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MODELS

Abstract. A subclass of lattice conditional independence models
is introduced. The new class of models is called totally ordered in-
dependence models. The class is based on an assumption that the
index set which orders the random variables is a chain. It is shown
that there is a jump in the chain if and only if there is a condi-
tional independence relation. Some comparisons between the lattice
conditional independence models and totally ordered independence
models are presented.

§1. Introduction

In this article a class of multivariate normal models determined by so
called totally ordered conditional independence (TOCI) restrictions on the
covariance structure in normally distributed random vectors is introduced
and studied. The class of models constitute a special class of the lattice con-
ditional independence class of models (LCI) introduced by [3]. Considered
is the set of subsets of a finite index set I which is totally ordered (≡ chain)
by inclusion (precisely defined in Section 3). Given a non-decreasing chain,
say K, of indices K1 ⊂ · · · ⊂ Kq, where Ki denotes a subset of indices,
the conditional independence relations in this article, i.e., the structure of
the covariance matrix and factorization of the likelihood, are derived by
considering adjacent pairs, Ki,Ki+1, of the elements of the chain K.

The totally ordered conditional independence model N(K,Σ) is defined
to be the class of all normal distributions on, say, Rp such that for the
adjacent pair {Ki,Ki+1} ∈ K, i ∈ {1, . . . , q − 1}, the components of the
multivariate normal vector X ∈ R

p, indexed by the set difference Ki+1\Ki,
are mutually conditionally independent of the elements of X which are in-
dexed by Ki. It will be assumed that the mean of the distribution, without
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loss of generality, equals 0 and the unknown non-singular covariance matrix
is denoted Σ.

The reader is now further introduced to the TOCI model class through
some basic examples:
Examples: Let X = (X1, X2, X3)

⊤ follow a multivariate normal distri-
bution of dimension 3 with mean zero and non-singular covariance matrix
Σ: 3×3, and ⊤ denotes the transpose of a matrix. Let I = {1, 2, 3} and let
P(I) be the power set of I. Define a set K ⊂ P(I) which is totally ordered
by inclusion. We assume that K always contains the empty set {∅} and
the index set I. For example, the trivial totally ordered chain is given by
K = {{∅}, I}. The difference I \ {∅} is the set I itself, therefore, since
we are conditioning with respect to {∅}, conditional independence means
that for the trivially ordered set the three random variables corresponding
to I are marginally independent which is denoted X1 ⊥⊥ X2 ⊥⊥ X3.

Another ordered set, say chain K, defined on the same index set as in
the previous paragraph, can be given by K1 ⊂ K2 ⊂ K3, e.g., {∅} ⊂
{1} ⊂ {I}. The conditional independence structure implied by the first
adjacent pair yields K2 \ K1 = {1}. Consider the second adjacent pair,
then K3 \K2 equals {1, 2, 3} \ {1}= {2, 3} and therefore (X2 ⊥⊥ X3) | X1,
which denotes that X2 and X3 are independently distributed given X1.
Since we are working with multivariate normally distributed variables with
a covariance matrix Σ, the conditional independence assumption among
the random variables is equivalent to the well known covariance conditions
(Σ−1)23 = (Σ−1)32 = 0 (using standard notation for block partitions of
matrices). In this example the factorization of the parameter space and
the likelihood function are given as follows:

Σ ≡ {Σ11, B2,Σ22•1, B3,Σ33•1}, B2 = Σ21Σ
−1
11 , B3 = Σ31Σ

−1
11 , (1)

fx ∝ fX1
fX2|X1

fX3|X1
, (2)

where f•s denote the multivariate normal density functions, A ≡ B means
that A can be expressed with the help of B (and some inserted 0), and
the Schur complements Σ22•1 = Σ22 − Σ21Σ

−1
11 Σ12 and Σ33•1 = Σ33 −

Σ31Σ
−1
11 Σ13 are the covariance matrices in fX2|X1

and fX3|X1
, respectively,

meaning that the conditional independence model is determined by the
totally ordered set K = {{∅}, {1}, I}. Moreover, (1) and (2) imply that
the maximum likelihood estimators of the parameters in Σ given in (1) can
be obtained from the conditional density functions in (2), using standard
techniques from multivariate regression analysis (e.g., see [4]). From fX1
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the variance Σ11 is estimated, from fX1|X2
the conditional mean effect B2

and the conditional variance Σ22•1 are estimated and from fX3|X1
the con-

ditional mean effect B3 and the conditional variance Σ33•1 are estimated.
These estimators build up the estimator of Σ, i.e.,

Σ11 = Σ11, Σ21 = B2Σ11, Σ22 = Σ22•1 +Σ21Σ
−1
11 Σ12,

Σ31 = B3Σ11, Σ33 = Σ33•1 +Σ31Σ
−1
11 Σ13, Σ23 = Σ21Σ

−1
11 Σ13.

If the normally distributed vector would have had a mean which differs
from 0 it would be possible to express the mean structure with similar
relations to those above.

The proposed normal TOCI models class can be viewed as a natural
special case of the totally ordered multivariate linear models defined in [2].
It has been shown that general totally ordered multivariate linear models
are amenable to explicit (non-iterative) likelihood analysis. We will investi-
gate the relationship between the TOCI models and the lattice conditional
independence (LCI) models, see [3], and it will be shown that the class of
TOCI models is included in the class of LCI models.

It follows, as in the second example given above, that for all TOCI mod-
els the likelihood function and parameter space can be factored into the
products of conditional likelihood functions and disjoint parameter spaces,
respectively, and each conditional likelihood function, corresponds to an
ordinary multivariate normal regression model from where explicit max-
imum likelihood estimators can be obtained. The main advantages with
formulating TOCI models is that there is a very clear interpretation of the
models which makes the model suitable for inference and straightforward
model validations, a basic ingredient of the statistical paradigm.

It can be noted that there exists a lot of work on so called Graphical
Markov models (ADG-models) and one article which is close to this work
is [5] where also a literature review of ADG models is given. In [5] it
is shown that normal linear ADG models among others include totally
ordered normal linear models and lattice conditional independence models.
The present work differs from the above mentioned models by supposing
a chain structure in the model formulation with a focus on expressing
conditional independence relations. In the considered models that explicit
maximum likelihood estimators (non-iterative) can be obtained but looking
very explicitely on the models one gets a better understanding for the
model class and thereby model validation techniques can be developed
which however will not take place in this article.
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The organization of the paper is as follows. In Section 2, background
concepts are introduced, and notation regarding ordered sets and lattices.
In Section 3, the TOCI model class is defined, and in Section 4 the class
of models is compared with LCI models, i.e., transitive directed acyclic
graphical models (TDAG). Moreover, in Section 4 the notion of Markov
equivalence among TOCI models is also discussed. A summary of the paper
is provided in Section 5.

§2. Background

In this section some notations are introduced and a brief overview of
ordered sets and lattices are presented. For more details on ordered set
and lattices it is referred to [6].

2.1. Partially ordered and totally ordered sets. Throughout the
article I is a finite index set. Let P(I) be the power set of the index set,
I, which contains the set of all subsets of I, including the empty set and
I itself. For example for a finite set I = {1, 2, 3}, its power set is given
by P(I) = {{∅}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Order
theoretic properties of a power set can be expressed in terms of the subset
relation ⊆. For example for all A,B,C ⊆ P(I) we have:

Reflexivity : A ⊆ A; (3)

Antisymmetry : A ⊆ B and B ⊆ A =⇒ A = B; (4)

Transitivity : A ⊆ B and B ⊆ C =⇒ A ⊆ C; (5)

Comparability : A ⊆ B or B ⊆ A. (6)

In the following the partially ordered sets (poset) and totally ordered sets
(chain) by inclusion (⊂) are defined. For illustration purpose we consider
a finite set I = {1, 2, 3, 4}.

Definition 2.1. Relations satisfying (3) – (5) are called partial order-
ing relations, and the sets coupled with such relations are called partially
ordered sets or posets.

For example, Let L={{∅}, {1}, {1, 2}, {1, 3}, I}, then (L,⊂) is a poset.

Definition 2.2. A poset (L,⊂) that also satisfies (6) is called a totally
ordered set or a chain.

For example, let K={{∅}, {1}, {1, 3}, I}, then (K,⊂) is a chain.



106 N. GAURAHA, D. VON ROSEN

Definition 2.3 (Lattice). A poset (L,⊂) is a lattice if {A ∪ B} (least
upper bound) and {A ∩B} (greatest lower bound) is included in L for all
A,B ∈ L. The infimum ∩ and supremum ∪ can be characterized by the
following set operations:

A ⊂ B ⇐⇒ A ∩B = A,

A ⊂ B ⇐⇒ A ∪B = B.

Definition 2.4 (Distributive lattice). A lattice (L,⊂) is distributive if
the following additional property holds for all A,B,C ∈ L: A∩ (B ∪C) =
(A ∩B) ∪ (A ∩ C).

For example, let L = {{∅}, {1}, {1, 2}, {1, 3}, {1, 2, 3}, I}, then (L,⊂)
is a distributive lattice.

In linear models theory often linear spaces are involved and linear spaces
satisfy the modular equality A ∩ (B ∪ (A ∩ C)) = (A ∩ B) ∪ (A ∩ C),
i.e., constitute a modular lattice, where A, B and C are linear subspaces.
However, this algebraic property does not lead to unique decompositions of
the likelihoods and therefore it is of advantage to consider more restricted
structures. An example is a two-way unbalanced analysis of variance model
which can be decomposed in several ways whereas a balanced two-way
analysis of variance model has one unique decomposition. A distributive
lattice is a modular lattice.

Proposition 2.1 (K(I) ⊂ L(I)). Let K(I) be the set of all chains of the
set P(I). Moreover, let L(I) be the set of all distributive lattices of P(I),
then K(I) ⊂ L(I).

The proposition implies that every chain is a distributive lattice.

Definition 2.5 (Ascending chain). A chain is called well numbered (or-
dered) chain or an ascending chain if its elements are ordered in an as-
cending way.

For example, let K={{∅}, {1}, {1, 2}, I}be a chain by inclusion which is
well ordered. For the rest of the article, by a chain K={K1,K2, . . . ,Kq+1},
we mean a well ordered chain such that K1 ⊂ K2 ⊂ · · · ⊂ Kq+1.
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§3. Totally ordered conditional independence models

The class of multivariate normal models determined by totally ordered
conditional independence (TOCI) restrictions on the covariance matrix
will be introduced.

Let I = {1, ..., p} be a finite index set, let P(I) denote the power set
of I, and let K ⊂ P(I) be a well-ordered chain. Throughout this article
we shall consider a p-variate normally distributed random vector X =
(X1, . . . , Xp)

T with mean zero and a positive definite covariance matrix
Σ. For convenience, we refer to a random variable, or a set of them, by
their indexes, i.e., Xi as i and XA as A. Let M(I) denotes the set of all
p × p positive definite matrices, and thus Σ ∈ M(I). The TOCI model
N(K; Σ) is defined to be the set of all normal distributions with respect to
a totally ordered set K, such that for every adjacent pair Ki,Ki+1 ∈ K,
the elements of the set Ki+1 \Ki are mutually conditionally independent
given Ki. This is formally rewritten in the next definition.

Definition 3.1 (TOCI model and N(K; Σ)). Let K = {K1 ⊂ · · · ⊂ Kq+1}
be a totally ordered set, where |K| = q + 1. The family of normal distri-
butions N(K; Σ) is said to satisfy the totally ordered conditional indepen-
dence property with respect to K, i.e., being a TOCI model, if, for each
adjacent pair of elements Ki,Ki+1 ∈ K the following relations hold: for
i ∈ {1, . . . , q} and vertices v1, . . . , vr

{v1, . . . , vr} = Ki+1 \Ki, (v1 ⊥⊥ · · · ⊥⊥ vr) | Ki. (7)

In the definition (v1 ⊥⊥ · · · ⊥⊥ vr) | Ki means that the random variables
which correspond to (v1 ⊥⊥ · · · ⊥⊥ vr) are conditionally independent given
the random variables which correspond to Ki.

Definition 3.2 (The difference set D(K)). Let K = {K1 ⊂ · · · ⊂ Kq+1}
be a chain, where the cardinality equals |K| = q + 1. The difference set
D(K) of the chain K is defined as follows:

D(K) = {Ki+1 \Ki; Ki,Ki+1 ∈ K, ∀i ∈ {1, . . . , q}}

and put {Di} = {Ki+1 \Ki}.

The difference set D(K) = {D1, . . . , Dq}, as defined in Definition 3.2,
is an ordered partition of the index set I, and K is uniquely determined
by D(K). In fact for any D(K) of the chain K the following holds: For
i ∈ {1, . . . , q}

Ki+1 = D1 ∪ · · · ∪Di,
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where Kq+1 = I =
⋃

(Di ∈ D). This means that conditional indepen-
dence of a chain K can be represented, more conveniently, in terms of the
corresponding D(K).

Proposition 3.1. Let N(K; Σ) be a TOCI model, and let the difference
set be D(K). The elements Di ∈ D are mutually conditionally independent
given the corresponding subset Ki ∈ K.

A chain and its difference set, and conditional independence are illus-
trated in Table 1.

Table 1. An example of a chain K = {{∅}, {1, 2}, I =
{1, 2, 3, 4}}, its difference set D(K) and conditional inde-
pendence relations (CIs)

1 2 3

K ∅ {1, 2} I

D(K) {1, 2} {3, 4}
CIs (1 ⊥⊥ 2) (3 ⊥⊥ 4) | (1, 2)

Theorem 3.1 (Factorization of the likelihood function). Let N(K,Σ) be
a TOCI model, with the difference set D(K), |K| = q + 1. The likelihood
function of the model can be factorized in conditional likelihood functions
in terms of the elements of D(K) as follows:

fI ∝

q
∏

i=1

(fd∈Di|Ki
).

Thus Theorem 3.1 shows how important the difference set is for per-
forming statistical inference. However, in order to fully understand the
conditioning we also have to see what happens with the parameter matrix
Σ.

Theorem 3.2 (Factorization of parameter space). Let N(K,Σ) be a TOCI
model, with a difference set D(K). The unknown parameter Σ can be re-
constructed from its factors:

Σ ≡ {Σ{d∈Di}×Ki
Σ−1

Ki
,Σ{d∈Di}•Ki

| Ki ∈ K, Di ∈ D},

where ΣA = ΣA×A, ΣA×B represents the A × B sub-matrix of Σ, and
ΣA•B = ΣA − ΣA×BΣ

−1
B ΣB×A.
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For the proofs of Theorem 3.1 and Theorem 3.2 it is possible to take
over a proof given in [3] because the class of TOCI models is a subclass of
the lattice conditional independence class of models (LCI). The relation
between TOCI models and LCI models is briefly discussed in Section 4.

The advantage with the TOCI models is that there is a clear order of
the elements in the index set which then generates the difference set. To
make use of the difference set it is of interest to define the concept of a
jump.

Definition 3.3 (Jump). Let K = {K1 ⊂ · · · ⊂ Kq+1} be a totally ordered
set, where |K| = q+1. Let D(K) be the difference set of K. The chain K is
said to have a jump, if for i ∈ {1, . . . , q−1} at least one inequality |Di| ≥ 2
(|Ki+1| ≥ 2 + |Ki|) is satisfied.

A jump will always correspond to either an independence relation or
a conditional independence relation. If the jump includes {∅} there is
independence but otherwise the jump indicates conditional independence.
The size of the jump tells how many variables are involved. If the jump
size is t then there are t− 1 independence relations (strict independecnce
or conditional independence). The difference set immediately tells us how
the corresponding variables are related which in turn defines the covariance
structure in the TOCI model.

We will illustrate the results of Theorem 3.1 and Theorem 3.2 in detail
using a series of examples with four variables. Let X1, X2, X3 and X4

follow a multivariate normal distribution with mean zero and non-singular
covariance matrix Σ, that is X = (X1, X2, X3, X4)

T ∼ N4(0,Σ), Σ ∈
M(I). Here, I = {1, 2, 3, 4} and let P(I) denote the power set of I. Now
all possible non-isomorphic chains for the index set I are generated, and
for each chain the difference set and the conditional independence relations
implied by the difference set are derived. Consider a totally ordered set
(chain) KI ⊂ P(I) where

KI = {K1,K2,K3,K4} = {{∅}, {1}, {1, 2}, {1, 2, 3}, I}. (8)

As there can be only one such non-isomorphic chain, the remaining non-
isomorphic chains can be derived from this chain, which are subsets of KI .
The set {∅} and I are included in all chains and for the remaining subsets
{1}, {1, 2} and {1, 2, 3}, we have two choices, to include or not to include
a set into the chain. Thus there are 2|I|−1 = 23 = 8 total non-isomorphic
chains connected to the index set I. The eight non-isomorphic chains for
the index set I are now discussed one by one and focus is on conditional
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independence relations. Let f• denote the normal density function and
elements in the covariance matrix are indexed according to a mixture of
the notation in Theorem 3.2 and standard notation which we hope will
not cause any confusion.

(1) K1 = {{∅}, I}: The difference set is D(K1) = I. There is one
jump of size four and since {∅} is included it means that there are
three independence relations:

CI : X1 ⊥⊥ X2 ⊥⊥ X3 ⊥⊥ X4,

fI ∝ f1f2f3f4,

Σ ≡ {Σ11, Σ22, Σ33,Σ44}.

(2) K2={{∅}, {1}, I}: The difference set equals D(K2)={{1}, {2, 3, 4}}.
There is one jump between {1} and I which thus is of size three,
generating two conditional independence relations. More precisely,
the elements of the set {2, 3, 4} are mutually conditionally inde-
pendent conditioned on the corresponding K ∈ K, which is {1}.
The implied conditionally independence relations by the chain K2

are given as follows:

CI : (X2 ⊥⊥ X3 ⊥⊥ X4) | X1,

fI ∝ f1f2|1f3|1f4|1,

Σ ≡ {Σ11,Σ21Σ
−1
11 ,Σ22•1,Σ31Σ

−1
11 ,Σ33•1,Σ41Σ

−1
11 ,Σ44•1}.

(3) K3 = {{∅}, {1, 2}, I}: The difference set equals D(K3) =
{{1, 2}, {3, 4}}. There are two different jumps. The first one which
involves {∅} is of size two and the jump between {1, 2} and I is also
of size two. Therefore, the elements of the set {1, 2} are marginally
independent as the "previous" set is the empty set {∅}. The el-
ements of the set {3, 4} are mutually conditionally independent
conditioned on the union of all previous subsets which is {1, 2}.
The following are the implied conditional independency relations:

CI : X1 ⊥⊥ X2, (X3 ⊥⊥ X4) | (X1, X2),

fI ∝ f1f2f3|{1,2}f4|{1,2},

Σ≡
{

Σ11,Σ22,Σ3×{1,2})Σ
−1
{1,2},Σ33•{1,2},

Σ4×{1,2}Σ
−1
{1,2},Σ44•{1,2}

}

.

(4) K4 = {{∅}, {1}, {1, 2}, I}: The difference set is given by
D(K4) = {{1}, {2}, {3, 4}}. There is one jump of size 2 between
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{1, 2} and I. Thus,

CI : (X3 ⊥⊥ X4) | (X1, X2),

fI ∝ f1f2|1f3|{1,2}f4|{1,2},

Σ ≡
{

Σ11,Σ21Σ
−1
11 ,Σ22•1,Σ3×{1,2}Σ

−1
{1,2},Σ33•{1,2},

Σ4×{1,2}Σ
−1
{1,2},Σ44•{1,2}

}

.

(5) K5={{∅}, {1, 2, 3}, I}: The difference set D(K5)={{1, 2, 3}, {4}}
appears. Since there is one jump of size three involving {∅} there
are two independence relations. Thus, the implied conditional in-
dependence relations by the chain K5 are given by

CI : (X1 ⊥⊥ X2 ⊥⊥ X3),

fI ∝ f1f2f3f4|{1,2,3},

Σ ≡ {Σ11,Σ22,Σ33,Σ4×{1,2,3}Σ
−1
{1,2,3},Σ44•{1,2,3}}.

(6) K6 = {{∅}, {1}, {1, 2, 3}, I}: The difference set is given by
D(K6) = {{1}, {2, 3}, {4}}. There is one jump between {1} and
{1, 2, 3} which thus is of size two. From the chain K6 the following
are the only implied conditional independence relations:

CI : (X2 ⊥⊥ X3) | X1,

fI ∝ f1f2|1f3|1f4|{1,2,3},

Σ ≡ {Σ11,Σ21Σ
−1
11 ,Σ22•1,Σ31Σ

−1
11 ,Σ33•1,

Σ4×{1,2,3}Σ
−1
{1,2,3},Σ44•{1,2,3}}.

(7) K7 = {{∅}, {1, 2}, {1, 2, 3}, I}: The difference set is constructed
as D(K7) = {{1, 2}, {3}, {4}}. There is a jump between {∅} and
{1, 2} describing one independence relation. Thus, according to K7

the only implied conditional independence (independence) relation
is given by

CI : X1 ⊥⊥ X2,

fI ∝ f1f2f3|{1,2}f4|{1,2,3},

Σ ≡ {Σ11,Σ22,Σ3×{1,2}Σ
−1
{1,2},Σ33•{1,2},

Σ4×{1,2,3}Σ
−1
{1,2,3},Σ44•{1,2,3}}.

(8) K8 = {{∅}, {1}, {1, 2}, {1, 2, 3}, I}: The difference set is given
by D(K8) = {{1}, {2}, {3}, {4}}. There are no jumps of size
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larger than 1 and thus no conditional independence/independece
relations implied by the chain K8, and since Σ ∈ M(I) is unre-
stricted and therefore no "natural" unique factorization can take
place.

§4. Some properties of the TOCI class of models and its

relation to LCI models

The following graph-theoretical notations and concepts will be used. A
directed acyclic graph (DAG) D, is a pair D = (V,E), where V is the
set of vertices and E is the set of directed edges between certain pairs of
distinct vertices such that no cycles are present. If we have a directed edge
(a → b), we say that a is a parent of b, The set of all parents of a vertex b is
denoted by pa(b). For the edge from (a → b) and (c → b), but without an
edge between a and c (i.e., (a → c) or (c → a)) then a and c are immoral
parents of b. A DAG is transitive (TDAG) if (a → b) and (b → c) imply
that there exists a direct edge (a → c). A subset A ∈ V is called ancestors
of a vertex b when there is a direct path from each vertex a ∈ A to b.

A graphical model is a set of distributions satisfying a set of conditional
independence relations which usually are presented via a graph [8]. The
vertices in the graph correspond to random variables. Absence of an edge
between two vertices implies that the corresponding two random variables
are interpreted to be conditionally independent. For example, the prob-
ability density function of the graphical model given by Figure 1 can be
factorized as fx ∝ fX1

fX2|X1
fX3|X1

, meaning that given X1 the variables
X2 and X3 are conditionally independent. For more details on graphical
models it is referred to [7].

1

2

3

Figure 1. An example of a three-variable graphical model
encoded by a graph.

In the following the lattice conditional independence (LCI) property is
defined. For more details on LCI and its equality to transitive directed
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acyclic graphs (TDAGs) see [1]. The next definition should be compared
with Definition 3.1. The normal distribution in the definition has once
again a mean which equals 0 but this time the covariance structure is
defined in such a way that the index set which generates the covariance
structure follows a distributive lattice which not necessarily is a chain, i.e.,
instead of (3) – (6) only (3) – (5) hold.

Definition 4.1 (LCI models and N(L,Σ); see [1]). Let L={L1, . . . , Lq+1}
be a partially ordered set. The family of normal distributions N(L,Σ) is
said to satisfy the LCI property with respect to L if, for each pair of
elements Li, Lj ∈ L the following holds:

Li ⊥⊥ Lj | (Li ∩ Lj). (9)

As discussed previously, the TOCI models can also be obtained via an
ordered partition of the index set I. Since the ordered partition satisfies
(9) the TOCI class is a subclass of the LCI class. To show that it is a
proper subclass in the next proposition an interesting property which is
valid for all TOCI models is given.

Proposition 4.1 (Totally ordered conditional independence property).
Let D = (V,E) be a DAG. Given a well numbered (ascending order) of
v1, v2, . . . , vp of the elements of V . For the TOCI class any pair of nodes,
vi, vj , satisfy

pa(vi) = pa(vj) =⇒ (vi ⊥⊥ vj) | pa(vi). (10)

Proposition 4.2. For each TOCI model there is a LCI model, equivalently
a TDAG model, whereas for some LCI models it may not be possible to
represent them as a TOCI model.

Now via an example it will be shown that the TOCI model class is
a proper subset of the LCI model class. Consider the graph in Figure 2.
Then pa({3}) = pa({4}) = {1} whereas according to the graph in Figure
2 {3} ⊥⊥ {4} | {1} does not hold and therefore from (10) it follows that
the LCI model described via Figure 2 is not a TOCI model.

To illustrate the proposition it is noticed that the LCI model encoded
in Figure 2 has an inverse covariance structure which equals

Σ−1 =









σ11 σ12 σ13 σ14

σ21 σ22 0 0
σ31 0 σ33 σ34

σ41 0 σ43 σ44









. (11)
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1

2

3

4

Figure 2. An example of a LCI (TDAG) model which can-
not be expressed as a TOCI model.

A TOCI model with a similar inverse covariance structure was presented
as Alternative 6 in Section 3 where the inverse covariance matrix equals

Σ−1 =









σ11 σ12 σ13 σ14

σ21 σ22 0 σ24

σ31 0 σ33 σ34

σ41 σ42 σ43 σ44









. (12)

The difference between the two models can be further exploited via the
likelihood. Corresponding to (11)

fI ∝ f1f2|1f{3,4}|{1} = f1f2|1f3|1f4|{1,3}

whereas the likelihood corresponding to (12) satisfies

fI ∝ f1f2|1f3|1f4|{1,2,3}.

Hence, the difference between the two factorizations lay in the terms
f4|{1,3} and f4|{1,2,3}. For the LCI model it holds that f{3,4}|{1}=f3|1f4|{1,3}
which makes sense since there is a direction from 3 → 4 (see Figure 2). For
TOCI models there is by definition always a direction and we only have
to think about the jumps.

4.1. Jumps and immoralities. In Section 3 it was seen that the struc-
ture in the TOCI models was determined through the jumps. Below a
result is presented where jumps and immoralities are connected which can
be useful when evaluating a graph.

Theorem 4.1. Let K be a chain and let L be the corresponding partially
ordered index set. Then a jump in K (except the last one) coincides with
an immorality in L.

Proof. First it is proven that a jump in K implies an immorality in L.
Consider a jump between Ki and Ki+1 6= I in K. By definition of TOCI,
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elements of the difference sets Di = Ki+1 \Ki, given in Definition 3.2, are
conditionally independent given Ki (see Proposition 3.1). Moreover, there
are no direct edges among elements in the set Di. Now because Ki+1 6=
I, there is an edge from each element of the set Di to its descendants
Di+1, ..., I. Thus, by definition of a jump, two (or more) elements in the
set Di are not directly linked but have a common child, that arises as an
immorality.

Next it is established that an immorality in L implies a jump in K.
Consider an immorality in L, such that there is no edge between v, u ∈ E,
but u → w ∈ E and v → w ∈ E. If there is no direct edge between u

and v, then it follows that u and v belong to the same component of the
difference set Di, that is u, v ∈ Di but u, v 6∈ Ki. Hence |Di| ≥ 2 which
implies a jump in K. The “last jump" from, say, Kq to Kq+1 or |Dq| ≥ 2
does not imply a jump or immorality, because the last-jump corresponds
to the last descendants and they can not have a common child. �

4.2. Markov equivalence of TOCI models. Two models are Markov
equivalent if their corresponding graphs capture the same model of con-
ditional independencies. It has been proven that two DAG models are
Markov equivalent if and only if they have the same skeleton (same struc-
ture) and the same immoralities, see [9]. Therefore, the simplest way to de-
termine Markov equivalence for TOCI models is by creating the TDAG and
applying the DAG Markov equivalence concept. However, given a TOCI
model, or the corresponding chain, it is trivial to say whether the TOCI
model is unique in the sense that there does not exist any Markov equiv-
alent TOCI model or otherwise it is easy to infer all Markov equivalent
TOCI models. In the example in Section 3 only K4 and K8 have other
Markov equivalent TOCI models, because they contain the (sub-chains)
chains of a subset of I. Given a TOCI model determined by the chain K,
there can only be the following possibilities:

• K has a unique description of the implied conditional independen-
cies. For example, the trivial totally ordered chain K = {{∅}, I},
where the difference I \ {∅} is the set I itself, has no other equiv-
alent TOCI models.

• K does not have a unique description of the implied conditional in-
dependencies. For example, K = {{∅}, {1}, {1, 2}, {1, 2, 3}, I}:
The difference set is given by D(K8) = {{1}, {2}, {3}, {4}}. Then
the chain can be represented in |I| = p! ways. However, there is
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no jump and thus no conditional independence constraints in this
chain.

§5. Conclusion

The totally ordered conditional independence model class (TOCI) is
proposed. It is shown that the TOCI class is a proper subclass of models
of the lattice conditional independence models class (LCI models). As with
the LCI class the TOCI models share the properties of the possibility to
factorize the likelihood into products of conditional likelihood factors with
disjoint sets of parameters. Moreover, each conditional likelihood function
corresponds to an ordinary multivariate linear regression model and thus
explicit estimators are available for all parameters. The benefit of studying
a more restricted class of models than the LCI class is that the TOCI model
class mainly considers jumps in the chain. The LCI models use besides
jumps also the direction presented in a graph. It is easier to interpret
results of a statistical analysis of a TOCI model in comparison with the
analysis based on some LCI models which are not TOCI models. In future
the idea is to link the causality concept (see [8]) to the TOCI class of
models.
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