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DISTRIBUTIONS AND CHARACTERIZATIONS

ASSOCIATED WITH A RANDOM WALK

Abstract. In the present paper, we discuss some properties of the
distribution and density of the random direction walk after n steps.
We further calculate moments of the random walk and propose some
characterizations of its distribution. We illustrate our results by ta-
bles and graphs.

§1. Introduction

An n step Pearson’s random walk is a walk in the plane that starts at
the origin 0 and consists of n steps of length 1 each taken into a uniformly
random direction. Pearson (1905) proposed this problem. Let X be the
distance traveled in n steps. Kluyver (1905) gave the probability density
function (pdf) pn(x) of the distance X after n steps of unit length. We
denote PRW(n, x) as the distribution of the distance from the origin at
the n-th step.The pdf pn(x) of PRW(n, x) as given by Kluyver(1905) is as
follows

pn(x) =

∞
∫

0

xtJ0(xt)(J0(t))
n dt, 0 6 x 6 n, (1.1)

where J0(.+ 96) is the Bessel function of first kind and zero-th order. For
n = 2, 3, 4, the pdf pn(x) has the following forms

p2(x) =
2

π
(4− x2)−1/2, 0 6 x 6 2,

p3(x) =
2
√
3

π

x

3 + x2 2F1
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1

3 1
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∣

∣

∣

x2(9− x2)2

(3 + x2)3

)

, 0 < x 6 3,
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∣
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, 0 < x 6 4,
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where

pFq

(

α1,α2,...,αp

β1,β2,...,βq

∣

∣x
)

= 1 +

∞
∑

k=0

(α1)k, (α2)k, . . . , (αp)k
k!(β1)k, (β2)k, . . . , (βq)k

xk

with (a)k = a(a+ 1) . . . (a+ k − 1) is the hypergeometric series.
Rayleigh (1905) showed that for n > 5, Pn(x) is close to the pdf pn,l(x),

where

pn,l(x) =
2x

n
e−

x2

n , x > 0. (1.2)

We will denote this distribution as PRWL(n, x). For some basic properties
of the pdf pn(x) see Borwein et al (2012).

In this paper several distributional properties and characterizations of
PRW(n, x) and PRWL(n, x) for some values of n will be given.

§2. Basic Properties

The cumulative distribution function (cdf) Pn(x) of PRW(n, x) is given
by

Pn(x) =

∞
∫

0

xJ1(xt)(J0(t))
n dt, x > 0, (2.1)

where J1(x) is the Bessel function of first order.
The cdf Pn,l(x) of PRWL(n, x) is as follows

Pn,l(x) =

x
∫

0

2u

n
e−

u2

n du = 1− e−
x2

n , x > 0. (2.2)

Using the property d
dxJ0(x) = −J1(x), we obtain

Pn(1) =

∞
∫

0

(

J1(t)J0(t)
)n

dt =
−(J0(t))

n+1

n+ 1

∣

∣

∣

∈

∞

=
1

n+ 1

and
Pn,l(1) = 1− e−

1

n .

Table 2.1 gives Pn(1) and Pn,l(1) for some values of n.

Table 2.1. Pn(1) and Pn,l(1)
n 5 6 7 8 9 10
Pn(1) 0.166 67 0.142 86 0.125 0.111 11 0.1 0.0909
Pnl(1) 0.181 27 0.153 52 0.133 12 0.117 5 0.105 16 0.09516 3

25
0.03846 2
0.039211
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Let µn(m) be the m-th moment of PRW(n, x), then we have

µn(m) =

n
∫

o

xmpn(x) dx. (2.3)

An alternative expression of µn(m) is

µn(m) =

1
∫

0

1
∫

0

· · ·
1

∫

0

∣

∣

∣
1+e2πix1+· · ·+e2πixn−1

∣

∣

∣

m

dxn−1, . . . , dx2dx1. (2.4)

From (2.4), we obtain for n = 2

µ2(m) =

1
∫

0

∣

∣

∣
1 + e2πix

∣

∣

∣

m

dx = 2m+1

1/2
∫

0

cosm(πt) dt =
Γ(m+ 1)

Γ
(

m
2 + 1

)

Γ
(

m
2 + 1

) .

Using (2.4), we obtain the following values of µn(m)

µ3(m) =3 F2

(

1

2
,−m

2
.−m

2

1,1

∣

∣

∣
4
)

µ4(m) =
∑

j=0

(

Γ(m2 + 1

Γ(l + 1)Γ(m2 − j + 1

)2

3F2

(

1

2
,−m

2
+j.−m

2
+j

1,1

∣

∣

∣
4
)

µn(2m) =
∑

m1+m2+..._mn=m

(

m!

m1!m1! . . .mn!

)2

,

(2.5)

where 0 6 m1,m2, . . .mn 6 m.
On simplifications, we obtain from (2.5) for even m.

µn(2) = n

µn(4) = 2n2 − n

µn(6) = 6n3 − 9n2 + 4n

µn(8) = 24n4 − 72n3 + 96n2 − 33n

µn(10) = 120n5 − 600n4 + 1250n3 − 1225n2 + 456n

Let µn,l(m) be the m-th moment of PRWL(n, x), then

µn,l(m) =

∞
∫

0

2xm+1

n
e−

x2

n dx =

∞
∫

0

(ny)m/2e−y dy = nm/2 Γ
(m

2
+1

)

. (2.6)

The table 2.2 gives for n = 1 to 6 and m = 1 to 10, µn(m), µ5,l(m), µ6,l(m).
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Table 2.2. n = 1 to 6, m = 1 to 10, µn(m), µ5,l(m), µ6,l(m).
n \ m 1 2 3 4 5 6 7 8 9 10

2 1.27324 2 3.39531 6 10.8650 20 37.2514 70 132.449 252

3 1.57460 3 6.45168 15 36.7052 93 241,544 639 1714.62 4653

4 1.79909 4 10.1207 28 82.6515 256 822.273 2716 9169.62 31504

5 2.00816 5 14.2896 45 152.316 545 2037.14 7885 31393.1 127905

6 2.19380 6 18.9133 66 248.759 996 4186.19 18308 82718.9 384156

µ5l 1.9817 5.0 14.862 50 185.78

µ6l 2.170 8 6.0 19.537 72.0 293.06

µ5l 750.0 3251.2 15000.0 73151. 3.75 × 10
5

µ6l 1296.0 6154, 2 11104.0 1.661 6 × 10
5

9.331 2 × 10
5

It seems that the higher moments using Rayleigh approximating distri-
butions are quite different from the values of PRW(n, x) for n = 5 and 6.

The hazard rate λ(x) of a random variable X with pdf f(x) and cdf

F (x) is defined as λ(x) = f(x)
1−F (x) for F (x) 6= 1. It is difficult to find the

hazard rate λn(x) of the random variable X is from PRW(n, x) for n > 2.
The hazard rates λ2(x) of PRW(2, x) and λn,l(x) of PRWL are respectively

λ2(x) =
2
π (4− x2)−1/2

1− 2
π arcsin 1

2x
and λn,l(x) =

2x

n
.

The figure 2.2. gives the hazard rates of λ2(x) and λ5,l(x).

Figure 2.2. Hazard Rates-λ2(x)-solid and λ5,l)x)-Dash.
Suppose that X1, X2, . . . Xm are independent copies of the random vari-

able X . Let Mm = max(X1, X2, . . . , Xm) and M(m) = min(X1, X2, . . . , Xm).
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If the random variable X has PRWL(n, x) distribution, then (See Ahsan-
ullah and Nevzorov (2001)) Mm belongs to the domain of attraction of
Type 1 extreme value distribution of the maximum and M(m) belongs to
the domain of attraction of type III distribution of the minimum. However
it is difficult to determine the domains of attractions Mm and M(m) if the
random variable X has PRW(n, x) for n > 2 distribution. Here the domain
of attraction of Mm and M(m) when X has the distribution PRW(2) will
be given.

We have

lim
m→∞

2 sin π
2 (

1
m )− 2 sin π

2 (
2
m )

2 sin π
2 (

2
m )− 2 sin π

m ( 4n )
= 2−1

and

lim
m→∞

2 sin π
2 (1 − 1

m )− 2 sin π
2 (1 − 2

m)

2 sin π
2 (1 − 2

m )− 2 sin π
m (1− 4

n )
= 2−2.

It follows from Theorems 2.1.5 and 2.1.9 of Ahsanullah and Nevzo-
rov (2001) that Mm belongs to the domain of attraction of type III dis-
tribution of the maximum with F (x) = e−x, x < 0 and M(m) belongs
to the domain of attraction of type III distribution of minimum with cdf

F (x) = 1− e−x2

, x > 0.

It is difficult to calculate the Shannon entropy of PRW(n, x) for n > 2.
The Shannon entropy of PRW(2, x) and PRWL(n, x) will be given here.

Let EN(2, x) be the Shannon entropy of PRW(2, x), then

−EN(2, x) =

2
∫

0

ln
( 2

π

(

4− x2
)−1/2

) 2

π

(

4− x2
)−1/2

dx

= ln
( 2

π

)

− 1

π

2
∫

0

ln
(

4− x2
)(

4− x2
)−1/2

dx.

Let x = 2 sin θ, then

−EN(2, x) = ln

(

2

π

)

− 1

π

π/2
∫

0

ln
(

4 cos2 θ
)2 cos θ

2 cos θ
dθ

= ln

(

2

π

)

− 1

π

π/2
∫

0

(

2 ln 2 + 2 ln cos θ
)

dθ
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= ln 2− lnπ − ln 2− 2

π

π/2
∫

0

ln cos θ dθ

= − lnπ +
2

π

π

2
ln 2 = − lnπ + ln 2.

If ENL(n, x) be the Shannon entropy of NRWL(n, x), then

−ENL(n, x) =

∞
∫

0

ln

(

2x

n
e−

x2

n

)

2x

n
e−

x2

n dx

= ln

(

2

n

)

+

∞
∫

0

(

lnx− x2

n

)

2x

n
e−

x2

n dx

= ln 2− lnn+
1

2
lnn− 1

2
γ − 1,

where γ is Euler’s constant. Thus

ENL(n, x) = − ln 2 +
1

2
lnn+

1

2
γ + 1.

§3. Characterizations

The following two theorems give the characterizations of the PRW(2, x)
by the truncated m(> 0)-th moment.

Theorem 3.1. Suppose that the random variable X is absolutely continu-
ous with cdf F (x) with F (0) = 0, F (x) > 0, for 0 < x < 2, F (x) = 1 for
x > 2 and pdf f(x). Assume that E(Xm) exists for m > 1. Then

E(Xm|X 6 x) = g(x)τ(x),

where

τ(x) =
f(x)

F (x)
, g(x) =

p(x)

2

(

4− x2
)1/2

,

p(x) =
xm+1

(m+ 1)π
+

1

π

∞
∑

k=0

(2k − 1)!!xn+2k+1

(m+ 2k + 1)23kk!

if and only if f(x) = 2
π

(

4− x2
)−1/2

, 0 6 x 6 2.
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Proof. If f(x) = 2
π

(

4− x2
)−1/2

, then

f(x)g(x) =

x
∫

0

2um

π

(

4− u2
)−1/2

du =
2

π

x
∫

0

(2x)m
(

1− x2
)−1/2

dx

=
2m+1

π

(

x
∫

0

xm

(

1 +
∞
∑

k=1

(2k − 1)!!x2k

2kk!

)

du

)

,

with (2k − 1)!! = 1 · 3 · 5 . . . (2k − 1)

=
2m+1

π

(

xm+1

m+ 1
+

∞
∑

k=0

(2k − 1)!!xn+2k+1

(m+ 2k + 1)2kk!

)

=
1

π
p(x), say.

Thus g(x) = p(x)
2

(

4− x2
)1/2

.

Suppose g(x) = p(x)
2

(

4− x2
)1/2

, then

g′(x) = xm − p(x)

2

(

4− x2
)1/2

( x

4− x2

)

= xm − g(x)
( x

4− x2

)

and
xm − g′(x)

g(x)
=

x

4− x2
.

We have xm
−g′(x)
g(x) = f ′(x)

f(x) .

Thus
f ′(x)

f(x)
=

x

4− x2
.

Integrating both sides of the above equation with respect to x, we obtain

f(x) = c
(

4− x2
)−1/2

where c is a constant.

Using the condition
2
∫

0

f(x) dx = 1, we obtain

f(x) =
2

π

(

4− x2
)−1/2

, 0 6 x 6 2. �

Theorem 3.2. Suppose that the random variable X is absolutely con-
tinuous with cdf F (x) with F (0) = 0, F (x) > 0, for 0 < x < 2 and
F (x) = 1 for x > 2 and the pdf of X is f(x). Assume that E(Xm) ex-

ists for m > 1. Then E(Xm|X > x) = h(x)r(x), where r(x) = f(x)
1−F (x) ,
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h(x) = πq(x)
2

(

4− x2
)1/2

, q(x) = E(X)− 1
πp(x) if and only if

f(x) = 2
π

(

4− x2
)−1/2

, 0 6 x 6 2.

Proof. If f(x) = 2
π

(

4− x2
)−1/2

then

f(x)h(x) =

2
∫

x

2um

π

(

4− u2
)−1/2

du

= E(Xm)−
x
∫

0

2um

π

(

4− u2
)−1/2

du

= E(Xm)− 1

π
p(x) = q(x), say.

E( Xm) =

2
∫

0

2um

π

(

4− u2
)−1/2

du

=

π/2
∫

0

2m+1

π
sinm θ dθ

=
22n+1

π

1 · 3 · 5 . . . (2n− 1)

2 · 4 · 6 . . . (2n)
π

2

= 22n
(2n− 1)!!

(2n)!!
if m = 2n

=
22n+2

π

1 · 3 · 5 . . . (2n)
1 · 3 · 5 . . . (2n+ 1)

=
22n+2

π

(2n)!!

(2n+ 1)!!
if m = 2n+ 1.

where (2n)!! = 2 · 4 · 6 . . . (2n) and (2n+ 1)!! = 1 · 3 · 5 . . . (2n+ 1).
Thus

h(x) =
πq(x)

2
(

4− x2
)−1/2

h′(x) = − xm − πq(x)

2
(

4− x2
)−1/2

(

x

4− x2

)
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= −xm − h(x)

(

x

4− x2

)

and

−xm + h′(x)

h(x)
=

x

4− x2
.

We have −xm+h′(x)
h(x) = f ′(x)

f(x) .

Thus
f ′(x)

f(x)
=

x

4− x2
.

Integrating both sides of the above equation with respect to x, we obtain

f(x) = c
(

4− x2
)−1/2

where c is a constant.

Using the condition
2
∫

0

f(x)dx = 1, we obtain

f(x) =
2

π

(

4− x2
)−1/2

, 0 6 x 6 2. �

The following two theorems give the characterizations of PRWL(n, x)
based on the truncated m-th moment.

Theorem 3.3. Suppose that the random variable X is absolutely contin-
uous with cdf F (x) with F (0) = 0, F (x) > 0, for all x > 0 and pdf f(x).
Assume that E(Xm), m > 0 exists. Then

E(Xm|X 6 x) = α(x)τ(x), where α(x) =
nm/2+1Γ x2

n

(m+ 1)

2xe−
x2

n

and

τ(x) − f(x)

F (x)
, if and only if f(x) =

2x

n
e−

x2

n , x > 0.

Proof. Suppose f(x) = 2x
n e−

x2

n , then

f(x)α(x) =

x
∫

0

2um+1

n
e−

u2

n du

Let u2/n = t, then

f(x)α(x) −
x2/n
∫

0

(tn)m/2e−t dt
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= nm/2Γ x2

n

(m

2
+ 1

)

= u(x), say,

where

Γa(b) =

a
∫

0

xb−1e−t dt.

Thus

α(x) =
nu(x)

2xe−
x2

n

.

Suppose

α(x) =
nu(x)

2xe−
x2

n

,

then

α′(x) = xm − nu(x)

2xe−x2

(

1

x
− 2x

n

)

= xm − α(x)

(

1

x
− 2x

n

)

.

Thus
xm − α′(x)

α(x)
=

(

1

x
− 2x

n

)

.

We have
xm − α′(x)

α(x)
=

f ′(x)

f(x)
,

thus
f ′(x)

f(x)
=

(

1

x
− 2x

n

)

.

Integrating both sides of the above equation with respect to x and using

the condition
∞
∫

0

f(x) dx = 1, we obtain

f(x) =
2x

n
e−

x2

n , x > 0. �

Theorem 3.4. Suppose the random variable X is absolutely continuous
with cdf F (x) with F (0) = 0, F (x) > 0, for all x > 0 and pdf f(x).
Assume that E(Xm), m > 0 exists. Then E(Xm|X > x) = β(x)r(x),

where r(x) − f(x)
1−F (x)

β(x) = n(E(Xm)−u(x))

2xe−
x2

n

, and E(Xm) = (n)m/2Γ
(

m
2 + 1

)

if and only if

f(x) = 2x
n e−

x2

n , x > 0.
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Proof. Suppose f(x) = 2x
n e−

x2

n , then

f(x)β(x) =

∞
∫

x

2um+1e−u2 du

n

= E(Xm)−
x
∫

0

2um+1e−u2 du

n
= E(Xm)− u(x),

with E(Xm) =(n)m/2Γ
(

m
2 + 1

)

.
Thus

β(x) =
n(E(Xm) − u(x))

2xe−
x2

n

,

β′(x) = −xm − n(E(Xm) − u(x))

2xe−
x2

n

(

1

x
− 2x

n

)

,

= −xm − β(x)

(

1

x
− 2x

n

)

,

and

−xm + β′(x)

β(x)
=

(

1

x
− 2x

n

)

.

Since

−xm + β′(x)

β(x)
=

f ′(x)

f(x)
,

we will have
f ′(x)

f(x)
=

(

1

x
− 2x

n

)

.

Integrating both sides of the above equation with respect to x and using

the condition
∞
∫

0

f(x) dx = 1, we obtain

f(x) =
2x

n
e−

x2

n , x > 0. �

Remark 1. For some characterizations of Pearson’s two unequal step
random walk see Ahsanullah (2020).

Remark 2. It will be interesting to use the ideas presented by Volkova,
Karakulov, and Nikitin (2017) to test the goodness of fit of PRW(2, x)
using the characterization Theorems 3.1 and 3.2.
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