frac{1}{|a|} \operatorname{dist}(as, 2\pi\mathbb{Z}).$$

Положим $\mathbb{N}_n=\{k\in\mathbb{N}:k\leqslant n\}$. Существует число $\lambda\in\Lambda$ такое, что $\lambda+a\mathbb{N}_n\subset\Lambda$. Ясно, что $\|e^{\mathrm{i}sx}\|_{\mathrm{OL}(\Lambda)}\geqslant \|e^{\mathrm{i}sx}\|_{\mathrm{OL}(\lambda+a\mathbb{N}_n)}=\|e^{\mathrm{i}sx}\|_{\mathrm{OL}(a\mathbb{N}_n)}$ для любого $n\in\mathbb{N}$. Остаётся заметить, что

$$\frac{1}{|a|}\operatorname{dist}(as, 2\pi\mathbb{Z}) = \|e^{\mathrm{i}sx}\|_{\mathrm{OL}(a\mathbb{N})} = \sup_{n \in \mathbb{N}} \|e^{\mathrm{i}sx}\|_{\mathrm{OL}(a\mathbb{N}_n)} \leqslant \|e^{\mathrm{i}sx}\|_{\mathrm{OL}(\Lambda)}. \quad \Box$$

Замечание 1. Пусть Λ – конечное подмножество множества \mathbb{R} . Тогда

$$||e^{\mathrm{i}sx}||_{\mathrm{OL}(\Lambda)} < |s|$$

для любого ненулевого числа $s \in \mathbb{R}$.

Доказательство. Достаточно рассмотреть случай, когда s=1. Предположим, что $\|e^{\mathrm{i}x}\|_{\mathrm{OL}(\Lambda)}=1$. Занумеруем точки множества Λ конечной последовательностью $\{\lambda_j\}_{j=1}^n$. Положим $f(x)=e^{\mathrm{i}x}$. Рассмотрим матрицу $W=\{w_{jk}\}_{1\leqslant j,k\leqslant n}=\{(\mathfrak{D}_0f)(\lambda_j,\lambda_k)\}_{1\leqslant j,k\leqslant n}$. В силу теоремы 1.1

имеет место равенство $\|W\|_{\mathfrak{M}_0}=1$. Следовательно, существует матрица $X=\{x_{jk}\}_{1\leqslant j,k\leqslant n}$ такая, что $x_{jj}=0$ для всех $j,\,1\leqslant j\leqslant n,\,\|X\|=1$ и $\|W\star X\|=1$. Пусть A обозначает диагональную матрицу с последовательностью диагональных элементов $\{\lambda_j\}_{j=1}^n$. Рассмотрим матрицу $R=\{r_{jk}\}_{1\leqslant j,k\leqslant n}$, где

$$r_{jk} = \begin{cases} \frac{x_{jk}}{\lambda_j - \lambda_k}, & \text{если } 1 \leqslant j, k \leqslant n, \ j \neq k \\ \\ 0, & \text{если } 1 \leqslant j, k \leqslant n, \ j = k. \end{cases}.$$

Тогда

$$X = \{\lambda_i - \lambda_k\}_{1 \le i, k \le n} \star R = AR - RA$$

И

$$W \star X = \{ f(\lambda_j) - f(\lambda_k) \}_{1 \le j, k \le n} \star R = f(A)R - Rf(A) = e^{iA}R - Re^{iA}.$$

Таким образом, мы построили матрицы A и R такие, что $A^*=A$, $\sigma(A)=\Lambda, \, \|AR-RA\|=1$ и $\|e^{\mathrm{i}A}R-Re^{\mathrm{i}A}\|=1.$

Положим $U=e^{\mathrm{i}(n^{-1}A)}$. Из теоремы 1.2 следует, что

$$||UR - RU|| = ||e^{i(n^{-1}A)}R - Re^{i(n^{-1}A)}||$$

$$\leq ||e^{i(n^{-1}x)}||_{OL(\mathbb{R})}||AR - RA|| = n^{-1}.$$

Применяя ещё раз теорему 1.2, получим

$$1 = \|e^{iA}R - Re^{iA}\| = \|U^nR - RU^n\|$$

$$\leq \|z^n\|_{OL(\sigma(U))} \|UR - RU\| \leq n^{-1} \|z^n\|_{OL(\sigma(U))} \leq 1,$$

т. е. $||z^n||_{\mathrm{OL}(\sigma(U))} = n$, что противоречит теореме 3.1, поскольку множество $\sigma(U)$ состоит из не более, чем n элементов.

Замечание 2. Теорема 4.4 даёт ещё одно доказательство теоремы 3.2. Рассмотрим функции $f,g: \frac{2\pi}{N}\mathbb{Z} \to \mathbb{T}_N$, заданные следующим образом: $f(x) = e^{\mathrm{i}x}, \ g(x) = e^{\mathrm{i}nx}$. Тогда $f^n = g$. Ясно, что $\|g\|_{\mathrm{OL}(\frac{2\pi}{N}\mathbb{Z})} \leqslant \|z^n\|_{\mathrm{OL}(\mathbb{T}_N)} \|f\|_{\mathrm{OL}(\frac{2\pi}{N}\mathbb{Z})}$. Можно считать, что $N \geqslant 2$. Тогда $\|f\|_{\mathrm{OL}(\frac{2\pi}{N}\mathbb{Z})} = 1$ и $\|g\|_{\mathrm{OL}(\frac{2\pi}{N}\mathbb{Z})} = \mathrm{dist}(n,N\mathbb{Z})$ в силу теоремы 4.4. Следовательно, $\|z^n\|_{\mathrm{OL}(\mathbb{T}_N)} \geqslant \mathrm{dist}(n,N\mathbb{Z})$. Противоположное неравенство очевидно.

Список литературы

- 1. А. Б. Александров, *Несколько замечаний об операторно липшицевых функциях.* Зап. научн. семин. ПОМИ **480** (2019), 26–47.
- 2. А. Б. Александров, В. В. Пеллер, Операторно липшицевы функции. УМН **71**, вып. 4(430) (2016), 3–106.
- 3. G. Bennett, Schur multipliers. Duke Math, J. 44 (1977), 603–639.

Aleksandrov A. B. On the operator Lipschitz norm of the functions z^n on a finite subset of the unit circle.

The paper contains some remarks concerning of the behavior of the operator Lipschitz norm of the functions z^n on subsets of the unit circle. In particular, it is shown that the operator Lipschitz norm of the restriction of z^n to a subset Λ of the unit circle is equal to |n| if and only if Λ contains at least 2|n| points.

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН *E-mail*: alex@pdmi.ras.ru

Поступило 19 июля 2021 г.