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ROBUST WORD VECTORS: CONTEXT-INFORMED
EMBEDDINGS FOR NOISY TEXTS

ABsTrRACT. We suggest a new language-independent architecture
of robust word vectors (RoVe). It is designed to alleviate the issue
of typos and misspellings, common in almost any user-generated
content, which hinder automatic text processing. Our model is mor-
phologically motivated, which allows it to deal with unseen word
forms in morphologically rich languages. We present the results on
a number of natural language processing (NLP) tasks and languages
for a variety of related architectures and show that the proposed ar-
chitecture is robust to typos.

§1. INTRODUCTION

Rapid growth in the usage of mobile electronic devices has increased
the number of user input text issues such as typos. This happens because
typing on a small screen and in transit (while walking, on public transport
ete.) is difficult, and people accidentally hit incorrect keys more often than
on a standard desktop keyboard. Spell-checking systems widely used in
web services can handle this issue, but they can also make mistakes.

Meanwhile, any text processing system is now impossible to imagine
without word embeddings, vectors that encode semantic and syntactic
properties of individual words [2]. However, to use these word vectors the
user input should be clean, i.e., free of misspellings and typos, because a
word vector model trained on clean data will not contain misspelled ver-
sions of words. There are examples of models trained on noisy data [17], but
this approach does not fully solve the problem: typos are unpredictable,
and a corpus cannot contain all possible incorrectly spelled versions of a
word and, naturally, it is impossible to obtain a sufficiently large corpus to
gather sufficient statistics for all possible typos. Instead, we suggest that
one should make algorithms for word vector modeling robust to noise.

Key words and phrases: word vectors, distributed representations, natural language
processing.
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We suggest a new architecture RoVe (Robust Vectors)'. The main fea-
ture of this model is its open vocabulary. It encodes words as sequences
of characters, which enables the model to produce embeddings for out-of-
vocabulary (OOV) words. The idea as such is not new, and many other
models either use character-level embeddings [18] or encode the most com-
mon n-grams to assemble unknown words from them [4]. However, unlike
similar models, RoVe is specifically targeted at typos: it is invariant to
swapping characters in a word. This property is ensured by the fact that
each word is encoded as a bag of characters. At the same time, word pre-
fixes and suffixes are encoded separately, which enables RoVe to produce
meaningful embeddings for unseen word forms in morphologically rich lan-
guages. Notably, this is done without explicit morphological analysis.

Another feature of RoVe is context dependency; in order to generate an
embedding for a word one should also take into account its context. The
motivation for such architecture is as follows. Our intuition is that when
processing an OOV word our model should produce an embedding similar
to that of some similar word from the training data. This behaviour is
suitable for typos as well as unseen forms of known words. In the latter
case, we would like a word to get an embedding similar to the embedding
of its initial form. This process reminds lemmatization (reducing a word to
its initial form). Lemmatization is context-dependent since it often needs
to resolve homonymy based on word’s context. By making the RoVe model
context-dependent we enable it to perform such implicit lemmatization.

We compare RoVe with common word embedding tools: word2vec [21]
and fasttext [4]. We test the models on three tasks: paraphrase detection,
identification of textual entailment, and sentiment analysis, and three lan-
guages with different linguistic properties: English, Russian, and Turkish.

The paper is organised as follows. In Section 2 we review previous work
on the subject. Section 3 contains the description of the model’s architec-
ture. In Section 4 we describe the experimental setup, and report evalua-
tion results in Section 5. Section 6 concludes the paper and outlines future
work.

§2. RELATED WORK

Out-of-vocabulary (OOV) words are a major problem for word em-
bedding models. The commonly used word2vec model does not have any

1WWe have made an open-source implementation available here: https://gitlab.com/
madrugado/robust-w2v.
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means of dealing with them. OOV words can be rare terms, unseen forms
of known words, or simply typos, and different types of OOV words may
require different approaches. The majority of research has concentrated on
unknown terms and generation of word forms, and very few works targeted
typos.

The work [18] presents an open-vocabulary word embedding model,
where word vectors are computed with an RNN over character embed-
dings. The authors claim that their model implicitly learns morphology,
which makes it suitable for morphologically rich languages. However, it
is not robust against typos. Another approach is to train a model that
approximates original embeddings and encodes unseen words to the same
vector space. The work [24] approximates pretrained word embeddings
with a character-level model. In [3], pre-trained embeddings are projected
to a lower-dimensional space, which allows the authors to train meaningful
embeddings for new words from scarce data. However, initial word embed-
dings needed for these approaches cannot be trained on noisy data.

To tackle noisy training data, the work [22] trains a neural network that
filters word embeddings. To do that, the authors take a pretrained word
embedding model and learn a matrix transformation in order to denoise
it. The transformation makes word embeddings more robust to statistical
artifacts in training data. Unfortunately, this does not solve the problem
of typos in test data since the model still has a closed vocabulary.

There are examples of embeddings targeted at unseen word forms.
In [35], sub-word embeddings are trained with the purpose of combin-
ing them into a word embedding via a recurrent (RNN) or convolutional
(CNN) neural network. The atomic units here are characters or mor-
phemes. Morphemes give better results in machine translation, in partic-
ular for morphologically rich languages. This method yields high-quality
embeddings but requires to train a separate model for morphological anal-
ysis.

Some other models are targeted at encoding rare words. The fasttext
model [4] produces embeddings for the most common n-grams of variable
length, and an unknown word can be encoded as a combination of its n-
grams. This is beneficial for encoding of compound words which are very
common in German and occasionally occur in English and other languages.
However, such a model is still not well suited for handling typos.
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Unseen words are usually represented with subword units (morphemes
or characters). This idea has been extensively used in research on word vec-
tor models. It not only gives a possibility to encode OOV words but has also
been shown to improve the quality of embeddings. The work [38] was the
first to show that character-level embeddings trained with a CNN can store
the information about semantic and grammatical features of words. They
tested these embeddings on multiple downstream tasks. In [29] character-
level CNNs are used for intrusion detection, and the work [36] builds a
language-independent sentiment analysis model using character-level em-
beddings, which would be impossible with word-level representations.

Unlike these works, we do not train character embeddings or models
for combining them; these are defined deterministically. This spares us
the problem of too long character-level sequences which are difficult to
encode with RNNs or CNNs. We bring the meaning to these embeddings
by making them context-dependent.

It was recently suggested that word context matters not only in general
(i.e., word contexts define its meaning), but also in each individual case of
word usage. This has resulted in the emergence of word vector models that
produce word embeddings with respect to a word’s local context. There is
evidence that contextualising pre-trained embeddings improves them [13]
and raises quality of downstream tasks, e.g., machine translation [20] or
question answering [23].

§3. MODEL ARCHITECTURE

RoVe combines context dependency and open vocabulary, which allows
to generate meaningful embeddings for OOV words. These two features
are supported by the two parts of the model (see Fig. 1).

3.1. Encoding the context. The RoVe model produces context-depen-
dent word representations. It means that it does not generate a fixed vector
for a word and needs to produce it from scratch for every occurrence of
the word. This structure marginally increases text processing time but
yields more accurate, context-informed word representations. The model
is conceptually similar to an encoder used to create the representation
of a sentence by reading all its words. Such encoders have been used for
machine translation [20], question answering [32], and many other tasks.
In order to generate a representation of a word, we need to encode it
together with its context. For every context word, we first produce its input
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Figure 1. RoVe model: generating an embedding for the
word argument.

embedding (described in Section 3.2). This embedding is then passed to
the encoder (top part of Fig. 1) which processes all words from the context.
The encoder should be a neural network that can process a string of words
and keep the information on their contexts. The most obvious choices
are an RNN or a CNN. However, a different type of network could also
be used. Having processed the whole context, we obtain an embedding
for the target word by passing a hidden state corresponding to the word
in question through a fully-connected layer. Therefore, we can generate
embeddings for all words in a context simultaneously.

3.2. Handling of misspelled words. Another important part of the
model is the transformation of an input word into a fixed-size vector (input
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Figure 2. Generation of input embedding for the word
previous. Left: generation of character-level one-hot vec-
tors, right: generation of BME representation.

embedding). This transformation is shown in the bottom part of Figure 1.
This is a deterministic procedure, uniquely defined for a given word; it
does not need training. It is executed as follows.

First, we represent every character of a word as a one-hot vector (alpha-
bet-sized vector of zeros with a single 1 in position ¢ where i is the index
of the character). Then, we generate three vectors: beginning (B), middle
(M), and end (E) vectors. The M vector is the sum of one-hot vectors of all
characters of a word. The B vector is a concatenation of one-hot vectors for
ny first characters in the word. Likewise, the E vector is a concatenation of
one-hot vectors of n, last characters in the word. The values of n; and n.
are hyperparameters that can vary for different languages and datasets.
We form the input embedding by concatenating B, M, and E vectors.
Therefore, its length is (ny + ne. + 1) x |A|, where A is the alphabet of a
language. This input embedding is further processed by the neural network
described above. The generation of the input vector is shown in Fig. 2.

We further refer to this three-part representation as BME. It was in-
spired by the work [28] where the first and the last characters of a word
are encoded separately as they carry more meaning than other characters.
However, the motivation for our BME representation stems from dividing
the words into morphemes. We encode ny first characters and n. last char-
acters of a word in a fixed order (as opposed to the rest of the word which
is saved as a bag of letters) because we assume that it can be an affix
that carries a particular meaning (e.g., the English prefix un carries the
meaning of reversed action or absence) or grammatical information (e.g.,
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the English suffix ed indicates the past participle of a verb). Thus, keeping
it can make the resulting embedding more informative.

The M part of the input embedding discards the order of letters in a
word. This feature guarantees the robustness of embeddings against swaps
of letters within a word, which is one of the most common typos. Com-
pare information and infromation that will have identical embeddings in
our model, whereas word2vec and many other models will not be able to
provide any representation for the latter word.

In addition to that, BME representation is not bounded by any vocab-
ulary and is able to provide an embedding for any word, including words
with typos. Moreover, if a misspelled word is reasonably close to its original
version, its embedding will also be close to that of the original word. This
feature is ensured by character-level generation of input embedding: close
input representations will yield close vectors. Therefore, even a misspelled
word is likely to be interpreted correctly.

The use of our model alleviates the need for spelling correction, because
a word does not need to be spelled correctly to be successfully interpreted.
Unlike other models that support typos, RoVe can handle noise in both
training and inference data.

3.3. Training. The RoVe model is trained with the negative sampling
procedure suggested by [33]. We use it as described in [21]. This method
serves to train vector representations of words. The fundamental property
of word vectors is the small distance between vectors of words with close
meanings and/or grammatical features. In order to enforce this similarity,
it was suggested that training objective should be twofold: in addition to
pushing vectors of similar words close to each other we should increase the
distance between vectors of unrelated words. This objective corresponds to
a two-piece loss function shown below in equation 1. Here, w is the target
word, v; are positive examples from the context (C'), and v; are negative
examples (Neg) randomly sampled from the data. The function s(-,-) is a
similarity score for two vectors that should be increasing as the vectors get
closer to each other. For our experiments we used cosine similarity because
it is computationally simple and does not contain any parameters.

The first part of the loss rewards close vectors of similar words, and
the second part penalises close vectors of unrelated words. Words from a
window around a particular word are considered to be similar to it since
they have a common context. Unrelated words (negative examples) are
sampled randomly from data, hence the name of the procedure.
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Formally, our model is trained using the following objective:

I — Z es(w,vi)_i_ Z e—s(w,vj) (1)

v, €C vjENeg

Converting the words into input embeddings is a deterministic procedure,
so during training we only update parameters of the neural network that
generates context-dependent embeddings and fully-connected layers that
precede and follow it.

§4. EXPERIMENTAL SETUP

We test the performance of word vectors generated with Ro Ve on three
tasks:
e paraphrase detection,
e sentiment analysis,
e identification of text entailment.

For all tasks, we train simple baseline models. This is done deliberately
to make sure that the performance is largely defined by the quality of
vectors that we use. For all the tasks we compare word vectors generated
by different modifications of RoVe with vectors produced by word2vec and
fasttert models.

We conduct experiments on datasets for three languages: English (ana-
lytical language), Russian (synthetic fusional), and Turkish (synthetic ag-
glutinative). Affixes have different structures and purposes in these types
of languages, and in our experiments we show that our BME representation
is effective for all of them. We did not tune n;, and n. parameters (lengths
of B and E segments of BME). In all our experiments we set them to 3,
following the fact that the average length of affixes in Russian is 2.54 [25].
However, they are not guaranteed to be optimal for English and Turkish.

4.1. Baseline systems. We compare the performance of RoVe vectors
with vectors generated by two most commonly used models: word2vec and
fasttext. We use the following word2vec models:

e English — pretrained Google News word vectors?,

e Russian — pretrained word vectors RusVectores [14],

e Turkish — we trained a model on the “42 bin haber” corpus [37].

thtps ://drive.google.com/file/d/0B7XkCwupI5KDYNINUTT1SS21pQmM/edit?usp=
sharing
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We stem Turkish texts with SnowBall stemmer [8] and lemmatize Rus-
sian texts with the Mystem tool® [31]. This is done in order to reduce the
sparsity of the text and interpret rare word forms. In English this problem
is not as severe because it has a less developed morphology. In addition to
that, Google News vectors were trained on much larger corpus which has
occurrences of most of forms for common words.

As fasttext baselines we use official pretrained fasttext models.* We also
tried an extended version of the fasttext baseline for Russian and English:
fasttext augmented with a spell checker. For downstream tasks we checked
the texts with a publicly available spell checker® before extracting word
vectors. Since spell-checking is a very common way to reduce the effect of
typos, we wanted to compare its performance with Ro Ve.

4.2. Infusion of noise. In order to demonstrate the robustness of Ro Ve
against typos we artificially introduced noise into our datasets. We model:
e random insertion of a letter,
e random deletion of a letter.

For each input word we randomly insert or delete a letter with a given
probability. Both types of noise are introduced at the same time. We test
models with different levels of noise from 0% (no noise) to 30%. According
to [5], the real level of noise in user-generated texts is 10-15%. We add
noise only to the data for downstream tasks, RoVe and word2vec models
are trained on clean data.

4.3. Encoder parameters. The model as described in Section 3 is highly
configurable, with many parameters and architectural tweaks subject to
change. The main decision to be made when experimenting with the model
is the architecture of the encoder. We experiment with RNNs and CNNs,
conducting our experiments with the following RNN architectures:

e Long Short-Term Memory (LSTM) unit [11] — a unit that
mitigates problem of vanishing and exploding gradients that is
common when processing of long sequences with RNNs. We use
two RNN layers with LSTM cells;

3https ://tech.yandex.ru/mystem/

“English: https://fasttext.cc/docs/en/english-vectors.html, Russian and
Turkish: https://fasttext.cc/docs/en/crawl-vectors.html

Snttps://tech.yandex.ru/speller/
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e bidirectional LSTM [30] — two RNNs with LSTM units where
one RNN reads a sequence from beginning to end and another one
backward;

e stacked LSTM [10] — an RNN with multiple layers of LSTM cells;
this allows to combine the forward and backward layer outputs and
use them as input to the next layer; here, we have experimented
with two bidirectional RNN layers with stacked LSTM cells;

e Simple Recurrent Unit (SRU) [15] — LSTM-like architecture
which is faster due to parallelization;

e bidirectional SRU - bidirectional RNN with SRU cells.

We have also tried the following convolutional architectures:

e CNN-1d - one-dimensional convolutional neural network as in [12];
this model used 3 convolution layers with kernel sizes 3, 5, and 3
respectively;

e ConvLSTM - a combination of CNN and a recurrent network;
we first applied the CNN-1d model and then produced vectors as
in the biSRU model from a lookup table.

The sizes of hidden layers for RNNs as well as the sizes of fully-connected
layers of the model are set to 256 in all experiments.

4.4. RoVe models. We trained our RoVe models on the following data-
sets:

e English — Reuters dataset [16],

e Russian — Russian National Corpus [1],

e Turkish — 42 bin haber corpus.

All RoVe models are trained on original corpora without adding noise
or any other preprocessing. The RoVe model for Turkish is trained on the
same corpora as the one we used to train the word2vec baseline, which
makes them directly comparable. For English and Russian we compare
RoVe models with third-party word2vec models trained on larger datasets.
We also tried training our word2vec models on training data used for Ro Ve
training. However, these models were of lower quality than pretrained
word2vec, so we do not report results for them.

§5. RESULTS

5.1. Paraphrase detection. The task of paraphrase detection is formu-
lated as follows: given a pair of phrases, we need to predict if they have the
same meaning. We compute cosine similarity between vectors for phrases.
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English Russian Turkish
noise (%) 0 10 20 0 10 20 0 10 20
BASELINES
word2vec 0.715 0.573 0.564 {0.800 0.546 0.535 |0.647 0.586 0.534
fasttext 0.720 0.594 0.587 {0.813 0.645 0.574 |0.632 0.595 0.514
fasttext+spellcheck |0.720 0.598 0.585 [0.813 0.693 0.453 |— - -
RoVe
stackedLSTM 0.672 0.637 0.606 {0.723 0.703 0.674|0.601 0.584 0.536
SRU 0.707 0.681 0.641 {0.823 0.716 0.601 |0.647 0.602 0.568
biSRU 0.715 0.687 0.644(0.841 0.741 0.641 |0.718 0.641 0.587

Table 1. Results of the paraphrase detection task in terms
of ROC AUC.

High similarity is interpreted as a paraphrase. Phrase vectors are com-
puted as the average of vectors of words in a phrase. For word2vec we
discard OOV words since the model cannot generate embedding for them.
We measure the performance of models on this task with the ROC AUC
metric [9] which defines the proportions of true positive answers in the
system’s outputs with a varying threshold.

We run experiments on three datasets:

e English — Microsoft Research Paraphrase Corpus |7] that consists
of 5,800 sentence pairs extracted from news sources on the web and
manually labelled for presence/absence of semantic equivalence;

e Russian — Russian Paraphrase Corpus [26] that consists of news
headings from different news agencies; it contains about 6,000 pairs
of phrases labelled in terms of a ternary scale: “-1” — not para-
phrase, “0” — weak paraphrase, and “1” — strong paraphrase; we
used only “-1” and “1” classes for consistency with other datasets;
there are 4,470 such pairs;

e Turkish — Turkish Paraphrase Corpus [6] that contains 846 pairs
of sentences from news texts manually labelled for semantic equiv-
alence.

The results of this set of experiments are presented in Table 1. Due
to limited space we do not report results for all noise levels and list only
figures for 0%, 10% and 20% noise. We also omit the results from most
RoVe variants that never beat the baselines.

As we can see, none of the systems are completely robust to typos: their
quality falls as we add noise. However, this decrease is much sharper for
baseline models, which means that Ro Ve is less sensitive to typos. Figure 3
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Figure 3. Comparison of RoVe with word2vec and fast-
text on texts with a growing amount of noise (paraphrase
detection task for English).

English Russian
noise (%) 0 10 20 0 10 20
BASELINES
word2vec 0.649 0.611 0.554 | 0.649 0.576 0.524
fasttext 0.662 0.615 0.524 | 0.703 0.625 0.524
fasttext + spellcheck | 0.645 0.573 0.521 | 0.703 0.699 0.541
RoVe
stackedLSTM 0.621  0.593 0.586 | 0.690 0.632 0.584
SRU 0.627  0.590 0.568 | 0.712 0.680 0.598
biSRU 0.656 0.621 0.598 | 0.721 0.699 0.621

Table 2. Results of the sentiment analysis task in terms

of ROC AUC.

shows that while all models show the same result on clean data, Ro Ve out-
performs the baselines as the level of noise goes up. Of all Ro Ve variations,
bidirectional SRU gives the best result, marginally outperforming SRU.
Interestingly, the use of a spellchecker does not guarantee improvement:
the fasttext+spellcheck model does not always outperform vanilla fasttext,
and its score is unstable. This might be explained by the fact that the
spellchecker makes mistakes itself; for example, it can occasionally change
a correct word into a wrong one.
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5.2. Sentiment analysis. The task of sentiment analysis consists in de-
termining the emotion of a text (positive or negative). For this task we use
word vectors from different models as features for a naive Bayes classifier
(again, a very simple model used to compare the embeddings as directly
as possible). The evaluation is performed with the ROC AUC metric. We
experiment with two datasets:

e English — Stanford Sentiment Treebank [34]; in this corpus the
objects are labelled with three classes—positive, negative, and neu-
tral-abd we use only the former two;

e Russian — Russian Twitter Sentiment Corpus [19]; it consists of
114,911 positive and 111,923 negative records. Since tweets are
noisy, we do not add noise to this dataset and use it as is.

Results for this task (see Table 2) confirm the results reported in the pre-
vious section: the biSRU model outperforms others, and the performance
of word2vec is markedly affected by noise. On the other hand, RoVe is
more resistant to it.

5.3. Identification of text entailment. This task is devoted to the
identification of logical entailment or contradiction between the two sen-
tences. We experiment with the Stanford Natural Language Inference cor-
pus [27] labelled with three classes: contradiction, entailment, and no re-
lation. We do not use no relation in order to reduce the task to binary
classification. The setup is similar to the one for paraphrase detection task:
we define the presence of entailment by cosine similarity between phrase
vectors, which are represented as averaged vectors of words in a phrase.
Pairs of phrases with high similarity score are assigned entailment class
and the ones with low score are assigned contradiction class. The quality
metric is ROC AUC.

The results for this task are shown in Table 3. They fully agree with
those obtained on the other tasks: RoVe with biSRU cells outperforms the
baselines and the gap between them gets larger as more noise is added.
Note also that here a spellchecker deteriorates the performance of fasttext.

5.4. Types of noise. All the results reported above were tested on data-
sets with two types of noise (insertion and deletion of letters) applied
simultaneously. Our model is by definition invariant to letter swaps, so we
did not include this type of noise in the experiments. However, a swap does
not change an embedding of a word only when this swap happens outside
the B and E segments of a word, otherwise the embedding changes as B
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English
noise (%) 0 10 20
BASELINES
word2vec 0.624 0.593 0.574
fasttext 0.642 0.563 0.517
fasttext + spellcheck | 0.642  0.498  0.481
RoVe
stackedLSTM 0.617 0.590 0.516
SRU 0.627  0.590  0.568
biSRU 0.651 0.621 0.598

Table 3. Results of the task on identification of textual entailment.

and E keep the order of letters. Therefore, we compare the effect of random
letter swaps.

We compare four types of noise:

e only insertion of letters,

e only deletion,

e insertion and deletion (original setup),
e only letter swaps.

Similar to the noise infusion procedure for insertion and deletion, we
swap two adjacent characters in a word with probabilities from 0% to
30%.

It turned out that the effect of swap is both language- and dataset-
dependent. It deteriorates the evaluation metrics stronger for texts with
shorter words, because there swaps often occur in the B and E segments
of words. In our experiments on paraphrase and textual entailment tasks
all four types of noise produced the same effect on English datasets, where
the average length of words is 4 to 4.7 characters. On the other hand,
Russian and Turkish datasets (with average word length of 5.7 characters)
are more resistant to letter swaps than to other noise types.

However, this holds only for tasks where the result was computed as
cosine similarity between vectors, i.e., where vectors fully define the per-
formance. In the sentiment analysis task, where we trained a naive Bayes
classifier, all types of noise had the same effect on the final quality for both
English and Russian.
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Figure 4. RoVe model with and without BME represen-
tation (paraphrase detection task for English).

5.5. OOV handling vs context encoding. Our model has two orthog-
onal features: handling of OOV words and context dependency of embed-
dings. To see how much each of them contributes to the final quality we
tested them separately.

Only context dependency. We discard the BME representation of a word
and consider it as a bag of letters (i.e., we encode it only with the M seg-
ment). Thus, the model still has open vocabulary, but is less expressive.
Figure 4 shows the performance of models with and without BME encoding
on the paraphrase detection task for English. We see that the BME repre-
sentation does not make the model more robust to typos: for both settings
the scores deteriorate to a similar extent as more noise is added. However,
BME increases the quality of vectors for any level of noise. Therefore, pre-
fixes and suffixes contain much information that should not be discarded.
Results for other languages and tasks show the same trend.

Only BME encoding. In this setup we discard the context dependency of
word vectors. We replace the encoder with a projection layer that converts
the BME representation of a word into a 300-dimensional vector.

Figure 5 shows the performance of this model on the paraphrase task
for English. The quality is close to random (a random classifier has ROC
AUC of 0.5). Moreover, it is not consistent with the amount of noise: unlike
our previous results, the quality does not decrease monotonically as noise
increases. This is obvious since the encoder is the only trainable part of
the model, thus it is the part most responsible for the quality of word
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Figure 5. RoVe without context information (paraphrase
detection task for English).

vectors. In addition, we should mention that we have tested our model on
an additional noise type for this task, the permutation. This noise type
has not been used in other experiments since robustness to this noise type
has already been established in [28].

§6. CONCLUSIONS AND FUTURE WORK

In this work, we have presented RoVe, a novel model for training word
embeddings which is robust to typos. Unlike other approaches, this method
does not have any explicit vocabulary. Embedding of a word is formed of
embeddings of its characters, so RoVe can generate an embedding for any
string of characters. This alleviates the influence of misspellings, as words
with omitted or extra characters have an embedding close to the one of
their correct versions.

We tested RoVe with different encoders and discovered that the SRU
(Simple Recurrent Unit) cell is better suited for it. Bidirectional SRU per-
formed best on all tasks. Our experiments have shown that our model is
more robust to typos than word2vec and fasttert models commonly used
to train word embeddings. Their quality falls dramatically as we add even
a small amount of noise.

We have an intuition that RoVe can produce meaningful embeddings
for unseen terms and unseen word forms in morphologically rich languages.
However, we have not yet tested this intuition, and in our future work we
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will look into possibilities of using Ro Ve for such tasks. This will require
the tuning of lengths of prefixes and suffixes. We also plan to test language-
dependent and data-driven tuning in future work. Another direction would
be to train a RoVe model jointly with a downstream task, e.g., machine
translation.
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