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Abstract. We consider the problem of estimating the fraction of
nonzero means in a sparse normal mixture model in the region where
variable selection is possible. The focus is on the situation in which
the proportion of nonzero means is very small. The proposed estima-
tor is shown to be nearly rate optimal in the asymptotically minimax
sense. Using this estimator, one can also consistently estimate the
sparsity parameter in sparse normal mixtures, whose knowledge, in
particular, is required to carry out the so-called almost full variable
selection procedure. The advantage of using the new estimator is il-
lustrated analytically and numerically. The obtained results can be
extended to some nonnormal mixtures.

§1. Introduction

In this paper, we consider the problem of estimating the fraction of
nonzero means in a two-point normal mixture model when the nonzero
means are sparse and only moderately large. The results can be extended
to some other mixture models whose tail probabilities are similar to those
of the normal mixture model. Our study is partially motivated by recent
results on variable selection in sparse mixture models and also by the
publications of Meinshausen and Rice (see [17]) and Cai et al. (see [3]) who
studied a similar estimation problem, originated from a signal detection
problem, that occurred in astrophysics.

Consider the problem of recovering the components of a vector X =
(X1, . . . , Xn) in the Gaussian sequence model

X = m+ ξ, (1)

where ξ=(ξ1,. . . ,ξn) ∼ N(0, In×n) and the mean vector m = (m1, . . . ,mn)
is a sparse vector of the form m = Mnη with Mn > 0 and η = (η1, . . . , ηn) ∈

Key words and phrases: sparse normal mixture, fraction of nonzero means, minimax
estimation, selection region.
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Hn,β; the set Hn,β is defined for some constants 0 < c 6 1 6 C < ∞ by

Hn,β =
{
η = (η1, . . . , ηn) : ηj ∈ {0, 1}, cn1−β

6

n∑

j=1

ηj 6 Cn1−β
}
. (2)

When the constants c and C in (2) depend on n and obey the same asymp-
totics, that is, c = 1+ o(1) and C = 1+ o(1) as n → ∞, then the fraction
of nonzero means in model (1) satisfies

n−1
n∑

j=1

ηj ∼ n−β .

Therefore, in this case, n−β may be viewed as the fraction of nonzero
components of vector m = E(X) in model (1). If, in addition, we assume

that the parameter Mn has the form Mn =
√
2r lnn for some r ∈ (0, 4),

then model (1) entails the two-point normal mixture model

X1, . . . , Xn
iid∼ (1− εn)N(0, 1) + εnN(µn, 1), (3)

where εn = n−β for β ∈ (0, 1) and µn =
√
2r lnn for r ∈ (0, 4). The fact

that vector X in (1) contains relatively few nonzero components that are
only moderately large makes the problems of identifying nonzero means
and estimating their fraction non-trivial. The normal mixture model (3)
when β ∈ (1/2, 1) and r ∈ (0, 1) has been studied in a number of publi-
cations dealing with high-dimensional inference problems (see, for exam-
ple, [3, 7, 8, 11]).

The problem of identifying nonzero mean components of a vector X
in model (1) (or, equivalently, identifying nonzero components of a vector
η ∈ Hn,β) is typically tackled by providing a suitable measurable function
η̃ = η̃(X1, . . . , Xn) of (X1, . . . , Xn) taking its values in {0, 1}n and called a
selector. A standard way to judge the quality of a given selector η̃ = (η̃j)

n
j=1

is to look at its Hamming risk

Eη|η̃ − η| := Eη

n∑

j=1

|η̃j − ηj |.

If the parameter Mn in model (1) satisfies

lim inf
n→∞

Mn√
lnn

>
√
2β, (4)
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then the selector η̂ given by

η̂ = (η̂j)
n
j=1, η̂j = I

(
Xj >

√
(2β +∆) lnn

)
, j = 1, . . . , n, (5)

where ∆ = ∆n > 0 is such that ∆ → 0 and ∆ lnn → ∞ as n → ∞,
satisfies (see Theorem 4 in [6] and Theorem 9 in [12])

lim sup
n→∞

sup
η∈Hn,β

nβ−1
Eη|η̂ − η| = 0,

and thus provides the so-called “almost full” variable selection with respect
to the maximum Hamming risk. (A selector is called almost full if its
maximum risk is algebraically small as compared to the number of nonzero
means.) However, if

lim sup
n→∞

Mn√
lnn

<
√
2β, (6)

then (see Theorem 5 in [6] and Theorem 10 in [12])

lim inf
n→∞

inf
η̃

sup
η∈Hn,β

nβ−1
Eη|η̃ − η| > 0,

that is, variable selection is impossible. If we assume that Mn =
√
2r lnn,

then inequality (4) reduces to r > β.
This work is largely motivated by the problem of variable selection in

model (3) and also by the findings of [3] and [17] that suggest a reasonable
estimator of the fraction εn of nonzero means in model (3), in which εn =

n−β for β ∈ (1/2, 1) and µn =
√
2r lnn for r ∈ (ρ(β), 1), where the function

ρ(β) is given by

ρ(β) =

{
β − 1/2, 1/2 < β 6 3/4,
(1−

√
1− β)2, 3/4 < β < 1.

(7)

The curve r = ρ(β), known in the literature as a detection boundary, was
found by Ingster (see [14]) who showed that if r > ρ(β) then the hypotheses

H0 : X1, . . . , Xn
iid∼ N(0, 1)

and

H1,n : X1, . . . , Xn
iid∼ (1 − εn)N(0, 1) + εnN(µn, 1)

separate asymptotically, whereas if r < ρ(β) then H0 and H1,n merge
asymptotically. The region D = {(β, r) ∈ R2 : 1/2 < β < 1, ρ(β) < r < 1}
where H0 and H1,n separate asymptotically is called the detection region.
In this paper, we propose an estimator ε̂n of the fraction εn = n−β of
nonzero means in model (3) that is consistent in the selection region S =
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{(β, r) ∈ R2 : 0 < β < 1, β < r < 4}. By the time when the result of [3] on
consistent estimation of εn inside the detection region D was published,
the existence and shape of the selection region S have not yet become
a common knowledge, hence the focus was on estimating εn in D. The
new estimator ε̂n proposed in this work is nearly rate optimal and, in the
selection region, improves the estimator ε̂∗an

of εn introduced by formula
(2.8) in [3].
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Figure 1. The selection and detection regions, S and D,
as described in Section 1.

Some notations used throughout the paper are as follows. The symbol
d
=

is used for equality in distribution, and the symbol
d→ denotes convergence

in distribution. For an event A, I(A) is the indicator of the event A. The
notation an ∼ bn means that limn→∞ an/bn = 1, whereas the notation
an ≍ bn means that 0 < lim infn→∞(an/bn) 6 lim supn→∞(an/bn) < ∞.
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§2. Estimation of εn in the two-point normal mixture

model

As noted in Section 1 of [3], the theory of testing H0 : X1, . . . , Xn
iid∼

N(0, 1) versus H1,n : X1, . . . , Xn
iid∼ (1 − εn)N(0, 1) + εnN(µn, 1), where

εn = n−β for β ∈ (1/2, 1) and µn =
√
2r lnn for r ∈ (0, 1), does not

automatically yield good estimators of εn as the problem of estimating
εn contains further challenges that are not presented in the above signal
detection problem. For a more general testing problem, that includes the
signal detection problem in hand as a particular case, Meinshausen and
Rice (see [17]) proposed an estimator of εn, the proportion of false null
hypotheses among a large number of independently tested hypotheses, that
estimates εn from below with high probability. In continuation of work [17],
an estimator of εn that is consistent in the detection region D = {(β, r) ∈
R2 : 1/2 < β < 1, ρ(β) < r < 1} and, moreover, that is nearly rate
optimal in a subregion of D was constructed in [3]. The proposed estimation
procedure, however, is rather complex and is not straightforward to use in
applications (see Section 2.3 for details). Also, in order to work as designed,
it requires very large n (n > 107).

In this work, we modify the proposed in [3] estimator ε̂∗an
of εn in such a

way that a new estimator, which is applicable in a variable selection frame-
work, is: (i) consistent in the selection region S; (ii) easier implementable;
(iii) more efficient (i.e., has a better rate of convergence) in the intersection
D ∩ S = {(β, r) ∈ R2 ; 1/2 < β < r < 1} of the detection and selection
regions, where the estimator ε̂∗an

introduced by (2.8) in [3] is also defined.
Observe that, in order to be applied, the almost full selector η̂ as in

(5) requires the knowledge of β. This motivates us for finding an effective
estimator for β in the context of variable selection. Clearly, once we get a
good estimator ε̃n for εn = n−β , we immediately obtain a good estimator

β̃n for β in the form

β̃n =
ln(1/ε̃n)

lnn
.

The goal, therefore, is to construct an efficient estimator of εn in a two-
point normal mixture model (3). This model is obtained from model (1),

in which Mn =
√
2r lnn and n−1

n∑
j=1

ηj ∼ n−β , by sampling with replace-

ment. The parameters β and r are unknown.
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The problem of estimating the fraction εn of nonzero means may be
viewed as a high-dimensional problem, in which a single vector X =
(X1, . . . , Xn) of a large dimension n is observed. In the present context,
one can only give a non-trivial lower bound for εn, and cannot give a use-
ful upper bound for εn. Roughly, this can be explained by noting that the
possibility that εn = 1 can never be ruled out because the nonzero means
can be arbitrarily close to zero. For a detailed discussion of this phenome-
non, we refer to pp. 2423–2424 of [3] and references therein. Therefore, the
estimator ε̂n introduced in this work will underestimate the true εn with
high probability.

In Section 2.2, we shall propose a modification of the estimator from
[3] and provide an analytical result pertaining to this estimator (more
precisely, a family of estimators), showing its superiority over the original
estimator when (β, r) ∈ D ∩ S, which, in its turn, was found to be better
than the estimator proposed in [17] (for details, see Sections 6 and 7 of [3]).

2.1. Preliminaries. Return to the two-point normal mixture model (3)
and denote by Φ and ϕ the cdf and pdf of a standard normal distribution,
respectively. In terms of a common cdf F (t) = Fn,β,r(t) of the observations
X1, . . . , Xn, the model can be written as follows:

F (t) = (1− εn)Φ(t) + εnΦ(t− µn), t ∈ R, (8)

where the parameters µn and εn are as in model (3). The estimation proce-
dure proposed in [3] (that is referred here to as the Cai–Jin–Low (CJL) es-
timator) first estimates the mean µn, and then uses the estimated mean to
estimate εn, the fraction of nonzero mean observations among X1, . . . , Xn.
The algorithm for constructing the CJL estimator ε̂∗an

of εn, as given by
(2.8) in [3], resembles the one for ε̂n below, but it has a different step
2 (for details, see Section 2.2 of [3]). A key step in the construction of
ε̂∗an

is the choice of an 100(1 − α)% confidence band for the cdf F (t).

In [3], the proposed confidence band [F−
an
(t),F+

an
(t)] on [0,

√
2 lnn] is cho-

sen so that F−
an
(t) 6 F (t) 6 F+

an
(t) if and only if

√
n|Fn(t)−F (t)|√
F (t)(1−F (t))

6 an,

where Fn(t) = n−1
n∑

i=1

I(Xi 6 t) and an is the (1 − α)th quantile of

sup
t∈[0,

√
2 lnn]

√
n|Fn(t)−F (t)|√
F (t)(1−F (t))

, see page 2427 of [3]. The lower and upper bounds
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of this confidence band are obtained by solving (for F (t)) the equation

√
n|Fn(t)− F (t)|√
F (t)(1 − F (t))

= an,

and are given by

F
±
an
(t) =

2Fn(t) + a2n/n± (an/
√
n)
√
a2n/n+ 4 (Fn(t)− F2

n(t))

2(1 + a2n/n)
. (9)

By construction, the CJL estimator ε̂∗an
underestimates εn whenever F (t)

lies inside the confidence band [F−
an
(t),F+

an
(t)] given by (9).

In this paper, we suggest to modify the CJL estimator ε̂∗an
for εn by

using a different confidence band in the definition of ε̂∗an
. In addition to

that, as we consider estimating εn in the selection region S, the parameters
β and r are allowed to range over the intervals 0 < β < 1 and 0 < r < 4,
as specified by model (3).

Instead of using the confidence band with the lower and upper bounds as
in (9), we propose to use the Csörgő–Csörgő–Horváth–Mason
(CsCsHM) confidence band for F (t) on the interval [X(1), X(n)), where
X(1) = min(X1, . . . , Xn) and X(n) = max(X1, . . . , Xn), introduced in
[20]. This confidence band is based on Theorem 4.2.3 of [5]. Namely, let
{B(u), 0 6 u 6 1} be a Brownian bridge and let the function q(u) be
the Erdős–Feller–Kolmogorov–Petrovski (EFKP) upper-class function of a
Brownian bridge given by

q(u) =
√
u(1− u) ln ln (1/ (u(1− u))), 0 < u < 1. (10)

Then, by Theorem 4.2.3 of [5], as n → ∞

sup
0<F (t)<1

√
n|Fn(t)− F (t)|

q(F (t))

d→ sup
0<u<1

|B(u)|
q(u)

. (11)

Now, with cα denoting the (1− α)th quantile of the limit cdf

H(t) := P

(
sup

0<u<1
|B(u)|/q(u) 6 t

)
, (12)

an asymptotically correct 100(1− α)% CsCsHM confidence band

[F−
n,α(t),F

+
n,α(t)]
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for F (t) on the interval [X(1), X(n)) is defined as (see Section 3.2 of [20])

F
−
n,α(t) = max

{
0,Fn(t)−

cα√
n
q (Fn(t))

}
,

F
+
n,α(t) = min

{
1,Fn(t) +

cα√
n
q (Fn(t))

}
. (13)

The limit cdf H(t) is continuous on (−∞,
√
2)∪(

√
2,∞) (see Remark 4.2.3

in [5]). Given a small α ∈ (0, 1), the value of cα may be obtained from Table
III in [18] (see also Table 2 in [9]). For instance, c0.05 = 4.57.

In [20], the asymptotically correct 100(1− α)% confidence band

[F−
n,α(t),F

+
n,α(t)]

was numerically compared to two common confidence bands (at the same
level of confidence): one is based on the convergence result for the two-
sided Kolmogorov–Smirnov test statistics and the other is based on the
1979 results of Eicker and Jaeschke (see [10] and [15]). Numerical simu-
lations showed that, even for moderate sample sizes, when compared to
the Kolmogorov–Smirnov confidence band, the CsCsHM confidence band
is of the same length “in the middle” and is shorter on the tails. Also,
the CsCsHM confidence band outperforms the Eicker–Jaeschke confidence
band “in the middle” and does a similar job on the tails. It is also impor-
tant for us that the CsCsHM confidence band with the lower and upper
bounds given by (13) works better as compared the confidence band in
(9) proposed in [3]. As seen from Figure 2, the CsCsHM confidence band
[F−

n,α(t),F
+
n,α(t)] outperforms the confidence band [F−

an
(t),F+

an
(t)] from [3].

An analytical argument in favour of using [F−
n,α(t),F

+
n,α(t)] instead of the

CJL confidence band [F−
an
(t),F+

an
(t)] in our construction below is given in

Remark 1 of Section 3.

2.2. A family of estimators and upper bound on the risk. The
construction of a new estimator ε̂n of εn is implemented by going through
steps 1 to 4 of the following algorithm, cf. the procedure on pages 2426–
2428 of [3].

Algorithm for the construction of ε̂n.

1. Pick two distinct points 0 6 t < t′ and consider the function

D(µ; t, t′) :=
Φ(t)− Φ(t− µ)

Φ(t′)− Φ(t′ − µ)
. (14)
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Figure 2. Confidence bands for simulated data. The solid
black line is the true cdf of a normal mixture model with
β = 1/3 and r = 3/4. The solid blue lines above and
below the black line are a 99% CsCsHM confidence band.
The red dashed lines are a 99% CJL confidence band.

The function D(µ; t, t′) is a positive and continuous function of µ.
Moreover, D(µ; t, t′) is strictly decreasing in µ > 0 for any t < t′

(see Lemma 8.1 of [2]). Hence, in view of (8), the parameters εn
and µn are uniquely determined by

εn =
Φ(t)− F (t)

Φ(t)− Φ(t− µn)
and D(µn; t, t

′) =
Φ(t)− F (t)

Φ(t′)− F (t′)
, (15)

respectively. Also, it is easy to see that for t < t′

inf
µ>0

D(µn; t, t
′) =

Φ(t)

Φ(t′)
<

Φ(t)− F (t)

Φ(t′)− F (t′)
< sup

µ>0
D(µn; t, t

′) =
ϕ(t)

ϕ(t′)
. (16)

2. Pick a small α ∈ (0, 1) and consider [F−
n,α(t),F

+
n,α(t)], an asymptot-

ically correct 100(1−α)% confidence band for F (t) on [X(1), X(n))
defined by formula (13). Take two points

0 < t < t′ < min
(
X(n),

√
8 lnn

)

and define µ̂n = µ̂n,α as a solution (if exists) of the equation

D(µ; t, t′) =
Φ(t)− F+

n,α(t)

Φ(t′)− F
−
n,α(t′)

. (17)
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With high probability, one has µ̂n > µn for all large enough n.
Then, we set

ε̂n = ε̂n,α =
Φ(t)− F+

n,α(t)

Φ(t)− Φ(t− µ̂n)
(18)

if the solution µ̂n exists and ε̂n = 0 otherwise. As easily seen, with
high probability, one has ε̂n 6 εn for all large enough n.

3. Consider the interval
[
0,
√
8 lnn

]
, pick equidistant grid points

tj = (j − 1)/
√
8 lnn, 1 6 j 6 8 lnn+ 1,

and let the (random) index 1 6 J0 6 8 lnn+ 1 be such that

tJ0+1 < min
(
X(n),

√
8 lnn

)
6 tJ0+2.

For j = 1, . . . , J0, apply the procedure in step 2 to each pair of
adjacent points (t, t′) = (tj , tj+1), and define the estimator µ̂j

n =
µ̂j
n,α = µ̂n,α(tj , tj+1) of µn as in step 2, that is, as a solution (if

exists) of the equation

D(µ; tj , tj+1) =
Φ(tj)− F+

n,α(tj)

Φ(tj+1)− F
−
n,α(tj+1)

. (19)

For each obtained estimator µ̂j
n, one needs to check whether or

not the following inequalities hold true (see (16) and the comment
on p. 2427 of [3]):

Φ(tj)

Φ(tj+1)
6

Φ(tj)− F+
n,α(tj)

Φ(tj+1)− F
−
n,α(tj+1)

6
ϕ(tj)

ϕ(tj+1)
. (20)

If (20) is not satisfied, then equation (19) does not give a good
estimator µ̂j

n for µn and in step 4 below we set ε̂jn = 0. If the
inequalities in (20) are satisfied, we put

ε̂jn = ε̂n,α(tj , tj+1) =
Φ(tj)− F+

n,α(tj)

Φ(tj)− Φ(tj − µ̂j
n)

. (21)

By construction, with high probability we have ε̂jn 6 εn provided
n is large enough.

4. Finally, having obtained the estimators ε̂jn, j = 1, . . . , J0, we define
an estimator ε̂n of εn by the formula

ε̂n = ε̂n,α = max
16j6J0

ε̂jn. (22)
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Clearly, for all large enough n, one has ε̂n 6 εn with high proba-
bility.

We wish to stress that the estimator ε̂n in (22) is dependent on α, where
(1−α) is a prescribed confidence level of the CsCsHM confidence band in
step 2 of our construction, yielding

lim
n→∞

P (ε̂n 6 εn) > 1− α.

In the sequel, we shall write ε̂n instead of ε̂n,α, suppressing for brevity the
dependence of ε̂n on the value of α.

Noting that by means of (16) the right inequality in (20) holds true with
high probability, we agree with the recommendation on page 2427 of [3]
that the left inequality in (20) must also be satisfied as we have seen the
importance of this requirement in our empirical study (see Section 4). We
also wish to note that, in practice, the left inequality in (20) consistently
holds only for very large n such as n = 107 and greater, and that is the main
reason why both the original CJL estimator ε̂∗an

and the new estimator ε̂n
are “strongly asymptotic”.

In connection with the proposed estimator ε̂n, we have the following
upper bound on the maximum risk of ε̂n/εn.

Theorem 1. Let X1, X2, . . . be a sequence of iid random variables from
a continuous distribution with cdf F (t) as in (8), where εn = n−β for

0 < β < 1 and µn =
√
2r lnn for β < r < 4, so that (β, r) falls in the

selection region S. Given α, let cα be such that H(cα) = 1 − α, where
H(t) is the limit cdf in (12). Assume that αn is a sequence such that

cαn =
(
4 lnn
ln ln 4

)1/2
, n > 2, and consider the estimator ε̂n = ε̂n,αn defined in

(22). Then for all large enough n

E

(
ε̂n
εn

− 1

)2

6 C (β, r) (lnn)2(ln lnn)n−1+β , (23)

where C(β, r) is a positive constant depending on β and r.

Theorem 1 says that, with αn tending to zero at a certain rate, for
all (β, r) ∈ S and all sufficiently large n there exists a positive constant
C(β, r) such that for 0 < β < 1 and β < r < 4 the estimator ε̂n = ε̂n,αn

satisfies

sup
(εn,µn)∈Pn,β,r

E

(
ε̂n
εn

− 1

)2

6 C(β, r)r2n,
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where for 0 < β < 1 and 0 < r < 4

Pn,β,r =
{
(εn, µn) : εn = n−β, µn =

√
2r lnn

}
, (24)

and rn =
(
n−(1−β)(ln lnn) ln2 n

)1/2
is the rate of convergence of the ratio

ε̂n/εn to one. The proof of Theorem 1 will be given in the next section.
The corresponding upper bound on the maximum risk of ε̂∗an

/εn is

slightly worse and for the “optimal” choice of an = 4
√
2π(lnn)3/2 is as

follows (see Theorem 4.1 in [3]): for 1/2 < β < 1 and β < r < 1

sup
(εn,µn)∈Pn,β,r

E

(
ε̂∗an

εn
− 1

)2

6 c (β, r) (lnn)4n−1+β (25)

where the set Pn,β,r is as in (24) and c(β, r) is a generic constant depending
on β and r. Comparing the upper bound (23) to the one given in (25), we
conclude that, in the intersection D∩S = {(β, r) ∈ R2 : 1/2 < β < r < 1}
of the detection and selection regions, the new estimator ε̂n dominates the
CJL estimator ε̂∗an

; the estimator ε̂n also works well in the region S ∩ Dc

(with Dc denoting the complement of D in (0, 1)× (0, 4) ⊂ R2), where ε̂∗an

has not been originally defined.
Also, in view of Theorem 4.2 in [3], which is initially stated and proved

for 1/2 < β < 1 and 0 < r < 1 but continues to be true for 0 < β < 1 and
0 < r < 4, the modified CJL estimator ε̂n is nearly rate optimal (in the
asymptotically minimax sense) over the region Ωn defined by

Ωn = {(εn, µn) : B1n
−β

6 εn 6 B2n
−β ,

√
2r lnn−A1/ lnn 6 µn 6

√
2r lnn+A2/ lnn},

for 0 < r < 4, 0 < β < 1, A1, A2 > 0, and B2 > B1 > 0. More precisely,
for all sufficiently large n and some constant c > 0

inf
ε̃n

sup
(εn,µn)∈Ωn

E

(
ε̃n
εn

− 1

)2

> cn−1+β ,

where the infimum is over all possible estimators ε̃n of εn based on
X1, . . . , Xn.

Now, the estimator β̂n of the sparsity parameter β defined by

β̂n =
ln(1/ε̂n)

lnn
,
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which is constructed by taking α in step 2 of the above algorithm depending

on n and equal to α = 1 −H
((

4 lnn
ln ln 4

)1/2)
, is a consistent estimator of β,

as follows from Theorem 1 and Markov’s inequality.

2.3. Discussion. The advantage of the proposed estimator ε̂n over the
CJL estimator ε̂∗an

defined by (2.8) in [3], in addition to its higher efficiency,
is that ε̂n is easier to implement. Indeed, the choice of the quantity an in
the definition of ε̂∗an

may vary depending on a purpose (see Section 3.1 of [3]
for the discussion on the choice of an). For instance, in [3], for the purpose

of proving the upper bound (25), an is first set to be an = 4
√
2π(lnn)3/2

and the value αn is then chosen to have

P

(
sup

t∈[0,
√
2 lnn]

√
n|Fn(t)− F (t)|√
F (t)(1 − F (t))

6 an

)
= 1− αn.

At the same time, as suggested in [3], in order to compute ε̂∗an
in possible

applications, the value of an could be found as follows. For a given α ∈
(0, 1), let an be such that P(Yn 6 an) = 1− α, where

Yn
d
= max

F (0)6t6F (
√
2 lnn)

√
n|Un(t)− t|√
t (1− t)

with Un(t) being the edf based on n independent uniform U(0, 1) observa-
tions U1, . . . , Un. Since the underlying cdf F (t) as defined in (8) depends
on the parameters β and r that are generally unknown, finding an is not
straightforward. To find an approximate value of an for a given value of
α, it was suggested in [3] to use the statistic

Wn
d
= max

1/26t6Φ(
√
2 lnn)

√
n|Un(t)− t|√
t (1− t)

,

for which, as claimed on p. 2439 of [3],

P(Wn 6 an) ≈ 1− α.

For several choices of α, the (approximate) values of an, obtained as
the (1 − α)th quantile of Wn, are given in Table 2 of [3]. The use of

sup
0<t<1

√
n|Un(t)−t|

q(t) , with q as in (10), in place of

max
F (0)6t6F (

√
2 lnn)

√
n|Un(t)− t|√
t (1− t)
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resolves the issue with constructing a confidence band for F (t) of a given
level, an important ingredient in estimation of the fraction of nonzero
means εn. This is so because, unlike statistics Yn and Wn that blow up
with probability one as n tends to infinity (see, for example, Chapter 16

in [19]), the statistic sup
0<t<1

√
n|Un(t)−t|

q(t) stays finite with probability one and,

in view of (11), it converges in distribution to a non-degenerate random
variable whose distribution is tabulated.

At the outset of the study, we anticipated to obtain a new estimator
that would be more efficient and also could overcome the property of the
CJL estimator ε̂∗an

to be “strongly asymptotic”. Unfortunately, in order to
work as designed, the new estimator ε̂n continues to require a very large
sample size. This is caused by the fact that it is the left requirement in (20)
that makes the CJL-type estimators strongly asymptotic, not the choice
of a confidence band for F (t).

§3. Proof of Theorem 1

Let F (t) = Fn,β,r(t) be a common cdf of X1, . . . , Xn as given by (8),
where εn = n−β for β ∈ (0, 1) and µn =

√
2r logn for r ∈ (β, 4). For a

given α ∈ (0, 1), consider the event

An,α =
{
F
−
n,α(t) 6 F (t) 6 F

+
n,α(t), ∀ t ∈ [0, µn + (2 lnn)−1/2]

}
,

and observe that for any α ∈ (0, 1)
{
F
−
n,α(t) 6 F (t) 6 F

+
n,α(t), ∀t ∈ [X(1), X(n))

}

∩
{
X(1) 6 0, X(n) > µn + (2 lnn)−1/2

}
⊂An,α,

where for all large enough n the probability

P

(
X(1) 6 0, X(n) > µn + (2 lnn)−1/2

)

can be made at least as large as 1−α. Then, using Bonferroni’s inequality
(see, for example, Appendix A.2 in [1]), for all large enough n, P(An,α) >
1−2α, and also, for a positive sequence αn decaying to zero at a polynomial
rate and all large enough n, we have

P (An,αn) > 1− 2αn. (26)

By the construction of ε̂n, if index j∗ ∈ {1, . . . , J0} is chosen to satisfy

tj∗ 6 µn < tj∗+1,
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then, over the event An,αn , we have ε̂j
∗

n 6 ε̂n 6 εn and hence

(1− ε̂n/εn)
2
6

(
1− ε̂j

∗

n /εn

)2
.

Therefore, for all large enough n

E (ε̂n/εn − 1)
2
6 E

[(
ε̂j

∗

n /εn − 1
)2

I(An,αn)

]

+E

[
(ε̂n/εn−1)2 I(Ac

n,αn
)
]
6 E

[(
ε̂j

∗

n /εn−1
)2

I(An,αn)

]
+P

(
A

c
n,αn

)
ε−2
n ,

(27)

where, in view of (26), P(Ac
n,αn

) 6 2αn.
Next, since B(t)/q(t) with q(t) as in (10) is a centered Gaussian pro-

cesses whose trajectories are bounded with probability one, it follows from
the Concentration Principe (see, for example, Theorem 6.2 in [16]) that
for any x > 0

P

(
sup

0<t<1

B(t)

q(t)
> x

)
6 1− Φ

(
x−m

σ

)
,

where m is the median of sup
0<1<t

B(t)/q(t) and

σ2 = sup
0<t<1

E(B2(t))

q2(t)
=

1

ln ln 4
.

Therefore, using

1− Φ(x) ∼ ϕ(x)/x, x → ∞, (28)

we have as x → ∞

1−H(x) 6 2P

(
sup

0<t<1

B(t)

q(t)
> x

)
6

2 exp
(
−(1/2)(ln ln 4)x2(1 + o(1))

)

x(1 + o(1))
√
2π ln ln 4

.

Hence, the choice of the (1−αn)th quantile cαn of H(t) in the form cαn =(
4 lnn
ln ln 4

)1/2
ensures that for some c > 0 and all large enough n

αn = 1−H(cαn) 6
c

n2(lnn)1/2
= o(n−2). (29)

Now, recalling that εn = n−β , we obtain from (27) and (29) that for all
large enough n

E (ε̂n/εn − 1)
2
6 E

[(
ε̂j

∗

n /εn − 1
)2

I(An,αn)

]
+ o(n−2+2β). (30)
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Next, in view of the identity (see (15) and (21))

ε̂j
∗

n /εn − 1 =
Φ(tj∗)− Φ(tj∗ − µn)

Φ(tj∗)− Φ(tj∗ − µ̂j∗
n )

×
(
F (tj∗)− F

+
n,αn

(tj∗)

Φ(tj∗)− F (tj∗)
− Φ(tj∗ − µn)− Φ(tj∗ − µ̂j∗

n )

Φ(tj∗)− Φ(tj∗ − µn)

)
,

the fact that, over An,αn ,

Φ(tj∗)− Φ(tj∗ − µn)

Φ(tj∗)− Φ(tj∗ − µ̂j∗
n )

6 1,

and the inequality |a± b|2 6 2
(
|a|2 + |b|2

)
, we obtain

(
ε̂j

∗

n /εn − 1
)2

6 2

(
F (tj∗)− F

+
n,αn

(tj∗)

Φ(tj∗)− F (tj∗)

)2

+ 2

(
Φ(tj∗ − µn)− Φ(tj∗ − µ̂j∗

n )

Φ(tj∗)− Φ(tj∗ − µn)

)2

. (31)

By the definition of F±
n,αn

(t) as in (13), we have that over An,αn

|F±
n,αn

(t)− F (t)| 6 2cαnq(F (t))√
n

. (32)

Therefore, due to (28), relations (8) and (10), the assumptions that r > β

and cαn =
(

2p lnn
ln ln 4

)1/2
, the first term on the right side of (31) satisfies

(over An,αn) as n → ∞

2

(
F (tj∗)− F+

n,α(tj∗)

Φ(tj∗)− F (tj∗)

)2

6
8c2αn

q2(F (tj∗ ))

n (Φ(tj∗)− F (tj∗))
2

= O

(
c2αn

q2(F (µn))

n (Φ(µn)− F (µn))
2

)
= O

(
(ln lnn) lnn

n1−β

)
. (33)

For the second term on the right side of (31), using the fact that as
n → ∞

tj∗ → ∞ and tj∗ − µn →
{
−∞, if tj∗ < µn,

0, if tj∗ = µn,
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we have, over An,α, as n → ∞

2

(
Φ(tj∗−µn)−Φ(tj∗−µ̂j∗

n )

Φ(tj∗)−Φ(tj∗−µn)

)2

∼2

(
ϕ(tj∗−µn)

Φ(tj∗)−Φ(tj∗−µn)

)2

(µn−µ̂j∗

n )2

=

{
o
(
(µn − µ̂j∗

n )2
)
, if tj∗ < µn,

O
(
(µn − µ̂j∗

n )2
)
, if tj∗ = µn.

(34)

Next, it can be seen that for all large enough n

E

(
(µn − µ̂j∗

n )2I(An,α)
)
6

C(lnn)2 ln lnn

n1−β
(35)

with some constant C = C(β, r) > 0. Indeed, by definition, µn and µ̂j∗

n are
solutions of the respective equations

D(µn) =
Φ(tj∗)− F (tj∗)

Φ(tj∗+1)− F (tj∗+1)
and D(µ̂j∗

n ) =
Φ(tj∗)− F+

n,α(tj∗)

Φ(tj∗+1)− F
−
n,α(tj∗+1)

,

where the function D(µ) = D(µ; tj∗ , tj∗+1) is as defined in (14). By simple
algebra,

D′(µn)

D(µn)
=

ϕ(tj∗ − µn)

Φ(tj∗)− Φ(tj∗ − µn)
− ϕ(tj∗+1 − µn)

Φ(tj∗+1)− Φ(tj∗+1 − µn)
.

This can be reduced to the following with more analysis:

0 >
D′(µn)

D(µn)
= O(tj∗+1 − tj∗) = O((lnn)−1/2), n → ∞,

and hence, on the event An,αn ,

D(µ̂j∗

n )−D(µn)

µ̂j∗
n − µn

1

D(µn)
= O((ln n)−1/2), n → ∞. (36)

We now verify that, on the event An,αn ,

D(µ̂j∗

n )−D(µn)

D(µn)
= O

(
(ln lnn)1/2(lnn)1/2

n(1−β)/2

)
, n → ∞, (37)

To this end, we set

δn = 1− D(µn)

D(µ̂j∗
n )

= 1− (Φ(tj∗)− F (tj∗))/(Φ(tj∗+1)− F (tj∗+1))

(Φ(tj∗)− F
+
n,α(tj∗))/(Φ(tj∗+1)− F

−
n,α(tj∗+1))

.
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Then, using the inequality
∣∣∣ 1−a
1+b − 1

∣∣∣ 6 a+ b for any a, b > 0 and (32), we

obtain over An,αn

|δn| 6

∣∣∣∣
Φ(tj∗)− F+

n,αn
(tj∗)

Φ(tj∗)− F (tj∗)
− 1

∣∣∣∣+
∣∣∣∣
Φ(tj∗+1)− F−

n,αn
(tj∗+1)

Φ(tj∗+1)− F (tj∗+1)
− 1

∣∣∣∣

=

∣∣F (tj∗)− F+
n,αn

(tj∗)
∣∣

Φ(tj∗)− F (tj∗)
+

∣∣F (tj∗+1)− F−
n,αn

(tj∗+1)
∣∣

Φ(tj∗+1)− F (tj∗+1)

6
2cαn√

n

(
q(F (tj∗))

Φ(tj∗)− F (tj∗)
+

q(F (tj∗+1))

Φ(tj∗+1)− F (tj∗+1)

)
.

From this, by the choice of cαn and the points tj∗ and tj∗+1, on the event
An,αn , as n → ∞

δn = O

(
cαnq(F (µn))√

n(Φ(µn)− F (µn))

)
= O

(
(ln lnn)1/2(lnn)1/2

n(1−β)/2

)
,

and hence, noting that δn < 0,
∣∣∣∣
D(µ̂j∗

n )−D(µn)

D(µn)

∣∣∣∣ =
∣∣∣∣
D(µ̂j∗

n )

D(µn)
− 1

∣∣∣∣ =
∣∣∣∣

δn
1− δn

∣∣∣∣

6 |δn| = O

(
(ln lnn)1/2(lnn)1/2

n(1−β)/2

)
.

Thus, relation (37) is verified, and the combination of (36) and (37) gives,
over An,αn ,

µ̂j∗

n − µn = O

(
(ln lnn)1/2 lnn

n(1−β)/2

)
, n → ∞.

This leads to (35).
Finally, putting together relations (30), (31), (33), (34), and (35), we

obtain for all (β, r) ∈ S that when αn = 1 − H
((

4 lnn
ln ln 4

)1/2)
and n is

sufficiently large

E (ε̂n/εn − 1)
2
6

C(lnn)2 ln lnn

n1−β
,

where the constant C = C(β, r) is as above. The proof is complete. ⊔⊓

Remark 1. The use of the CsCsHM confidence band [F−
n,α(t),F

+
n,α(t)]

in the construction of ε̂n gives us relation (32) with cαn = O
(
(lnn)1/2

)
,

whose right side is lnn
(ln lnn)1/2

times better than the corresponding bound on
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|F±
an
(t)− F (t)| in Lemma 8.2 of Cai et al [3]. As a result, the convergence

rate rn =
(
n−(1−β)(ln lnn) ln2 n

)1/2
of ε̂n/εn to one is lnn

(ln lnn)1/2
times

faster than that of ε̂∗an
/εn, where ε̂∗an

is the CJL estimator of εn defined
by (2.8) in [3].

Remark 2. The conclusion of Theorem 1 is also true for those non-normal
mixtures whose tail behavior is similar to that of the normal mixture (3).
For instance, with the properly adjusted algorithm of Section 2.2, the upper
bound (23) is valid for the chi-square mixture with the underlying cdf
F (t) = Fn,β,r,ν(t) of the form

F (t) = (1 − εn)Gν(t; 0) + εnGν(t;µ
2
n), t ∈ R,

where Gν(t;λ) = P(χ2
ν(λ) 6 t) is the cdf of a chi-square random variable

χ2
ν(λ) with ν > 1 degrees of freedom and noncentrality parameter λ > 0,

εn = n−β for β ∈ (0, 1), and µn =
√
2r logn for r ∈ (0, 4). This is so

because for any fixed ν > 1 as n → ∞

P
(
χ2
ν(0) > 2s lnn

)
= O

(
n−s lnν/2−1 n

)
, 0 < s < ∞,

P
(
χ2
ν(µ

2
n) > 2s lnn

)
≍ P

(
N(µn, 1) >

√
2s lnn

)

= O
(
n−(

√
s−√

r)2 ln−
1

2 n
)
, 0 < r < s < ∞,

P
(
χ2
ν(µ

2
n) 6 2s lnn

)
≍ P

(
N(µn, 1) 6

√
2s lnn

)

= O
(
n−(

√
s−√

r)2 ln−
1

2 n
)
, 0 < s < r < ∞,

where the first relation is obvious, the second relation is obtained in [7],
an the third relation is a consequence of (1) and (2) in [13].

§4. Numerical study

To compare numerically the quality of the CJL estimator ε̂∗an
intro-

duced by formula (2.8) in [3] and its modification ε̂n as defined in (22),
we carry out a small-scale simulation study and compute the estimated
mean squared errors of ε̂n/εn and ε̂∗an

/εn. In our experiment, we simu-
late n random samples with a cdf given by formula (8). We pick the same
sample size n = 107 as in [3] so that the number of nonzero means in
model (3) is small. To get the observed values of ε̂∗an

and ε̂n and their
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estimated quadratic risks, we run M = 100 independent cycles of simu-

lations and use Ê (ε̂n/εn − 1)2 = M−1
M∑

m=1

(
ε̂
(m)
n /εn − 1

)2
, where ε̂

(m)
n is

the value of ε̂n obtained in the mth repetition of the experiment, to es-

timate E (ε̂n/εn − 1)
2
; the estimated risk Ê

(
ε̂∗an

/εn − 1
)2

is defined sim-
ilarly. Two choices of a point (β, r), namely (β, r) = (1/3, 3/4) ∈ S and
(β, r) = (4/7, 1/2) ∈ D∩Sc, and different values of α ∈ (0, 1) are explored
in our experiment. The symbol Sc is used to denote the complement of
S in (0, 1) × (0, 4) ⊂ R2. The simulation study is run using R language.
The numerical results of the study are presented in Tables 1–4 and also
displayed in Figure 3 below. Numerically, our estimator ε̂n dominates the
CJL estimator ε̂∗an

not only in the selection region but also in the detection
region, as seen from the results obtained for (β, r) = (4/7, 1/2) ∈ D ∩ Sc.

The values of an/
√
2 ln lnn in Tables 2 and 4 were taken from Table 2

on page 2440 of [3]. The values of cα, the (1 − α)th quantile of H(t) =
P (sup0<u<1 |B(u)|/q(u) 6 t), appearing in Tables 1 and 3 were found from
Table III in [18] (see also Table 2 in [9]). In general, for any α ∈ (0, 1), one
can get cα by using the algorithm in Section 3 of [18] (see also Section 3

of [9]). The estimators β̂∗
an

and β̂n, whose observed values are also given
in Tables 1–4, were obtained from ε̂∗an

and ε̂n through the relations (recall

that εn = n−β) β̂∗
an

=
ln(1/ε̂∗an

)

lnn and β̂n = ln(1/ε̂n)
lnn . With high probability

both estimators β̂∗
an

and β̂n overestimate the true β.

Table 1. Numerical summary for the new estimator ε̂n in
the selection region S

α cα εn ε̂n Ê (ε̂n/εn − 1)2 β̂n

0.01 5.53 0.00464 0.00397 0.02082 0.34300
0.02 5.16 0.00464 0.00400 0.01888 0.34250
0.05 4.57 0.00464 0.00412 0.01254 0.34070
0.1 4.12 0.00464 0.00417 0.01024 0.33995
0.2 3.60 0.00464 0.00422 0.00814 0.33920
0.5 2.80 0.00464 0.00433 0.00436 0.33759

n = 107, M = 100, β = 1/3, and r = 3/4.

As seen from the Tables 1–4, the risk of the estimation procedure based
on ε̂n is smaller than that of the CJL procedure. As a result, the observed
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Table 2. Numerical summary for the CJL estimator ε̂∗an

in the selection region S

α an/
√
2 ln lnn εn ε̂∗an

Ê
(
ε̂∗an

/εn − 1
)2

β̂∗
an

0.005 2.126 0.00464 0.00367 0.04390 0.34792
0.01 1.956 0.00464 0.00386 0.02869 0.34485
0.025 1.699 0.00464 0.00388 0.02689 0.34445
0.05 1.545 0.00464 0.00403 0.01753 0.34215
0.1 1.370 0.00464 0.00408 0.01468 0.34135
0.5 0.940 0.00464 0.00431 0.00507 0.33792

n = 107, M = 100, β = 1/3, and r = 3/4.

values of ε̂n and β̂n are closer to the true values of εn and β than those

of ε̂∗αn
and β̂∗

an
, under different selections of the parameters α, β, and r.

These numerical findings are in agreement with the result of Theorem 1
(as compared to the upper bound (25)). In the course of numerical studies,
we also noted that the accuracy of estimation does not depend that much
on the parameter r alone. As seen from Tables 1 and 3, the quality of
estimation is crucially affected by whether the point (β, r) is located inside
or outside of the selection region S; in the former case, the performance of
ε̂n is much better, especially for very large n.

Figure 3 gives histograms of ε̂n/εn and ε̂∗an
/εn for two choices of (β, r)

and four different levels of α. This figure supports the numerical results
in Tables 1–4 and nicely illustrates the “thin tail property” of the ratios
implying that, with both estimators, when α ∈ (0, 1/2] the chance of over-
estimating εn is small.

It is also seen from Tables 1–4 that as α gets larger the risk of ε̂n/εn and
of ε̂∗an

/εn gets smaller, signifying better performance of both estimators
for larger values of α. For the estimator ε̂n, this is explained by the fact
that a larger α gives a smaller cα = H−1(1 − α) and thus makes the
confidence band [F−

n,α(t),F
+
n,α(t)] used in the construction of ε̂n shorter

(see relation (32)). Similar behaviour of the CJL estimator ε̂∗an
has been

noticed and commented in Section 7 of [2] as follows: “a larger αn will
not increase much of the chance of overestimation, but it will certainly
boost the underestimation and in effect make the whole estimator more
accurate”. However, as the problem of our interest is to estimate εn from
below with high probability, both ε̂n and ε̂∗an

will do their job properly only
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when α is a small number near zero. As α gets larger, the probability of
overestimating εn by using ε̂n and ε̂∗an

increases and for α ∈ (1/2, 1), in a
series of repeated simulations, one gets estimates that are greater than εn.

Table 3. Numerical summary for the new estimator ε̂n in
the region D ∩ Sc

α cα εn ε̂n Ê (ε̂n/εn − 1)
2

β̂n

0.01 5.53 0.00010 5.62e-05 0.19158 0.60715
0.02 5.16 0.00010 5.87e-05 0.17068 0.60449
0.05 4.57 0.00010 6.06e-05 0.15518 0.60249
0.1 4.17 0.00010 6.57e-05 0.11751 0.59747
0.2 3.60 0.00010 6.63e-05 0.11374 0.59695
0.5 2.80 0.00010 7.27e-05 0.07437 0.59118

n = 107, M = 100, β = 4/7, and r = 1/2.

Table 4. Numerical summary for the CJL estimator ε̂∗an

in the region D ∩ Sc

α an/
√
2 ln lnn εn ε̂∗an

Ê
(
ε̂∗an

/εn − 1
)2

β̂∗
an

0.005 2.126 0.00010 4.82e-05 0.26832 0.61671
0.01 1.956 0.00010 4.93e-05 0.25705 0.61531
0.025 1.699 0.00010 5.26e-05 0.22506 0.61133
0.05 1.545 0.00010 5.37e-05 0.21437 0.61000
0.1 1.370 0.00010 5.62e-05 0.19202 0.60720
0.5 0.940 0.00010 5.75e-05 0.18054 0.60575

n = 107, M = 100, β = 4/7, and r = 1/2.
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Figure 3. Histograms for M = 100 simulated ratios ε̂n/εn
(top row) and ε̂∗an

/εn (bottom row) from the normal mix-

ture model (3) with n = 107 and (β, r) = (1/3, 3/4) ∈ S
for different levels of α: 0.01, 0.05, 0.1 and 0.5.
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