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Abstract. Text classification is a fundamental task in natural lan-
guage processing, and a huge body of research has been devoted to
it. However, there has been little work on investigating noi se robust-
ness for the developed approaches. In this work, we are bridging this
gap, introducing results on noise robustness testing of modern text
classification architectures for Engl ish and Russian languages. We
benchmark the CharCNN and SentenceCNN models and introduce
a new model, called RoVe, that we show to be the most robust to
noise.

§1. Introduction

Numerous text classification applications, including sentiment analysis
and intent recognition, are related to user-generated data, where correct
spelling or grammatical sentences are far from guaranteed. Real world
data contains naturally arising noise, i.e., typos and mistakes in the lan-
guage. According to Cucerzan and Brill [5], the probability of a typo in a
user-generated input is about 10%. However, spelling errors and typos are
simply ignored in most works on text classification. In this work, we study
the noise robustness of existing text classification models, experimenting
with different noise models, both natural and artificial. As artificial noise
we consider insertion and deletion of characters in a word.

Under the vast variety of spelling errors, classical text vectorization
approaches such as a bag of words with one-hot or TF-IDF encoding en-
counters out-of-vocabulary problems. Although there exist successful ap-
plications to low-noise tasks on common datasets [6, 7], not all models
work well with real-world data such as user comments or tweets. We have
conducted experiments with two architectures developed in Yoon Kim’s
group: a character-based CNN and a word-based combitation of CNN and
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RNN. We also consider two modifications of the latter architecture: one
modification replaces word embeddings in this architecture with FastText

word vectors, and another one does this with RoVe word embeddings.
This work is organized as follows. In Section 2 we describe previous

works on this topic and basic units that we use in our models. In Section 3,
we introduce the models in question. Sections 4 and 5 are devoted to
presenting the experimental setup and obtained results with discussion
and interpretation, and Section 6 concludes the work.

§2. Related Work

In recent years, a number of approaches have been proposed in order
to mitigate the noisy texts issue. These approaches are mostly based on
neural networks. Most research on word embeddings is devoted to fixed
letter representations for a word, but there is a line of work on character-
based representations that would allow a model to be robust to typos. The
FastText model presented by Mikolov et al. [1] generates word embeddings
for unknown words on the fly, based on embeddings of constituent symbol
n-grams. Another approach are Robust Vectors presented by Malykh et
al. [2], where word embeddings are generated based on the bag-of-letters
representation. There also exist character-level models such as the one pre-
sented by Yoon Kim et al. [3], where the embedding of a word is based on
the embeddings of its constituent characters. In the work [15], the authors
investigate medical concept normalization, which is in fact a classification
problem for a large number of possible classes. They use character-level
attention convolutional networks, and their models (precisely four inde-
pendent and related models) are closely related to the one used in this
work.

In [16], a model robust to word dropping was introduced for the senti-
ment analysis problem. The authors used a convolutional neural network
(CNN) with additional regularization in order to achieve robustness. All
words unknown to the model were represented as a single token.

To broaden the perspective, we should also mention non-neural network
approaches such as, e.g., [14], where the authors used topic modeling in
order to improve sentiment classification. But generally speaking, so far
there has been little research on noisy texts classification that would em-
phasize noise robustness. In this work, we are aiming to bridge this gap
and motivate additional research in this area.
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But there were a little research body on noisy texts classification with
emphasis for the noise robustness. By this work we are aiming to bridge
the gap and seed additional research in this area.

2.1. Gated Recurrent Unit. The Gated Recurrent Unit (GRU) is a
common RNN architecture that preserves a hidden state between timesteps
and mitigates the vanishing gradients problem by preserving the constant
error carousel. It was introduced in [11].

Formally, the GRU is defined as Equations 1.

ut = σ(Wxuxt +Whuht−1 + bu),

rt = σ(Wxrxt +Whrht−1 + br),

h
′

t = tanh(Wxh′xt +Whh′(rt ⊙ ht−1)),

ht = (1− ut)⊙ h
′

t + ut ⊙ ht−1.

(1)

where xt denotes the input vector at time t; ht, the hidden state vector at
time t; Wx· (with different second subscripts), matrices of weights applied
to the input; Wh·, matrices of weights in recurrent connections; b, the bias
vectors.

2.2. Attention in recurrent neural networks. The RNNs have com-
monly known flaw, they rapidly forget earlier timesteps, e.g. see [13]. To
mitigate this issue an attention mechanism was introduced. The already
classic approach is described in paper [12].
A soft alignment model produces weights αti that control how much each
input word influences the resulting output vector. The score α indicates
whether the network should be focusing on this specific word right now.
υ is the text vector that summarizes all the information of words. Soft
attention drastically improves translation and classification for longer sen-
tences and is now the standard approach. More formally it is described in
Equations 2.

υt = tanh (Wωht + bω),

αt =
exp (υT

t ui)
T∑

j=1

exp (υT
j ui)

,

υ =

T∑

t=1

αtht,

(2)
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where Wω and bω are parameters of hidden states linear transformation;
and ui is some external vector, in case of GRU it could be hidden state hi

at the end of a sequence. ui could be considered as a vector of context,
meaning that vectors which are closer to context one should have more
weight.

2.3. Character-level Convolutional Networks. Convolutional neu-
ral networks have proven to be a useful tool for text classification [10].
They can be constructed on the basis of individual characters and hence
represent any character sequence, thus alleviating the out-of-vocabulary
problem.

The convolution itself is usually defined as the Hadamard multiplica-
tion of some matrix k with a patch from the input A, a matrix of the
corresponding size, followed by summing the resulting matrix into a single
value; formally,

bij =
∑∑

k ⊙A[i−sh,i+sh]:[j−sv :j+sv ],

where bij is the resulting value, k is the weight matrix with size (2·sv+1)×
(2 ·sh+1), which is called the kernel, sv and sh are vertical and horizontal
kernel sizes respectively; A is an original matrix which the convolutional
kernel slides over.

Convolutional networks working with texts are somewhat different from
working with pictures. They are often thought of as 1D convolutions, al-
though formally every basic token (usually a word or a character) has a
vector embedding, so the input is a two-dimensional matrix. But the dif-
ference is that it does not make sense to break the embedding of a word
into pieces, so convolutions in natural language processing receive as input
an sh × d window where d is the dimension of the embedding, and only sh
can vary [9].

§3. Models

In our experiments, we have compared the performance of the following
models.

3.1. CharCNN. In this model, the text is represented as a sequence of
one-hot symbols. The model consists of a character embedding layer and
a convolutional layer with 256 filters, kernel size 15, and stride 2, followed
by max-pooling with kernel size 64 and stride 32. After pooling, we apply
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dropout and project the 256-dimensional hidden vector to 2 dimensions by
a fully-connected layer. The architecture is presented on Figure 1.

Figure 1. CharCNN.

3.2. FastText. In this model, the text is represented as a sequence if 300-
dimensional vectors built using a pre-trained FastText model. Then this
sequence is fed as input into a GRU layer with hidden state dimension 256.
Next, dropout is applied to the last hidden state, and the resulting vector
is projected into a 2-dimensional space.

3.3. CharCNN-WordRNN. This is a novel model architecture that we
present in this work; it is similar to [3] but omits the highway layer present
there. In the model, each word is represented as a sequence of one-hot
symbols, and the text is represented as a sequence of word representations.
Words are embedded via a convolutional layer with kernel size 5 and max-
over-time pooling. The embeddings enter a GRU layer with hidden state
dimension 128, and then the dropout and projection layers are applied as
described in the previous section.

3.4. RoVe. Analogously to section 3.2, the text represented as a sequence
300-dimensional vectors but built using pre-trained RoVe model. It was
introduced in work of Malykh [18]. We input this sequence into GRU layer
with 256 hidden dim. Next, dropout is applied to the last hidden state and
resulting vector is projected into 2 dimension space.



IMPROVING CLASSIFICATION ROBUSTNESS FOR NOISY TEXTS 241

Figure 2. CharCNN-WordRNN

§4. Experiments

We have conducted three types of experiments:

• the train and test sets are spell-checked and artificial noise (section
4.2) in inserted;

• the train and test sets are not changed (with above mentioned
exception for Russian corpus) and no artificial noise is added;

• the train set is spell-checked and noised, the test set is unchanged.

These experiment setups are meant to demonstrate the robustness of
tested architectures to artificial and natural-born noise.

All models were trained with batch size 32, Adam optimizer and dropout
before the last fully-connected layer with keep probability 0.5. A loss func-
tion is standard cross-entropy loss. CNN weights are initialized using X.
Glorot initialization with normal distribution.

4.1. Datasets. We have conducted experiments on two datasets: Airline
Twitter Sentiment for English language and SentiRuEval-2015 for Russian
language.

Airline Twitter Sentiment consists of 14,485 tweets containing peo-
ple’s opinions on their experience with US airline companies. There are
three classes in this dataset: positive, negative and neutral. The dataset is
publicly available1.

1https://www.kaggle.com/crowdflower/twitter-airline-sentiment



242 V. MALYKH, V. LYALIN

Since there is no published split for this dataset, we created one. We
have shuffled the dataset and took first 75% as train set, next 15% as
validation set and the last 15% are treated as test set in our experiments.2

SentiRuEval-2015 was introduced in work [17]. This dataset contains
two sub-datasets from different domains. One domain set, so called “auto-
motive”, includes user reviews on automotive brands. It is divided to 217
in trainset and 201 in testset. Another domain set is “restaurant” one. It
contains reviews of restaurants in Russia. Its trainset includes 201 reviews
and its testset includes 203 reviews. All the reviews are marked up con-
taining no sentiment, positive sentiment, negative sentiment, or both at
once.

4.2. Noise Model. In order to demonstrate robustness against noise,
we have performed spell-checking3 for the above datasets and artificially
introduced noise into our datasets. In the noise model, we introduce:

•

• the probability of inserting a letter after the current one, and
• the probability of a letter to be omitted

for every letter of the input alphabet and for each dataset. On every input
string, we perform random letter insertions and deletions with modeled
probabilities. Both types of noise are added at the same time. We test
models with different levels of noise, from 0% (no noise) to 20%. According
to [5], the real level of noise in user-generated texts is about 10-15%.

§5. Results

The results of training and testing models without either spell-checking
or artificial noise are presented below.

The results in Table 1 are shown in order to demonstrate the tested
models’ behaviour in classic test environments with fixed natural noise.
Unfortunately, this noise is uncontrollable, so we conducted two series of
experiments with controllable noise, one where artificial noise was intro-
duced in both training and test sets, and the other where it was only in
the training set.

2Authors are open for sharing train/val/test split for the sake of reproducibility.
3We have used the publicly available enterprise-level spell-check engine

Yandex.Speller.
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Model SentiRuEval-2015 Airline Twitter Sentiment
CharCNN 0.40 0.77

FastTextGRU 0.45 0.76
CharCNN-WordRNN 0.39 0.81

RoVe 0.38 0.78

Table 1. Results of the experiments on unchanged
dataset. F1-score on test set.

5.1. Airline Twitter Sentiment Dataset. On the Fig. 3 there are pre-
sented results in following environment: train set is cleared from natural
noise and introduced the artificial one; test set is also a subject to the de-
scribed transformation. We can see that FastText model is the best with
no presented noise, but it is not that robust. RoVe model is overperforms
FastText model from the noise level of 7.5%. From the noise level of 12.5%
CharCNN and CharCNN-WordRNN models are also shoing better results
by F1-score.
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Figure 3. Airline Twitter Sentiment Dataset. Train on
spell-checked and noised data, test on spell-checked and
noised with the same noise level as train.

On the Fig. 4 there are presented results in following environment: train
set is cleared from natural noise and introduced the artificial one; test set is
remained unchanged. Here we can see a different picture: FastText model
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again is the best on low levels of noise and again RoVe model outperforms
FastText model, but in this experiment this is true only from 15% of noise
in training data. Other models haven’t shown durability in this experiment
and have not exceed FastText model results.
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Figure 4. Airline Twitter Sentiment Dataset. Train on
spell-checked and noised data, test on unchanged data.

5.2. SentiRuEval-2015 Dataset. On the Fig. 5 there are presented
results in following environment: train set is cleared from natural noise
and introduced the artificial one; test set is also a subject to described
transformation. One can see that the behaviour of all models is remaining
almost the same. FastText model shows best results on low-noised data,
while RoVe model outperforms it from 15% of noise. We also could mention
that CharCNN model outperforms FastText model on 17.5% of noise.

On the Fig. 6 there are presented results in following environment: train
set is cleared from natural noise and introduced the artificial one; test set
is remained unchanged. As we can see the demonstrated behaviour of the
robustness properties is now more complex. FastText model is the best
for all levels of noise, while RoVe model shows second result for almost
every noise level, expect for 12.5%, where it is outperformed by CharCNN
model.

Comparing two series of experiments for artificial noise induced only
in the training set and in both training and test sets, one can see that
the behaviour of all models is quite similar, with some differences arising



IMPROVING CLASSIFICATION ROBUSTNESS FOR NOISY TEXTS 245

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0.28

0.30

0.32

0.34

0.36

0.38

0.40

Noise level

F
1

sc
o
re

FastText

RoVe

CharCNN-WordRNN

CharCNN

Figure 5. SentiRuEval-2015 Dataset. Train on spell-
checked and noised data, test on spell-checked and noised
with the same noise level as train.
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Figure 6. SentiRuEval-2015 Dataset. Train on spell-
checked and noised data, test on unchanged data.

in the region of high noise probability. This fact can be interpreted as
evidence that the proposed artificial noise model is a suitable substitute for
natural user-generated noise: models trained with artificial noise generalize
to the real world setting significantly better than trained in a noise-free
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environment, and about the same as models trained on real user-generated
datasets.

§6. Conclusion

We have evaluated noise robustness of common modern text classifica-
tion architectures. Moreover, a proposed artificial noise is demonstrated to
be adequate surrogate of natural noise in the data. Some models are per-
forming better on highly noised training data, which could be explained by
their internal adaptiveness to proposed noise, the presented RoVe model
is among them. FastText model show the best performance for low noise
data, while RoVe takes over from some (different from experiment to ex-
periment) level of noise. This variable level of noise is keeping near the
10-15% of estimated natural noise, which fact allows us to state that RoVe
model shows good adaptation ability to natural noise.

We see future directions of work in this field in three main domains:
introducing and evaluating other noise models, testing more advanced ar-
chitectures for text classification, and experimenting with more complex
datasets that contain multi-class and/or multi-label classification.

The authors are grateful to Ilseyar Alimova for useful comments during
the preparation of this paper.
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