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ENHANCED DYNKIN DIAGRAMS DONE RIGHT

Abstract. In the present paper we slightly modify the Dynkin–
Minchenko construction of enhanced Dynkin diagrams and con-
struct signed enhanced Dynkin diagrams of exceptional types Φ =
E6, E7, E8. We observe that these diagrams contain as subdiagrams
all Carter–Stekolshchik diagrams of conjugacy classes of the Weyl
groups W (Φ).

Introduction

In the present paper we draw the enhanced Dynkin diagrams of
Eugene Dynkin and Andrei Minchenko [8] for senior exceptional types
Φ = E6,E7, and E8 in a right way, à la Rafael Stekolshchik [26], indicating
not just adjacency, but also the signs of inner products. Two vertices with
inner product −1 are joined by a solid line, whereas two vertices with inner
product +1 are joined by a dotted line.

Provisionally, in the absense of a better name, we call these creatures
signed enhanced Dynkin diagrams. They are uniquely determined by the
root system Φ itself, up to [a sequence of] the following tranformations:
changing the sign of any vertex and simultaneously switching the types of
all edges adjacent to that vertex.

Theorem 1. Signed enhanced Dynkin diagrams of types E6, E7, and E8

are depicted in Fig. 1, 2 and 3, respectively.

In this form such diagrams contain not just the extended Dynkin diag-

rams of all root subsystems of Φ – that they did already by Dynkin and
Minchenko [8] – but also all Carter diagrams [6] of conjugacy classes of
the corresponding Weyl group W (Φ).

Theorem 2. The signed enhanced Dynkin diagrams of types E6, E7, and

E8 contain all Carter–Stekolshchik diagrams of conjugacy classes of the

Weyl groups W (E6), W (E7), and W (E8).

Key words and phrases: Exceptional root systems, root subsystems, conjugacy
classes of the Weyl group, Dynkin diagrams, Carter diagrams.
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In both cases the non-parabolic root subsystems, and the non-Coxeter
conjugacy classes occur by exactly the same single reason, the exceptional
behaviour of D4, where the fundamental subsystem can be rewritten as
4A1, or as a 4-cycle, respectively, which constitutes one of the most mani-
fest cases of the octonionic mathematics [2], so plumbly neglected by
Vladimir Arnold (mathematica est omnis divisa in partes tres,
see [1]).

As a most immediate benefit, this provides an extremely powerful mne-
monic tool, to easily reconstruct both the complete lists of root subsystems,
and the complete lists of conjugacy classes of W (E6), W (E7), and W (E8)
within quarter of an hour on a scrap of paper. But as every powerful tool,
it may have more than one use. In a subsequent paper, we plan to establish
several further combinatorial results concerning these diagrams. However,
here we concentrate on a construction of the pictures themselves, in the
hyperbolic realisation of the root systems E6, E7, and E8, see [15].

The present paper is organised as follows. In §1, we reproduce some
historical background to place our diagrams in context. In §2, we recall
some basic notation related to root systems and to the hyperbolic reali-
sations of the exceptional root systems E6, E7, and E8, that are used in
subsequent calculations. In §3, we perform the inductive procedure à la

Dynkin–Minchenko, to construct Figures 1–3 and prove Theorem 1. In §4,
we list all non-Coxeter classes of the Weyl groups W (E6), W (E7), and
W (E8), depict all irreducible admissible diagrams with cycles occuring
in these groups, Figures 5–6, and observe that all of them occur inside
Figures 1–3, thus proving Theorem 2. Finally, in §5 we make some further
comments regarding these pictures and some of their uses.

However, the main new bid of the present paper are the diagrams them-
selves, Figures 1–3. They are bound to have many further uses, apart from
the ones of which we are aware today.

The present work, together with [19] constitutes a part of the Bachelor

Qualifying Paper of the second-named author under the supervision of the
first-named author.

§1. Some background

While reconsidering the combinatorial structure of the Gosset–Elte po-
lytopes and calculating the corresponding cycle indices [19] we had an
occasion to take another look at the subsystems of the exceptional root
systems, and the conjugacy classes of their Weyl group.
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Classification of both stocks of creatures are very classical and well-
known. Up to conjugacy, susbsystems of root systems were determined by
Armand Borel and Jacques de Siebenthal, who proposed a general method,
and by Eugene Dynkin [7], who came up with explicit lists, in the late
1940-s and early 1950-s.

The [moderately] challenging cases were E7 and E8, which accomodate
non-conjugate isomorphic subsystems. See also [32] and [20] for alternative
approach and our papers [12, 30] for the explicit lists and some further
related details.

1.1. Carter diagrams. Approximately simultaneously with the above,
conjugacy classes of the Weyl groups W (E6) and W (E7) were determined
by Sutherland Frame [9], the senior case of W (E8) came later [10]. However,
unlike the description of root subsystems, all of these papers addressed
various types individually. The first [somewhat] uniform approach was only
developed by Roger Carter [5, 6].

Very roughly, Carter’s description looks as follows. Predominantly, con-
jugacy classes of the Weyl group W (Φ) are represented by Coxeter elements
of subsystems of the root system ∆ 6 Φ. Let Γ be a fundamental subsys-
tem of ∆. Recall that a Coxeter element w∆ = wΓ of W (∆) 6 W (Φ) is
the product of fundamental reflections wα, a ∈ Γ, corresponding to the
fundamental roots α ∈ Γ of ∆, their order is immarterial, since all such
elements are conjugate. Overwhelmingly, non-conjugate root subsystems
produce different conjugacy classes. However, not all conjugacy classes
arise that way.

The missing conjugacy classes result from what Carter himself calls
admissible diagrams, that nowadays are usually called Carter diagrams.
Basically, these are diagrams constructed from linearly independent subsets

of roots in exactly the same way as Dynkin diagrams. Namely, two roots α
and β are joined with a single bond if the product wαwβ of the correspon-
ding reflections has order 3. Similarly, they are joined with a double bond
if the order of wαwβ is 4. We may safely forget G2, where nothing new can
possibly occur.

Unlike Dynkin diagrams themselves, Carter diagrams can contain cy-
cles, admissibility amounts to the requirement that all of their cycles are
even. Every Carter diagram C produces a conjugacy class in W (Φ) as
follows. Unlike Coxeter elements, we cannot simply designate wC as the
product of all wα, a ∈ C, since in the presence of cycles the conjugacy
class of such a product can – and does! – depend on the order of factors.
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e0 + e1 + e4 + e5e2 − e1 = α1

e3 − e2 = α3 e4 − e3 = α4

α6 = e6 − e5

α0 = 2e0 + e1 + ...+ e6

α2 = e0 + e1 + e2 + e3

α5 = e5 − e4

Figure 1. Enhanced Dynkin diagram of type E6.

However, since all cycles of C are even, the graph C is bipartite, its vertices
can be partitioned into two disjoint subsets X and Y consisting of pairwise
orthogonal roots. Let wX and wY be the products of reflections wα, where
α ∈ X or α ∈ Y , respectively. Obviously, wX and wY are involutions, and
the conjugacy class of the semi-Coxeter element represented by C is
wC = wXwY does not depend on the choice of such X and Y .

There are further complications, but eventually, as a result of lengthy
arguments reminiscent of the classification of Dynkin diagrams themselves,
and arduous computations, Carter succeeds in mustering a collection of
diagrams that produce all conjugacy classes of W (Φ) in this fashion.

In fact, almost immediately Pawan Bala and Roger Carter discovered
the close connection between conjugacy classes of the Weyl groups and the
unipotent conjugacy classes of the corresponding Chevalley groups [3].
This connection was then made more precise and explicit, and then exten-
sively studied by Tonny Springer, Nicolas Spaltenstein, David Kazhdan
and especially by George Lusztig, see, in particular, [14].
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1.2. Stekolshchik diagrams. Subsequently, several alternative approa-
ches to the classification of conjugacy classes were proposed, including the
extremely illuminating work of Tonny Springer [22] and of Meinolf Geck
and Götz Pfeiffer, see [11] and references there. Nonetheless, Carter’s list
itself remained somewhat misterious. Part of that mistery was lifted by
Rafael Stekolshchik in [23, 24, 25]; the final version was published in 2017
in the journal of Lugansk University [26].

In these texts, Stekolshchik made several extremely pertinent observati-
ons.

• Diagrams with cycles of arbitrary even length can be reduced to di-
agrams with cycles of length 4 alone. In particular, this explains why the
admissible diagrams with cycles of lengths 6 and 8 that appear for the
types E7 and E8 do not make their way to the lists of conjugacy classes.

Of course, this is what eventually transpires in Carter’s proof as well, but
there it only happens at the very last step, when the admissible diagrams
with long cycles are eliminated as a result of summing up the orders of the
conjugacy classes obtained so far. Stekolshchik provides a direct case by
case verification of the fact that the semi-Coxeter element constructed from
an admissible diagram with long cycles is conjugate to the semi-Coxeter
element constructed from another admissible diagram with cycles of length
4 alone.

• One should explicitly mark the sign of the inner product in Carter
diagrams. Stekolshchik himself denotes the negative inner product of two
roots by solid bonds , and the positive inner product – by dotted bonds . We
follow this convention in the present paper1.

The vertices of an extended Dynkin diagram are linearly dependent. It
follows that they cannot form a part of an admissible diagram. In partic-
ular, any diagram containing a cycle consisting of solid edges alone is not
admissible – any such cycle should contain an odd number of dotted edges.

• The cyclic order of reflections with respect to the roots forming a
4-cycle in D4 leads to the Coxeter class D4 of W (D4) of order 32, whereas

1It should be noted that in [8] dotted lines are charged with three completely different
meanings. In Fig. 2 the bold dotted bond denotes the [unique] bond that completes the
initial Dynkin diagram of Φ to the extended Dynkin diagram. In the Figs. 2, 3, and 4
the thin dotted bonds denote the bonds hidden in the usual Euclidean picture. In Fir. 3
the bold dotted bonds denote the emerging bonds at a certain step of the inductive
procedure.
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e0 + e1 + e4 + e5e2 − e1 = α1

e3 − e2 = α3 e4 − e3 = α4

α6 = e6 − e5

α0(E6) = 2e0 + e1 + ...+ e6

α2

α5 = e5 − e4

2e0 + e2 + ...+ e7 = α0(E7)

e0 + e1 + e6 + e7

α7 = e7 − e6

Figure 2. Enhanced Dynkin diagram of type E7.

the bipartite order, as described above, leads to the semi-Coxeter class
D4(a1) of order 12.

Essentially, Stekolshchik proves that all non-Coxeter classes are ex-
plained by this single phenomenon. Some elements in the Coxeter class
of D4 can be rewritten as products of the reflections corresponding to 4-
cycles, in cyclic order. By iterating this procedure for various copies of D4,
one can eventually obtain all diagrams in Carter’s lists.

1.3. Dynkin–Minchenko diagrams. However, some time before that
Dynkin and Minchenko [8] made another extremely important observation.
As we know, by 2010 both the algorithm to construct root subsystems,
and the lists of those were known for some 60 years. However, the genuine

explanation of these lists was missing. Here are the key new observations
of [8].

• All root subsystems of Φ are uniformly constructed using their maxi-
mal subsets of pairwise orthogonal roots. Again, occurence of all such non-
parabolic subsystems is explained by a single exceptional phenomenon, the
presence of 4 pairwise orthogonal roots in D4.

• All instances, where two isomorphic subsystems of E7 and E8 are non-
conjugate, are uniformly explained by the presence of 4 pairwise orthogonal
roots in D4 – they either have charge 4 themselves, or [in the case of E7]
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are orthogonal completions to one root in systems of charge 4 (and thus
have charge 3). This led the authors of [8] to the discovery of what they call
enhanced Dynkin diagrams. These diagrams are built up inductively
as follows.

• We start with the usual Dynkin diagram of type Φ.

• For every node of degree three we look at the corresponding copy of D4

spanned by this node and the three adjacent nodes. We add the maximal
root of this copy of D4 – or, actually, its opposite.

• However, the roots that emerged at the previous step can be them-
selves joined to some other roots, which would then produce new nodes of
degree three.

• This procedure should be repeated quantum sufficit = until complete
satisfaction, the step, where no new vertices of degree three occur.

The resulting diagram contains Dynkin diagrams of all root subsystems
up to conjugacy. By picking up its subsets – obviously, it suffices to take
linearly independent ones – we now get representatives of all fundamental
subsystems of all possible root subsystems.

As another interesting feature, observe that the exceptional enhanced
Dynkin diagrams contain the extended Dynkin diagrams = the usual
Dynkin diagrams augmented by the [negative] maximal root of the initial
subsystem. For classical types, this is not necessarily the case. For Φ =
Al, all root subsystems and all conjugacy classes of W (Al) = Sl+1 are
parabolic; they correspond to partitions of l + 1 and thus the enhanced
Dynkin diagram is the usual Dynkin diagram. For Φ = Dl, the answer
depends on the parity of l. The enhanced Dynkin diagram of type D4

is the extended Dynkin diagram and similarly for all even l = 2m the
enhanced Dynkin diagram contains the maximal root of Dl and thus the
extended Dynkin diagram. But for odd l = 2m+ 1 it does not!

Since the authors of [8] were only interested in root subsystems, they
were effectively looking not at the roots of Φ, but at its subsystems of type
A1 – what they call projective roots.

In the present paper, we effectively merge both approaches, which leads
to the diagrams that contain representatives of both Dynkin diagrams of all
root subsystems of Φ, and Stekolshchik diagrams of all conjugacy classes
of W (Φ).
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§2. Notation

2.1. Root systems. In all that regards root systems, including the num-
bering of their fundamentral roots, we follow Bourbaki [4]. In particular,
Φ is a reduced irreducible root system of rank l, W = W (Φ) is its Weyl
group.

Fix an order on Φ, and let Π = {α1, . . . , αl} be the corresponding set
of fundamental roots, Φ+ and Φ− be the corresponding sets of positive
and negative roots, respectively. Let Π̄ be the extended fundamental

system of Φ. It is obtained by appending to Π the root α0 = −δ, where δ

is the highest root of Φ with respect to the fundamental system Π.
Recall that in the Dynkin form, the highest roots of E6, E7, and E8 are

depicted as

12321
2

, 234321
2

, 2465432
3

.

For a root α ∈ Φ, we denote by wα ∈ W the corresponding root re-
flection. It is clear that wwαw

−1 = wwα
for all w ∈ W . Usually we de-

note the fundamental root reflection wαi
simply by wi. Observe that, in

many books on Lie algebras and Coxeter groups, it is denoted by si. It
is well known that the fundamental reflections generate the Weyl group,
W = 〈w1, . . . , wl〉.

For two root systems ∆ and Σ, we denote by ∆+Σ their orthogonal sum.
In particular, k∆ = ∆1 + . . .+∆k is the orthogonal sum of k isomorphic
summands. It is sometimes convenient to consider also the empty root
system A0 = ∅ of rank 0. Recall that D1 = D0 = ∅.

2.2. Hyperbolic realization of El. In the present paper, we are predo-
minantly interested in the cases Φ = E6,E7,E8. As in [12, 27, 30], we
use the hyperbolic realization of these systems in the (l + 1)-dimensional
Minkowsky space [15]. This realization is considerably more suitable for
large-scale calculations than the usual realizations in Euclidean space.

Consider a real vector space V = R
l,1 of dimension l+ 1 endowed with

a nondegenerate symmetric inner product ( , ) : V ×V −→ R of signature
(l, 1). Fix an orthonormal base e0, e1, . . . , el such that (e0, e0) = −1 and
(ei, ei) = 1 for all 1 6 i 6 l. We are primarily interested in the case l = 8.

Fix the following fundamental system Π = {α1, . . . , α8} in Φ = E8:

α1 = e2 − e1, α2 = e0 + e1 + e2 + e3, α3 = e3 − e2, α4 = e4 − e3,

α5 = e5 − e4, α6 = e6 − e5, α7 = e7 − e6, α8 = e8 − e7.
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γ145α1

α3 α4

α6

η78

α2

α5

η18

γ167

α7

η12

η56

α8

ζ8

η34

Figure 3. Enhanced Dynkin diagram of type E8.

To obtain the root system E7, it suffices to take roots in E8 such that α8

does not occur in their linear expansion with respect to the fundamental
roots. By the same token, to get a root system of type E6 it suffices to
take roots in E8 such that both α7 and α8 do not occur in their linear
expansion with respect to the fundamental roots.

In particular, every element of Φ+ has one of the following forms:

βij = ei − ej , i > j,

γijh = e0 + ei + ej + eh,

ηij = 2e0 + e1 + . . .+ êi + . . . .+ êj + . . .+ e8,

ζi = 3e0 + e1 + . . .+ 2ei + . . .+ e8,

where the indices i, j, h = 1, . . . , 8 are pairwise distinct, while the hat ̂
over a summand signifies that this summand should be omitted.

§3. Proof of Theorem 1

Now we are all set to provide detailed constructions of the enhanced
Dynkin diagrams and thus finish the proof of Theorem 1 stated in the
introduction.
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We build up the diagrams inductively by the same procedure as Dynkin
and Minchenko, but controlling the signs of the resulting roots. Moreover,
for senior cases we do not start the construction from scratch, but rather
explicitly use the embeddings E6 6 E7 6 E8. Thus, we start with 6 fun-
damental roots of E6 and consecutively adjoin 2 + 3 + 5 further roots.
However, two of these new nodes, namely α7 for E7 and α8 for E8 come
gratis, so that we only have to repeat the inductive step 8 times.

3.1. Type E6. We start with the root system of type E6 generated by
the above fundamental roots α1, . . . , α6.

• This Dynkin diagram has a single node of degree 3, represented by
the root α4. As a first step of the construction, we adjoin the maximal root
of the subsystem of type D4 spanned by α2, α3, α4, α5. Clearly, this is

γ145 = e0 + e1 + e4 + e5 = 01210
1

,

which has negative inner products both with α1 and α6.

• The previous step engenders a new node of degree 3 and the procedure
should be repeated for the resulting copy of D4 spanned by α1, α4, α6 as
terminal nodes and γ145 as the central node. Clearly, the maximal root of
this system is

2γ145 + α1 + α6 − α4,

the minus sign is explained by the fact that the inner product of γ145 and
α4 is positive. Thus the new node to be adjoined is the maximal root of
the initial root system Φ = E6,

η78 = 12321
2

,

which has negative inner products with γ145 and with α2.

All nodes in the resulting diagram have degrees 2 or 4, so that the
inductive procedure for E6 is complete.

3.2. Type E7. Now we take as input the enhanced Dynkin diagram of
type E6 constructed in the previous subsection, and adjoin the new funda-
mental root α7. This engenders two new degree 3 nodes, namely α6 is now
joined to α5, α7, and γ145, whereas η78 is now joined to α2, α7, and γ145
and we should repeat the inductive step for each of these two central nodes.

• First, consider the copy of D4 generated by α5, α7, and γ145 as ter-
minal nodes and α6 as the central node. Clearly, the maximal root of this



ENHANCED DYNKIN DIAGRAMS 21

system is

γ145 + α5 + 2α6 + α7 = γ167 = e0 + e1 + e6 + e7 = 012221
1

.

By construction, it has positive inner product with α6. But since the only
fundamental root occuring in γ145 that has nonzero inner product with α1

is α3, it follows that γ145 has negative inner product with α1.

This makes α1 a new node of degree 3. But hold on, we are not yet
finished with the nodes of degree 3 that cropped up at the previous step.

• Next, consider the copy of D4 generated by α2, α7, and γ145 as ter-
minal nodes and η78 as the central node. Clearly, the maximal root of this
system is

2η78 − α2 + α7 − γ145 = η18 = 2e0 + e2 + . . .+ e7 = 234321
2

,

which is the maximal root of the root system Φ = E7. By the very con-
struction, it has positive inner product with η78. But it also happens to
have positive inner product with α1.

All nodes in the resulting diagram have degrees 2 or 4, so that the
inductive procedure for E7 is complete.

3.3. Type E8. Again, we take as input the enhanced Dynkin diagram
of type E7 constructed in the previous subsection, and adjoin the new
fundamental root α8. Obviously, α8 is joined to all degree 2 nodes α7,
γ167, and η18. Thus, we have to perform the usual induction step for α8

itself. Moreover, all three nodes of degree 2 in the lower plane the enhanced
Dynkin diagram of type E7 become nodes of degree 3. Specifically, α7

is now joined to α6, α8, and η78; whereas γ167 is now joined to α1, α6,
and α8; and finally η17 which is now joined to α1, α8, and η78. Thus, we
should repeat the inductive step for each of these four central nodes. In
the meantime, new nodes of degree 3 could occur, but as we know from
the previously subsection, we should not be concerned, since further bonds
may arise while we are completing the inductive steps for those nodes that
have cropped up already.

• First, consider the copy of D4 generated by α7, γ167, and η18 as ter-
minal nodes and α8 as the central node. Clearly, the maximal root of this
system is

η18 + γ167 + α7 + 2α8 = ζ8 = 3e0 + e1 + . . .+ e7 + 2e8 = 2465432
3

,

which is the maximal root of the root system Φ = E8.
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D4 D4(a1)

D5 D5(a1)

D6 D6(a1)

D6(a2)

D7 D7(a1)

D7(a2)

D8 D8(a1)

D8(a2)

D8(a3)

Figure 4. Irreducible admissible diagrams of types Dl, 46 l68.

So far it is not connected to any further root apart from α8 itself, but
hold on, hold on, we are not finished yet. Eventually, it will be connected
with all three emerging nodes, and will have degree 4, as any other root.

• Next, consider the copy of D4 generated by α6, α8, and η78 as ter-
minal nodes and α7 as the central node. Clearly, the maximal root of this
system is

η78 + α6 + 2α7 + α8 = η56 = 2e0 + e1 + . . .+ e4 + e7 + e8 = 1232221
2

.
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Obviously, it has negative inner product with α5 and positive inner pro-
ducts with α2 and with ζ8.

• Further, consider the copy of D4 generated by α1, α6, and α8 as
terminal nodes and γ167 as the central node. Clearly, the maximal root of
this system is

2γ167 + α1 − α6 + α8 = η34 = 2e0 + e1 + e2 + e5 + . . .+ e8 = 1244321
2

.

Obviously, it has negative inner product with α3 and positive inner pro-
ducts with α5 and with ζ8.

• Finally, consider the copy of D4 generated by α1, α8, and η78 as
terminal nodes and η17 as the central node. Clearly, the maximal root of
this system is

2η17 − α2 − η78 + α8 = η12 = 2e0 + e3 + . . .+ e8 = 2454321
2

.

Obviously, it has negative inner product with α2 and positive inner pro-
ducts with α3 and with ζ8.

All nodes in the resulting diagram have degree 4, so that the inductive
procedure for E8 and the proof of theorem stated in the introduction are
now complete.

§4. Proof of Theorem 2

Here we do not give an a priori proof of the fact that all admissible
diagrams are in fact contained in the signed enhanced Dynkin diagrams.
Such a proof, combining the ideas of [6, 11, 8, 26] could be given, and would
provide an alternative description of conjugacy classes of the Weyl groups
W (El), l = 6, 7, 8. But it would requre a detailed combinatorial analysis
of the diagrams themselves, and we plan to return to it in a subsequent
work, see the last section.

Instead, here we provide an a posteriori observation that all Carter–
Stekolshchik diagrams are, in fact, subdiagrams of the [signed] ehnanced
Dynkin diagrams – in the style of ancient “look” or the fashionable present-
day computer “experimental” mathematics.

Such diagrams without cycles are in fact Dynkin diagrams of root sub-
systems in Φ. They are trees and, thus, the distinction between solid and
dotted lines does not play a role. That all of them are subdiagrams of the
corresponding enhanced Dynkin diagram is the main result of [8, Theo-
rem 1.1.]. Initially, it was the main mission of the enhanced Dynkin dia-
grams.
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E6 E6(a1)

E6(a2)

E7 E7(a1)

E7(a2)

E7(a3)

E7(a4)

Figure 5. Irreducible admissible diagrams of types E6 and E7.

Thus, we only have to look at the admissible diagrams with cycles. The
number of such diagrams, including the reducible ones, and those that
come from smaller ranks, are 4 for W (E6), 13 for W (E7) and, finally, 36
for W(E8). Let us list them all in the order they occur in Carter’s [6],
Tables 8–10, – of course, the first two of these lists are sublists of the next
ones, sometimes more than once.

• For type E6:

D4(a1), D5(a1), E6(a1), E6(a2).

• For type E7:

D4(a1), D4(a1) + A1, D5(a1), D5(a1) + A1, D6(a1), D6(a2),

E6(a1), E6(a2), D6(a2) + A1, E7(a1), E7(a2), E7(a3), E7(a4).
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• For type E8:

D4(a1), D4(a1) + A1, D5(a1), D4(a1) + A2, D5(a1) + A1,

D6(a1), D6(a2), E6(a1), E6(a2), D4(a1) + A3, D5(a1) + A2,

D6(a2) + A1, E6(a1) + A1, E6(a2) + A1, D7(a1), D7(a2),

E7(a1), E7(a2), E7(a3), E7(a4), 2D4(a1), D5(a1) + A3,

D8(a1), D8(a2), D8(a3), E6(a2) + A2, E7(a2) + A1, E7(a4) + A1,

E8(a1), E8(a2), E8(a3), E8(a4), E8(a5), E8(a6), E8(a7), E8(a8).

The irreducible admissible diagrams of types Dl, 4 6 l 6 8, that occur
in these lists are all listed in Fig. 4, whereas all those of types E6 and E7

are reproduced in Fig. 5, and those of type E8 – in Fig. 6.
We leave it to the reader as an exercise to find all admissible diagrams

of the corresponding types in Figs. 1–3. That’s exactly an observation with
which the present work started. After you succeed in doing that for E6(a1),
the rest becomes obvious.

§5. Final remarks

Let us make some further scattered observations concerning the symmet-
ry of the above diagrams, their further uses, and some of our immediate
plans.

• The enhanced Dynkin diagrams of types E6 and E8 are extremely

symmetric. Both are bipartite graphs consisting of two maximal subsets of
pairwise orthogonal roots = mosets, in the terminology of [8]. Like 4A1⊔
4A1 in the case of E6 and 8A1 ⊔ 8A1 in the case of E8.

At the same time, the enhanced Dynkin diagrams of types E7 looks
weird. It is again a bipartite graph, but now of the form 7A1 ⊔ 4A1,
where 7A1 is, as above, a moset of E7, but 4A1 is clearly a moset of E6.
Worse than that, the roots of 7A1 loose their symmetry with respect to a
specific copy of 4A1. Namely, whereas 6 of the roots forming 7A1 are nodes
of degree 2 in the exhanced Dynkin diagram, one of them has degree 4.
However, modulo sign changes the normaliser of 7A1 in W (E7) acts as
SL(3, 2) and thus is transitive on the seven copies of A1. This means that
the symmetry breaking depends on a specific choice of 4A1.

The first-named author has already encountered such similar pheno-
menon on several instances. It seems that E7 invariably exhibits much
less symmetry than do E6 and E8, see, in particular, [28, 29]. Actually,
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E8 E8(a1)

E8(a2)

E8(a3)

E8(a4)

E8(a5)

E8(a6)

E8(a7)

E8(a8)

Figure 6. Irreducible admissible diagrams of type E8.

in 1935 Daniil Kharms already commented this situation2: “We went to
the Summer Garden and started to count trees there. But when the count
reached 6, we stopped and began to dispute: some speculated that 7 would
follow, and some that 8.”

Similarly, of the cases E6 and E8 the case of E8 seems to be much
more symmetric. The case of E6 exhibits obvious triality, in each moset
occuring in the enhanced Dynkin diagram one node has degree 4, whereas
the other 3 have degree 2.

For E8, there are no preferred nodes, all of them have degree 4. Visuali-
sing the enhanced Dynkin diagram of type E8 as a 4-cube, as we do, the two

2Translated from Russian by Sergei Kisliakov.
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copies of 8A1 become the vertices of the positive and negative demicubes,
respectively.

• Dynkin and Minchenko visualise the enhanced Dynkin diagrams of
types E7 and E8 differently. In their realisation the diagram for E7 consists
of 4 vertices of a tetrahedron + 6 midpoint of its edges + the center joined
to the vertices, but not to the midpoints. Observe that the midpoints come
as 3 pairs, corresponding to the pairs of opposite edges of the tetrahedron.
If you wish, you can visualise the copies of A1 in 7A1 as the points of
the Fano plane, with the central node = central point, and other points
coming in pairs collinear with the central point.

Their diagram for E6 is the 4 × 4 net on a 2-dimensional torus. The
exceptional behaviour of this net, in particular, that it is much more sym-
metric than the nets of different sizes, was simultaneously observed by
other authors, notably by Vladimir Kornyak [13]. Of course, again this is
related to the exceptional behavious of D4 and the additional symmetries
that come from W (F4).

Observe that the same graphs also occur in a completely different con-
text, as graphs with certain extremal properties for their eigenvalues, see
[17, 18]. Probably, there is much more to it, than what we see today.

• Concerning the terminology itself, we do not think enhanced Dynkin
diagram a good name for this object, and it does not naturally translate to
Russian. Even less so for the signed enhanced diagram. Boris Kuniavsky
suggested the name enriched Dynkin diagrams, which already sounds
much better. However, a posteriori, the best solution would be to complete-
ly renounce the use of the term extended Dynkin diagrams in the sense of
affine Dynkin diagrams [4] and reserve the term extended Dynkin

diagrams to some form of Figs. 1–3.

• The relation of these pictures to the arithmetic of quaternions and
octonions seems to be preeminent at all levels. In particular, there are
manifest connections to the construction of forms of simple Lie algebras
and simple algebraic groups of types E7 and E8 in terms of 7A1 and 8A1

in the works of Laurent Manivel [16] and Victor Petrov [21].
We are positive that there are scores of similar covert beauties around,

waiting their time to be discovered and explained. The very special role of
D4 comes over and over again in a vast variety of situations. Thus, with
respect to a given base the study of semisimple root elements, triples of
unipotent root elements, and many other important structural elements of
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simple Lie algebras and simple algebraic groups are all reduced to the case
of D4. See [31] for one such instance, and many further related references.

• In a subsequent publication, we plan to return to the specific combina-
torial study of these pictures. In particular, we plan to explicitly enumerate
subsets of roots in Φ = E6,E7,E8 having the symmetry of an enhanced
Dynkin diagram. Also, we intend to clarify the connection with the classifi-
cation of conjugacy classes of the corresponding Weyl group W (Φ), and
give an a priori explanation thereof.

We thank Boris Kunyavski, Anastasia Stavrova, and Nikolai Vasiliev for
their extremely pertinent questions and remarks during our talks.
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