
Записки научных
семинаров ПОМИ

Том 501, 2021 г.
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TESTS WHEN PARAMETERS ARE ESTIMATED

Abstract. In this paper some well-known tests based on empirical
distribution functions (EDF) with estimated parameters for testing
composite normality hypothesis are revisited, and some new results
on asymptotic properties are provided. In particular, the approxi-
mate Bahadur slopes are obtained – in the case of close alternatives
— for the EDF-based tests as well as the likelihood ratio test. The
local approximate efficiencies are calculated for several close alterna-
tives. The obtained results could serve as a benchmark for evaluation
of the quality of recent and future normality tests.

§1. Introduction

For testing the goodness-of-fit (GOF) null hypothesis that the sample
is taken from a fully specified continuous distribution F0, the predomi-
nantly used tests in practice are those based on some distance between the
empirical distribution function (EDF) Fn and F0.

The most widely used EDF-based tests is the well-known Kolmogorov-
Smirnov test [17] with statistic Dn = sup

x
|Fn(x) − F0(x)| based on the

L∞ distance. Other popular tests include the Cramer–von Mises [9] and
Anderson–Darling [1] test based on the weighted L2 distance between Fn

and F0. Different variations of these test statistics exist. Watson proposed
the centered versions of the Kolmogorov-Smirnov [34] (see also [10, 11])
and the Cramer–von Mises [33] tests. Other variants were proposed by
Kuiper [18] and Khmaladze [16] among others.

The properties of EDF-based tests are well-known. All these tests are
distribution-free under the null hypothesis makes them omnibus GOF tests
applicable regardless of F0. Their asymptotic distributions follow from the
limiting process of Fn(t) − F0(t) when n → ∞, which is the Brownian
bridge. Large deviations of these statistics are available in [23].

However, more often than not, we would like to test a composite GOF
null hypothesis that the sample comes from a family of distributions F0(x; θ)

Key words and phrases: asymptotic efficiency, goodness-of-fit, composite hypothesis.

203
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indexed by a finite-dimensional parameter θ. In this scenario, we need to
estimate θ in order to apply the EDF-based tests. The problem is that the
tests are no longer distribution-free, and their distribution depends on F0

and θ.
In case of location-scale families, it can be easily shown that the dis-

tribution does not depend on the location and scale parameters, but only
on F0. Therefore in this case we can consider GOF tests for particular
null location-scale families of distributions such as normal, exponential,
logistic, Cauchy, etc.

The modified EDF-based tests have been proposed and/or their prop-
erties investigated by Durbin [8], Kac, Kiefer and Wolfowitz [15], Lil-
liefors [19,20], Sukhatme [31], and the asymptotic theory have been studied
by Durbin [12] and Stephens [30], among others.

A popular tool for asymptotic comparison of tests is the Bahadur as-
ymptotic efficiency. One of the advantages over other types of efficiencies is
that is more convenient when the asymptotic distributions are not normal.
A comprehensive review of the Bahadur efficiencies of EDF-tests for the
simple null hypothesis is available in [23].

The calculation of Bahadur efficiency is heavily dependent on the large
deviation function of the test statistic, which is not available for the statis-
tics with estimated parameters. An approach in this direction was done by
Arcones [2] for the case of Kolmogorov-Smirnov normality test (also known
as Lilliefors normality test), however, only upper and lower estimates for
large deviations were obtained in a very complicated form. The only test for
which the Bahadur efficiencies were calculated is the Kolmogorov-Smirnov
exponentiality test [27]. There the corresponding large deviations were
obtained using particular convenient properties of the exponential distri-
bution.

When large deviations are unavailable, a common way out is to use the
so-called approximate Bahadur efficiency. Instead of the large deviations,
its calculation requires only the tail behaviour of the asymptotic distribu-
tion. The quality of approximation has been shown to be good locally and
for some statistics (e.g. U-statistics [25, 26] and their supremum [22, 24]),
exact and approximate Bahadur efficiency locally coincide.

In this paper we compare EDF-based tests in terms of approximate
Bahadur efficiency when testing the null normality hypothesis with both
parameters unknown. In Section 2 we present the test statistics and their
asymptotic behaviour and in Section 3 we calculate the efficiencies.
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§2. Test statistics

Consider now the case of testing normality, i.e., the null hypothesis
is H0 : F (x) = Φ(x−µ

σ
), where Φ is the standard normal distribution

function, and unknown parameters µ and σ are the mean and standard
deviation.

The tests we consider are all based on difference

∆n(t; µ̂, σ̂) = Fn(t)− Φ
( t− µ̂

σ̂

)
;

• the Kolmogorov–Smirnov normality test with statistic

Dn = sup
t∈R

∣∣∣∣∆n(t; µ̂, σ̂)

∣∣∣∣; (1)

• the Cramer–von Mises normality test

ω2
n =

∞∫

−∞

∆2
n(t; µ̂, σ̂)dΦ

( t− µ̂

σ̂

)
; (2)

• the Anderson–Darling normality test

A2
n =

∞∫

−∞

∆2
n(t; µ̂, σ̂)

Φ
(

t−µ̂
σ̂

)(
1− Φ

(
t−µ̂
σ̂

))dΦ
( t− µ̂

σ̂

)
; (3)

• the Watson–Darling variation of the Kolmogorov–Smirnov normal-
ity test

Gn = sup
t∈R

∣∣∣∣∆n(t; µ̂, σ̂)−
∞∫

−∞

∆n(z; µ̂, σ̂)dΦ
(z − µ̂

σ̂

)
dz

∣∣∣∣; (4)

• the Watson variation of the Cramer–von Mises normality test

U2
n=

∞∫

−∞

(
∆n(t; µ̂, σ̂)−

∞∫

−∞

∆n(z; µ̂, σ̂)dΦ
(z − µ̂

σ̂

)
dz

)2

dΦ
( t− µ̂

σ̂

)
dt, (5)

where µ̂ = X̄n and σ̂2 = S2 are the maximum likelihood estimators of µ
and σ2. To describe the asymptotic distribution of the test statistics, we
define the following empirical processes:
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ηn(x;µ, σ
2) = Fn(µ+ σx)− Φ(x);

ξn(x;µ, σ
2) = Fn(µ+ σx)− Φ(x) −

∞∫

−∞

(Fn(µ+ σx) − Φ(z))ϕ(z)dz.

Then, our statistics can be represented as

Dn = sup
x∈R

|ηn(x; µ̂, σ̂2)|;

ω2
n =

∞∫

−∞

η2n(x; µ̂, σ̂
2)ϕ(x)dx;

A2
n =

∞∫

−∞

η2n(x; µ̂, σ̂
2)

Φ(x)(1 − Φ(x))
ϕ(x)dx;

Gn = sup
x∈R

|ξn(x; µ̂, σ̂2)|;

U2
n =

∞∫

−∞

ξ2n(x; µ̂, σ̂
2)ϕ(x)dx.

It can be easily shown that all statistics are location and scale free under
the null hypothesis of normality. Therefore, in what follows we assume that
true parameters are µ0 = 0 and σ0 = 1.

2.1. Asymptotic behaviour.

Theorem 2.1. Let X1, X2, ..., Xn be an i.i.d. sample from normal N (0, 1).
Then the empirical processes

√
nηn(x; µ̂, σ̂

2) and
√
nξn(x; µ̂, σ̂

2) converge

weakly in D(R) to centered Gaussian processes η(x) and ξ(x) whose co-

variance functions are respectively equal to

Kη(x, y) = Φ(min(x, y)) − Φ(x)Φ(y)− ϕ(x)ϕ(y) − 1

2
xyϕ(x)ϕ(y),

Kξ(x, y) =Φ(min(x, y))−Φ(x)Φ(y)+
1

2
Φ(x)(1 − Φ(x))+

1

2
Φ(y)(1 − Φ(y))

+
1

2
√
π
(ϕ(x) + ϕ(y))− ϕ(x)ϕ(y) − 1

2
xyϕ(x)ϕ(y) +

1

12
− 1

4π
.
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Proof. For a fixed x, from [28] we have the following representation:
√
nηn(x; µ̂, σ̂

2)

=
√
nηn(x; 0, 1) +

√
nµ̂ · ∂

∂µ
E

[
I{X1 < µ+ σx} − Φ(x)

]∣∣∣
µ=0,σ2=1

+
√
n(σ̂2 − 1) · ∂

∂σ2
E

[
I{X1 < µ+ σx} − Φ(x)

]∣∣∣
µ=0,σ2=1

+ oP (1)

=
√
nηn(x; 0, 1) + ϕ(x) · √nµ̂+

x

2
ϕ(x) · √n(σ̂2 − 1) + oP (1).

From the multivariate central limit theorem it is straightforward to show
that the finite dimensional distributions are asymptotically normal.

The tightness of this process follows from the tightness property of the
first summand (see [5, Chapter 3]). The remaining components are just
deterministic continuous functions of x multiplied by a random variable,
and, as such, tight in C(R).

Taking into account the Bahadur represention of the estimator for σ2,

σ̂2 − 1 =
1

n2

∑

i,j

(Xi −Xj)
2

2
− 1 =

2

n

∑

i

X2
i − 1

2
+ oP (1),

we obtain that the covariance function is

Kη(x, y) = K0(x, y) + ϕ(y)E
[
I{X < x}X

]
+

yϕ(y)

2
E

[
I{X < x}(X2 − 1)

]

+ ϕ(x)E[I{X < y}X ] +
xϕ(x)

2
E

[
I{X < y}(X2 − 1)

]
+ ϕ(x)ϕ(y)

+
xyϕ(x)ϕ(y)

4
E

(
(X2 − 1)2

)

= K0(x, y)− ϕ(y) · ϕ(x) − yϕ(y)

2
· xϕ(x) − ϕ(x) · ϕ(y)

− xϕ(x)

2
· yϕ(y) + ϕ(x)ϕ(y) +

xyϕ(x)ϕ(y)

4
· 2

= K0(x, y)− ϕ(x)ϕ(y) − 1

2
xyϕ(x)ϕ(y),

where

K0(x, y) = Φ(min(x, y))− Φ(x)Φ(y)

is the covariance function of the limiting process {η(x; 0, 1)}.
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The same arguments for convergence of ηn hold for the empirical process
ξn, too, following its representation as

√
nξn(x; µ̂, σ̂

2) =
√
nηn(x; 0, 1) +

1

2
− 1

n

n∑

i=1

Φ(−Xi) +
√
nµ̂

· ∂

∂µ
E

[
I{X1 < µ+ σx} − Φ(x)− Φ

(µ−Xi

σ

)]∣∣∣
µ=0,σ2=1

+
√
n(σ̂2 − 1)

· ∂

∂σ2
E

[
I{X1 < µ+ σx} − Φ(x) − Φ

(µ−Xi

σ

)]∣∣∣
µ=0,σ2=1

+ oP (1)

=
√
nηn(x; 0, 1) +

1

n

n∑

i=1

Φ(Xi)−
1

2
+ (ϕ(x) − 1

2
√
π
) · √nµ̂

+
x

2
ϕ(x) · √n(σ̂2 − 1)+oP (1),

while its covariance function is

Kξ(x, y) = K0(x, y) +
1

2
√
π
(φ(x) + φ(y)− 1√

π
)− φ(x)(φ(y) − 1

2
√
π
)

− φ(y)(φ(x) − 1

2
√
π
) + (φ(x) − 1

2
√
π
)(φ(y) − 1

2
√
π
)− 1

2
yφ(y)xφ(x)

− 1

2
xφ(x)yφ(y) +

1

2
xyφ(x)φ(y) +

Φ(x)

2
+

Φ(y)

2
+

1

12

− 1

2
(1− (1− Φ(x))2)− 1

2
(1− (1 − Φ(y))2)

= K0(x, y) +
1

2
Φ(x)(1 − Φ(x)) +

1

2
Φ(y)(1 − Φ(y))

+
1

2
√
π
(ϕ(x) + ϕ(y)) − ϕ(x)ϕ(y) − 1

2
xyϕ(x)ϕ(y) +

1

12
− 1

4π
. �

The limiting distributions of EDF based test statistics are given in the
following corollary.

Corollary 2.1. Let X1, X2, ..., Xn be an i.i.d. sample from normal N (0, 1).
Then we have that
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√
nDn

d→ sup
t∈R

|η(t)|;

nω2
n

d→
∞∑

i=1

λiZ
2
i ;

nA2
n

d→
∞∑

i=1

νiZ
2
i ;

√
nGn

d→ sup
t∈R

|ξ(t)|;

nU2
n

d→
∞∑

i=1

ζiZ
2
i

where Zi are i.i.d. standard normal random variables, and {λi}, {νi} and

{ζi} are sequences of eigenvalues of integral operators W, A and U de-

fined by

Wq(x) =

∞∫

−∞

Kη(x, y)q(y)ϕ(y)dy, (6)

Aq(x) =

∞∫

−∞

Kη(x, y)√
Φ(x)(1 − Φ(x))Φ(y)(1 − Φ(y))

q(y)ϕ(y)dy, (7)

and

Uq(x) =
∞∫

−∞

Kξ(x, y)q(y)ϕ(y)dy, (8)

respectively.

For statistics Dn and Gn the convergence holds from the continuous
mapping theorem, while for statistics ω2

n, An and Un the proof follows
from continuous mapping theorem, Mercer’s theorem and Karhunen-Loeve
decomposition of a Gaussian process (see e.g. [13]).

§3. Approximate Bahadur efficiency

Let G = {G(x; θ)} be the family of distribution functions (DF’s) with
densities g(x; θ), such that G(x; θ) is normal only for θ = 0. We assume
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that the DF’s from the class G satisfy the regularity conditions from [25,
Assumptions WD].

Suppose that Tn = Tn(X1, ..., Xn) is a sequence of test statistics where
the null hypothesis H0 : θ ∈ Θ0 is rejected for Tn > tn. Let the sequence of
DF’s of the test statistic Tn converge in distribution to a non-degenerate
DF F . Additionally, suppose that

log(1− F (t)) = −aT t
2

2
(1 + o(1)), t → ∞,

and the limit in probability under the alternative

lim
n→∞

Tn/
√
n = bT (θ) > 0

exists for θ ∈ Θ1.
The approximate relative Bahadur efficiency with respect to another

test statistic Vn = Vn(X1, ..., Xn) is defined as

e∗T,V (θ) =
c∗T (θ)

c∗V (θ)
,

where

c∗T (θ) = aT b
2
T (θ) (9)

is the Bahadur approximate slope of Tn. This is a measure of a test effi-
ciency proposed by Bahadur in [3].

When studying asymptotic efficiency it is of interest to see the per-
formance of tests for alternatives close to the null distribution. For such
alternatives we define the local approximate Bahadur efficiency by

e∗T,V = lim
θ→0

c∗T (θ)

c∗V (θ)
. (10)

The local approximate efficiency often coincides with the exact one.
Here we calculate the approximate relative Bahadur efficiency against

some common close alternatives with respect to the likelihood ratio test
(LRT). The LRT has proven to be the optimal test in terms of the exact
Bahadur efficiency, and is frequently used as a benchmark for comparison.

3.1. Local Bahadur slope of the LRT for normality. In [4] it was
shown that the local exact Bahadur slope of LR test is equal to 2K(θ)
where K(θ) is the Kullback-Leibler distance from the alternative distribu-
tion indexed by θ to the family of null distributions. In the case of the null
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normality hypothesis it is equal to

K(θ) = inf
µ,σ

Eθ log
g(X, θ)

1
σ
ϕ(X−µ

σ
)

= inf
µ,σ

∞∫

−∞

log
g(x, θ)

1
σ
ϕ(x−µ

σ
)
g(x; θ)dx, (11)

where ϕ(x) is the standard normal density. In the case of close alternatives
g(x; θ) its behaviour is given in the following theorem.

Theorem 3.1. For a given density g(x; θ) from G it holds

2K(θ) =

( ∞∫

−∞

(g′θ(x; 0))
2

g(x; 0)
dx− 1

σ2
0

( ∞∫

−∞

xg′θ(x; 0)dx
)2

− 1

2σ4
0

( ∞∫

−∞

(x− µ0)
2g′θ(x; 0)dx

)2
)

· θ2 + o(θ2),

(12)

where µ0 and σ2
0 are parameters of normal distribution g(x; 0).

Proof. The infimum in (11) is reached for

µ(θ) =

∞∫

−∞

xg(x; θ)dx (13)

σ2(θ) =

∞∫

−∞

(x− µ(θ))2g(x; θ)dx. (14)

It is straightforward that µ(0) = µ0, σ
2(0) = σ2

0 , as well as

µ′(0) =

∞∫

−∞

xg′θ(x; 0)dx (15)

µ′′(0) =

∞∫

−∞

xg′′θ (x; 0)dx (16)

(σ2)′(0) =

∞∫

−∞

(x− µ0)
2g′θ(x; 0)dx (17)
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(σ2)′′(0) = −2
( ∞∫

−∞

xg′θ(x; 0)dx
)2

+

∞∫

−∞

(x − µ0)
2g′′θ (x; 0)dx. (18)

Differentiating K(θ) along θ with the help of expressions (15)-(18) we
obtain that K ′(0) = 0 and K ′′(0) equal to the right hand side of (12).
Expanding K(θ) in the Maclaurin series we complete the proof. �

The alternatives from G satisfy the conditions from [29] and hence the
local approximate slope of LRT also has representations (12).

3.2. Local Bahadur slopes of the EDF based tests.

Theorem 3.2. For the statistics Dn, ω2
n, A2

n, Gn and U2
n, and alternative

density g(x, θ) ∈ G, the Bahadur approximate slopes are

cD(θ) =
1

supxKη(x, x)

(
sup
x

∣∣g⋆(x)
∣∣
)
)2 · θ2 + o(θ2);

cω2(θ) =
1

λ1

∞∫

−∞

(
g⋆(x)

)2
ϕ(x)dx · θ2 + o(θ2);

cA2(θ) =
1

ν1

∞∫

−∞

(
g⋆(x)

)2

Φ(x)(1 − Φ(x))
ϕ(x)dx · θ2 + o(θ2);

cG(θ) = sup
x∈R

∣∣∣g⋆(x)−
∞∫

−∞

(
g⋆(u)

)
ϕ(u)du

∣∣∣ + o(θ2);

cU2(θ) =

∞∫

−∞

(
g⋆(x)−

∞∫

−∞

(
g⋆(u)

)
ϕ(u)du

)2
ϕ(x)dx + o(θ2).

respectively, where λ1, ν1 and ζ1 are largest eigenvalues of operators W,

A and U defined in (6)-(8), and

g⋆(x) = G′

θ(x; 0) + g(x; 0)(µ′(0) + xσ′(0)).

Proof. For each x ∈ R, using the law of large numbers for U-statistics
with estimated parameters [14], the limit in probability of ηn(x, µ̂, σ̂

2) is

B(x, θ) = G(µ(θ) + σ(θ)x, θ) − Φ(x) =

µ(θ)+σ(θ)x∫

−∞

g(u, θ)du− Φ(x).
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Further we have that

B′

θ(x, θ) = g(µ(θ) + σ(θ)x, θ)(µ′(θ) + σ′(θ)x) +

µ(θ)+σ(θ)x∫

−∞

g′θ(u, θ)du

When θ = 0 the expression above is equal to

B′

θ(x, 0) = g(x, 0)(µ′(0) + σ′(0)x) +G′

θ(x; 0).

Hence we obtain that

B(x, θ) = g⋆(x) · θ + o(θ), θ → 0.

Following [32, Chap. 19], the limits in Pθ probability of statistics Dn, Wn

and An are then

bD(θ) = sup
x

|g⋆(x)| · θ + o(θ);

bω2(θ) =

∞∫

−∞

(g⋆(x))2ϕ(x)dx · θ2 + o(θ2);

bA2(θ) =

∞∫

−∞

(g⋆(x))2

Φ(x)(1 − Φ(x))
ϕ(x)dx · θ2 + o(θ2).

Analogously, using the process ξn(x; µ̂, σ̂
2), we obtain the limits in prob-

ability of Gn and U2
n are

bG(θ) = sup
x

∣∣∣g⋆(x)−
∞∫

−∞

(
g⋆(u)

)
ϕ(u)du

∣∣∣ · θ + o(θ);

bU2(θ) =

∞∫

−∞

(
g⋆(x)−

∞∫

−∞

(
g⋆(u)

)
ϕ(u)du

)2
ϕ(x)dx · θ2 + o(θ2).

The tail behaviour of the supremum of a Gaussian process follows from
[21], and the constant aT from (9) is equal to the supremum on the diagonal
of the covariance function. Therefore we get aD = supt Kη(t, t) in the case
of Dn and aG = supt Kξ(t, t) in the case of Gn.
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For the integral type statistic ω2
n, using the result of Zolotarev [35], we

have that the logarithmic tail behavior of ω̃2 =
√
nω2

n is

log(1− Fω̃2(x)) = − x2

2λ1
+ o(x2), x → ∞,

and hence, ãω̃2 = 1
λ1

, where λ! is the largest eigenvalue of the integral

operator W defined in (6). Analogously we get ã
Ã2 = 1

ν1
and ã

Ũ2 = 1
ζ1

for

statistics A2
n and U2

n. �

3.3. Calculation of efficiencies. The close alternatives we consider here
are

• a Lehmann alternative with density

g1(x; θ) = (1 + θ)Φθ(x)ϕ(x);

• a first Ley-Paindaveine alternative with density

g2(x; θ) = ϕ(x)e−θ(1−Φ(x))(1 + θΦ(x));

• a second Ley-Paindaveine alternative with density

g3(x; θ) = ϕ(x)(1 − θπ cos(πΦ(x));

• a contamination alternative (with N (µ, σ2)) alternative with den-
sity

g
[m,σ2]
4 (x; θ) = (1 − θ)ϕ(x) +

θ

σ
ϕ
(x− µ

σ

)
.

To calculate the efficiency one needs to find the largest eigenvalues λ1,
ν1 and ζ1 from Corollary 2.1. Since we can not obtain them analytically,
we use the approximation method from [6] (see also [7]).

The values of efficiencies are presented in Table 1. We can see that the
integral tests are more efficient than the supremum ones. Among them, the
Anderson–Darling test is the best one for almost all considered alterna-
tives. Additionally, the Watson-type modifications of Kolmogorov-Smirnov
and Cramer–von Mises tests are less efficient than the original versions.

These results can serve as a benchmark for evaluation of the quality of
recent and future normality tests.
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Table 1. Approximate Bahadur efficiency of Dn and Wn

with respect to LRT

alternative Dn ω2
n A2

n Gn U2
n

Lehmann 0.311 0.584 0.689 0.258 0.471
1st Ley-Paindaveine 0.455 0.800 0.891 0.321 0.699
2nd Ley-Paindaveine 0.565 0.917 0.971 0.332 0.846

Contamination with N (1, 1) 0.200 0.377 0.464 0.111 0.302
Contamination with N (0.5, 1) 0.266 0.505 0.606 0.146 0.402
Contamination with N (0, 0.5) 0.258 0.570 0.649 0.137 0.668
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