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Abstract. Over the last decade, deep learning has revolutionized
machine learning. Neural network architectures have become the
method of choice for many different applications; in this paper, we
survey the applications of deep learning to natural language pro-
cessing (NLP) problems. We begin by briefly reviewing the basic
notions and major architectures of deep learning, including some
recent advances that are especially important for NLP. Then we
survey distributed representations of words, showing both how word
embeddings can be extended to sentences and paragraphs and how
words can be broken down further in character-level models. Finally,
the main part of the survey deals with various deep architectures
that have either arisen specifically for NLP tasks or have become
a method of choice for them; the tasks include sentiment analysis,
dependency parsing, machine translation, dialog and conversational
models, question answering, and other applications. Disclaimer:
this survey was written in 2016 and reflects the state of the art at
the time. Although the field of deep learning moves very quickly, and
all directions outlined here have already found many new develop-
ments, we hope that this survey can still be useful as an overview
of already classical works in the field and a systematic introduction
to deep learning for natural language processing.

§1. Introduction

In the mid-2000s, a deep learning revolution started in machine learn-
ing. In 2005–2006, research groups led by Geoffrey Hinton at the University
of Toronto and Yoshua Bengio at the University of Montreal made break-
throughs in the training of deep neural networks, which has since turned
the world of machine learning upside down. In many important problem
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domains the best results are now obtained by deep neural networks: practi-
cal applications began with speech recognition and now extend to anything
from self-driving cars to the game of Go.

While artificial neural networks had been around since before the field
of artificial intelligence began, the first deep architectures appeared in
the 1970s, and many architectures mentioned in this review stem from
the 1980s and 1990s (for a comprehensive historical survey see [261]),
due to exploding and vanishing gradient problems deep neural networks
were very hard to train. Solutions proposed in the mid-2000s came in the
form of unsupervised pretraining, where a network first trains on a large
dataset without labeling and then can be fine-tuned for a specific problem
starting from this initial approximation. The first successful deep archi-
tectures used for pretraining either deep Boltzmann machines [258, 260]
or stacked autoencoders [20]. However, new techniques in regularization
such as dropout [287], batch normalization [137], and better weight ini-
tialization [98, 171], combined with much larger datasets and much larger
computational resources, in particular the ability to train neural networks
on GPUs [24], have made unsupervised pretraining all but obsolete in most
applications. We are now able to train deeper and more expressive neural
architectures than ever before, especially if we have the data.

Moreover, by now deep learning has become very much an engineering
field: thanks to the automatic differentiation libraries such as Theano [24]
and TensorFlow [1] and libraries that implement various neural network
components, layers, and optimization algorithms such as Keras [59]1, ex-
perimenting with new neural architectures in practice has transformed
from a tedious error-prone affair into a relatively easy and exciting pro-
cess. Most of the models outlined here adhere to modern reproducibility
standards: software for training them is either publicly available or can be
implemented relatively easily with modern libraries.

In this work, we overview the field of deep learning for natural language
processing. It is a burgeoning field that brings new advances every month,
perhaps every week. Although it started with more or less standard archi-
tectures (recurrent and convolutional neural networks), over the last few
years it has began to branch out into several quite different directions,
from recursive networks for syntactic parsing to attention-based models
for machine translation and memory networks for question answering.

1Interestingly, Keras has become part of the recently released TensorFlow 1.0.
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In this survey, we have attempted a general review of the deep learning
applications to natural language processing (NLP). We have attempted
to collect the most relevant references but the main purpose is not only
to list references but also to present the key ideas behind these impor-
tant new results. Hence, in the survey we concentrate on presenting deep
models, architectures, and ideas in a unified and coherent way, paying the
most attention to situations when the needs of natural language processing
warranted a novel neural architecture that had not been proposed before.

Before proceeding further, let us mention a few general sources that can
serve as starting points: previous reviews of the field of deep learning in
natural language processing [101, 207], books and general reviews of the
field of deep learning [17–19,71, 72, 102,178,225,261], and general sources
on machine learning, probabilistic inference, and related fields of optimiza-
tion [25,27,38,166,206,208,227,245,335]. We also note one very influential
work on the subject: [68] was one of the first papers that showed that deep
neural networks can be used to tackle most natural language problems in
a general and unified fashion, and that it may well be that all one needs
is large corpora of unlabeled data. They trained models that provided
results close to current state of the art for a wide variety of natural lan-
guage processing problems without any task-specific engineering, starting
purely from large unlabeled text corpora. This work and its precursor [67]
motivated much of further NLP research with its “data-driven” mentality.

This survey is organized as follows. In Section 2, we review the basic
notions of artificial neural networks and introduce the deep learning revo-
lution: Section 2.1 covers the basics of neural architectures and backpropa-
gation on acyclic computational graphs, Section 2.2 presents convolutional
neural networks, Section 2.3 discusses recurrent neural networks, including
modern architectures such as LSTM and GRU, and Section 2.4 considers
regularization, gradient descent modifications, and other practical issues
of training modern deep networks. Section 3 presents the foundations of
modern natural language processing: the basic models of word embed-
dings (Section 3.1), their extensions to distributional semantics and em-
beddings of larger chunks of text (Section 3.2), character-level representa-
tions and models (Section 3.3), and other approaches to word embeddings
(Section 3.4).

Section 4, the main part of this survey, considers several important nat-
ural language processing problems that are especially interesting both for
modern approaches to NLP and as a source of new architectures for deep
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learning. Section 4.1 introduces different kinds of NLP problems and con-
siders the basic question of how to evaluate the results, which is often far
from obvious in NLP, Section 4.2 considers sentiment analysis and syntac-
tic parsing, presenting Socher’s recursive neural networks for these prob-
lems, Section 4.3 considers dependency parsing and presents stack LSTMs,
Section 4.4 deals with machine translation and introduces attention-based
models, Section 4.5 treats dialog and conversational models, presenting the
HRED encoder-decoder architecture, Section 4.6 surveys question answer-
ing and memory networks used for it, Section 4.7 presents neural topic
models and hybrids of topic models and word embeddings, and Section 4.8
reviews a few other applications. We conclude with Section 5.

Disclaimer added at publication. This survey was written in the end
of 2016 and reflects the state of the art at the time. Unfortunately, long
review times and a couple of rejections have resulted in it being published
only now, in the beginning of 2019. Although the field of deep learning
moves at exponentially increasing speed, and all directions outlined here
have already found many new developments, we hope that this survey can
still be useful as an overview of the already classical works in the field and
a systematic introduction to deep learning for natural language processing.
We refer to, e.g., [70] for a more recent and more detailed overview of the
field.

§2. Neural networks and deep learning

In this section, we briefly review the basic building blocks of deep learn-
ing, surveying basic building blocks that modern deep models are con-
structed from, basic training algorithms and important advances made
over the last decade in this field.

2.1. Backpropagation: taming the gradients. Artificial neural net-
works are computational graphs composed of individual artificial neurons;
historically, the first artificial neuron with a training algorithm, coming
after first ideas of neural networks [211], was Rosenblatt’s linear percep-
tron [251,252] that basically computes a linear combination of its inputs x
with the weights w that can be trained by gradient descent or by explicitly
finding the optimum by regression analysis.

Since it does not make sense to compose linear perceptrons (a com-
position of linear functions is still linear), to construct a neural network
one uses nonlinear artificial neurons that are basically linear perceptrons



DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING 141

Figure 1. Neural network fundamentals: (a) nonlinear ac-
tivation functions; (b) two-layer feedforward neural net-
work.

with their output passed through a nonlinear activation function. Popular
activation functions include:

• the logistic sigmoid σ(a) = 1/(1 + e−a), a natural choice for bi-
nary classification problems (since it is related to the likelihood of
Bernoulli trials),

• the hyperbolic tangent tanh(a) = (ea − e−a)/(ea + e−a),
• the rectified linear unit (ReLU) g(a) = max(0, a), used historically

by the first convolutional networks [88, 89], recently motivated by
biological considerations [99], and also obviously very simple com-
putationally, and

• other activation functions; various forms of nonlinear activation
functions are shown on Figure 1a.

In any case, to train a single unit that operates as f(a) = g(w⊤
x) with

some nonlinear activation function g and error function

EP (w) = −
∑

n∈M

g(w⊤
x)tn

in a supervised way it suffices to use gradient descent of the form

w
(τ+1) = w

(τ) − η∇EP (w) = w
(τ) + η

∂g

∂w
(w⊤

xn)xntn.

In neural networks, individual units are combined into a computational
graph that shows how the outputs of the neural network are computed
via elementary functions. For example, in classical feedforward neural net-
works the graph consists of layers, with a unit on a layer connected with
every unit on the previous and the following layer; a sample feedforward



142 E. ARKHANGELSKAYA, S. NIKOLENKO

architecture with one hidden and one output layer is shown on Fig. 1b.
The training is usually done with various modifications of gradient descent
that usually require only to be able to compute the derivatives (gradients)
of the objective function with respect to the weights. And derivatives can
be found automatically: the chain rule for differentiating a composition of
functions means that it suffices to know gradients on the previous layer to
compute the gradients on the current layer as long as we can differentiate
each activation function separately: if ∂E

∂sj
are derivatives on the next layer,

then
∂E

∂si
=

∑

j∈par(i)

∂si
∂sj

∂E

∂sj
.

Thus, the chain rule leads to automatic differentiation on any graph as
long as we can perform the following basic operations:

• fprop, forward propagation, that computes an intermediate vari-
able using the inputs of a gate;

• bprop, backward propagation, that computes the gradient of the
error function using the gradients of its children.

Naturally, this approach is easily extended to many different topologies:
deep networks with several layers, skip-layer networks, where some weights
directly connect non-adjacent layers, sparse networks where connections
between adjacent layers are not complete bipartite graphs, and so on.
This automatic differentiation (see, e.g., [325]) is precisely what is pro-
vided by basic deep learning libraries such as theano [15, 24] and Ten-
sorFlow [1]; other notable deep learning libraries, providing higher-level
primitives such as ready to use neural layers and constructions, include
Torch [66], Caffe [142], Keras [59], and Blocks [311].

Backpropagation is a very natural idea for training multilayer neural
networks, and there are probably multiple sources where it appeared in-
dependently; Schmidhuber [261] cites early 1980s works of Werbos [323]
and Speelpenning [286], earlier sources on reverse automatic differenti-
ation [187], and mid-1980s works of Parker [238] and LeCun [173, 175]
where this idea was already firmly established. However, for a long time
researchers had not succeeded in training deep models, partly due to com-
putational constraints and partly due to two closely related conceptual
problems of backpropagation [128, 129]: the vanishing gradients problem,
characteristic for feedforward networks, where already established weights
in the final layers of a deep network produce near-zero gradients, and all
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subsequent gradients in the backpropagation algorithm are multipled by
these near-zero values, making weights in the earlier layers very hard to
train, and, conversely, the exploding gradients problem, characteristic for
recurrent networks, where the chain rule leads to exponential increases in
weight updates as the recurrent network unfolds.

The first idea that began the deep learning revolution in mid-2000s
was unsupervised pretraining: since it is hard to train all layers from the
bottom up in a supervised way, and unlabeled data is often abundant and
one can get much more unlabeled data than in a supervised corpus, maybe
we can get better results by somehow pretraining lower levels to capture
the interactions already present in unlabeled data, and then the top layers
can start from there and work with features already nicely engineered by
the lower levels, tweaking them slightly rather than training the whole
architecture from scratch. This idea was implemented at Hinton’s group
with restricted Boltzmann machines (RBM), undirected graphical models
that define a joint distribution p(v,h) on the visible variables v and hidden
variables h [126, 168,259,294].

The other primary approach to unsupervised pretraining is based on
autoencoders, again a very old idea continuously used in the works of LeCun
and others since mid-1980s [37,125,127,174,177]. The basic idea is simple:
suppose we create a neural network that simply tries to copy its input
x to its output, passing x through some internal hidden representation
h = f(x) (in the simplest case it is the representation on the hidden layer)
and then reconstructing it back r = g(h) = g(f(x)). The objective is to
minimize the reconstruction error L(r,x). Autoencoders also enabled deep
learning in the mid-2000s with the idea of denoising autoencoders [313–315]
that regularize autoencoders by adding random noise to the input but
requiring to reconstruct the output as faithfully as possible. This approach
has been successfully used in image processing. Another productive way
to look at denoising autoencoders is to see them as manifold learning:
we assume that the input data occupies some complicated manifold in
its corresponding space, and the problem that we ask the model to solve
is to return (project, in some way) the points from a neighborhood of
this manifold to the manifold itself. See also a more theoretical view of
denoising autoencoders as generative models in [22].

By now, unsupervised pretraining has all but disappeared from many
problem domains in deep learning, replaced with improved training tech-
niques that we discuss in Section 2.4. Still, in natural language processing
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Figure 2. A convolutional neural network with 1D convo-
lutions over a text.

unsupervised pretraining as a general idea is crucial: we cannot hope to
learn language from a dataset of, say, product reviews with labeled senti-
ment, and have to rely on training a “language model” (in a general sense,
not in the narrow sense of predicting the next word) in an unsupervised
way from the whole huge corpus of texts we have available for a given
language. In modern NLP, this often comes in the form of pretraining dis-
tributed representations of words and/or characters, which we will discuss
in Section 3.

2.2. Convolutional neural networks. Convolutional neural networks
(CNNs) consider inputs where there is some notion of “spatial distance”
between input dimensions. In particular, CNNs were designed primarily
for computer vision problems, where the input image has a natural notion
of distance between the pixels, and it is natural that nearby pixels in an
image have a much stronger relation to each other and are much more
likely to belong to the same object than distant pixels. In a typical CNN,
each neuron on the next layer is connected not with all, but only with a
small localized subset of neurons on the previous layer; such convolution
layers usually alternate with pooling layers, where activations from differ-
ent neurons are pooled together. This approach mimics how the human
visual cortex actually works: bottom layers distinguish local image fea-
tures based on small overlapping receptive fields, and higher layers of the
visual cortex recognize more and more advanced, abstract shapes.
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In artificial neural networks, the CNN is, again, an old idea, based on
studies of the visual cortex from the 1960s [136], appearing in computer
science as early as late 1970s in the Neocognitron architecture [88, 89],
and then arising again in the works of LeCun et al. in the 1990s [176].
The advances of deep learning have allowed computer vision researchers
to move from handcrafted filter banks to automatic feature engineering on
lower levels of deep models, and since the late 2000s CNNs have appeared
in their modern form [140]. The basic ideas are illustrated on Fig. 2 for
the case of a one-dimensional CNN characteristic for natural language
processing:

(1) layers are connected in a sparse way: units on level k receive as input
only a subset of units on level k − 1;

(2) at the same time, each filter on a hidden layer is replicated across the
entire input vector, learning the same localized features in every part
of the input; this means that the weights are shared, and the total
number of parameters is not so overwhelming;

(3) a feature map thus represents repeated applications of the same unit
across all local neighborhoods, i.e., a convolution of the input with a
linear filter followed by a nonlinearity; a single hidden layer can contain
several feature maps;

(4) convolutional layers are usually interleaved with pooling, or subsam-
pling layers that combine subsets of the input and output the maxi-
mum values of all features; here the idea is that a higher-level feature’s
exact location is less important than its interaction with other neigh-
boring features; in one-dimensional CNNs, these are usually max-over-
time pooling layers, which output the maximal value of a feature map
along a window.

Convolutional neural networks are a natural fit for image processing and
have long been applied to such problems as image classification and recog-
nition, character recognition, image segmentation and object recognition,
scene labeling, video processing, and so on; see, e.g., [179, 248]. However,
in this survey we are more interested in the recent applications of CNNs to
natural language processing. For example, let us consider a rather vanilla
application [154], where CNNs are used for semantic sentence classification:

• the model is not as deep as computer vision models and involves
only one convolutional layer with max-over-time pooling and a
softmax output;
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Figure 3. A sample (Elman) RNN: (a) abbreviated rep-
resentation; (b) unrolled representation.

Figure 4. Various RNN-related problems [151].

• regularization is achieved through dropout; the authors report a
consistent and significant improvement in accuracy with dropout
across all experiments;

• the model is trained on prepared word2vec word embeddings (see
Section 3.1) and does not attempt to tune word representations
for better results;

• still, the authors report better results on such tasks as sentiment
analysis and sentence classification than baseline techniques that
include recursive autoencoders and recursive neural networks with
parse trees (see Section 3.2).

We will refer to other applications of CNN architectures in NLP be-
low but note here three important works: a seminal work by Collobert
et al. [68], where convolutional networks were applied to achieve state of
the art performance on a number of NLP tasks starting just with words as
features, and works by Zhang et al. [353,354] that develop a CNN-based ap-
proach to character-level “text understanding from scratch”, starting from
character-level representations and applying a ConvNet architecture com-
ing from computer vision to text understanding.

2.3. Recurrent neural networks. Previously, we have been talking
about neural networks with acyclic computational graphs. If we allow
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pseudo-cyclic connections in the graph, where a hidden state is carried
over from a previous step of the input sequence to the next, we get recur-
rent neural networks (RNNs). One sample architecture of a classical RNN,
the so-called Elman network [80], is shown on Fig. 3. The basic idea of
an RNN is that while a feedforward ANN can only map a function from
the current input to some output, RNN can, at least in principle, use the
entire history of its inputs to get the current output. Besides, RNNs are
naturally used for sequence learning, including sequence-to-sequence learn-
ing, where both input and output are sequences, such as, e.g., in machine
translation; see Figure 4 for an illustration of different kinds problems
that can be solved with recurrent neural networks. Due to this emphasis
on sequence-based problems, RNNs are a natural fit for natural language
processing, and most applications and architectures discussed below are
based on recurrent networks.

The derivatives of an RNN objective function with respect to the weights
are usually computed with the so-called backpropagation through time algo-
rithm [324,329]. In backpropagation through time, we compute the errors
as in regular backpropagation, but this time activations on the hidden
layer have an influence on the output not only through immediate acti-
vations on the output layer but also through its influence on the hidden
layer activations on the next time step. The exact formulas depend on a
specific architecture, but generally they involve a sum over all time steps,
so training a recurrent neural network is usually significantly more com-
putationally intensive that training a feedforward network. Note also that
any RNN is “deep” by definition: previous states influence subsequence
states for a long time, and any recurrent network becomes deep in the
usual sense when unfolded for backpropagation through time. Still, it is
often beneficial to consider deep RNNs, where various parts of the RNN
architecture have multiple layers; see [239] for an overview of various such
approaches.

First, an important modification of the basic RNN architecture is bidi-
rectional RNNs (see Fig. 5), where not only the past but also the future
context is available on every time step [262,263]. In such problems as time
series prediction this architecture would violate causality and would be im-
possible to apply, but it is quite natural when the entire context is available
at once. In particular, this is the case for many NLP problems such as text
understanding, machine translation, and the like: it makes sense to read,



148 E. ARKHANGELSKAYA, S. NIKOLENKO

Figure 5. Unidirectional and bidirectional RNNs: (a) a
regular RNN; (b) a bidirectional RNN.

Figure 6. Modern RNN units: (a) LSTM; (b) GRU.

say, the entire sentence before translating it. Hence, bidirectional RNNs,
as we will see below, find many applications in NLP.

The basic recurrent architecture, however, has its shortcomings and
cannot fully express all possible temporal dependencies. In particular, the
influence (gradient) of an input in a classical RNN either decreases expo-
nentially or blows up since it has to be multiplied by the matrix of weights.
Therefore, modern recurrent architectures usually make use of more com-
plex units that implement the so-called “constant error carousel”, allowing
the gradients to flow through a unit unchanged if necessary.

One of the most widely used such modifications of RNNs is called the
Long Short-Term Memory RNN (LSTM) [111]. The architecture itself was
developed by Hochreiter and Schmidhuber in mid-1990s [130, 131] and
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Figure 7. A simple architecture for a character-based lan-
guage model.

appeared in its modern state in the works of Gers and Schmidhuber [94,95].
It has been successfully applied to numerous NLP problems. The most
common (vanilla) LSTM architecture is shown on Fig. 6a; it contains three
gates: input gate, forget gate, and output gate, together with a recurrent
cell. Many different variations on this architecture have been proposed;
see [111] for a detailed discussion and experimental comparison across
a variety of problems. In particular, one extension of LSTMs important
for NLP applications are bidirectional LSTMs developed by Graves and
Schmidhuber [105,106], where there are two chains of LSTM cells flowing
in both forward and backward direction, similar to a bidirectional RNN.

A recent simplification of the LSTM architecture is given by Gated
Recurrent Units (GRU) introduced by Cho et al. [57] (Fig. 6b). A GRU is
very similar to an LSTM cell but simpler; GRU has a single “update gate”
instead of separate forget and input gates, does not distinguish cell state
and hidden state, and always exposes the entire hidden state, without a
special gate for it. GRUs are simpler and thus faster to train than regular
LSTMs, and recent extensive practical comparisons indicate that GRUs
achieve similar performance on sequence modeling problems [62]. While the
jury is still out, it is plausible that GRUs, which are growing in popularity
right now, will outperform LSTMs and become the recurrent unit of choice
for NLP tasks.

This overview of recurrent neural architectures naturally brings us to
the first NLP problem: language modeling, i.e., predicting the next word
or symbol in a text by previous symbols. Language modeling and, gen-
erally speaking, text generation is the natural direct application of many
natural language processing systems that we touch upon in this review.
We will see in Section 3.1 that word embeddings were originally applied to
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language modeling, and many models and architectures from this survey
can be applied to generating new text. On the other hand, even without
anything NLP-specific text generation has become a standard example for
sequence learning with recurrent neural networks [104], including the fa-
mous “meaning of life” example from [295] that was generated character by
character with a simple agnostic RNN architecture.2 Figure 7 shows one
possible simple architecture for such sequence learning: input symbols are
processed by an LSTM layer, and then LSTM features are used, through a
dropout regularizer, to predict the next symbol. This idea constitutes the
basis for many NLP-related architectures.

2.4. Regularization and training. Since neural networks, especially
deep neural networks, have a very large number of free parameters, prob-
lems with overfitting are inevitable, and some form of regularization is
required [97]. In classical feedforward neural networks, regularization of-
ten comes in the form of weight decay [119,164], e.g., L2 regularization for
the weights, and early stopping, which basically amounts to controlling the
error on a validation set, using the validation error as a proxy for general-
ization error and stopping training when it begins to increase [243,305,342].
In the commonly used dropout technique [287], units in a neural network
are “switched off” at random during training: in the simplest case, each
unit is left in the network with a fixed probability p, independently of
other units, during train time. This procedure is very simple computation-
ally; intuitively, it can be understood as “making” each unit learn a useful
feature by itself since it cannot “rely upon” other units to be present and
form compositions with it. For a long time, researchers did not know how
to apply dropout to recurrent networks and advised not to apply it to re-
current connections. However, recent works on variational dropout [91,158]
led to a new Bayesian understanding of dropout and, in particular, to an
understanding of how to apply dropout correctly to recurrent connections,
which is crucial for NLP.

2Starting from the seed phrase “The meaning of life is”, in one out of 10 attepmts the
model generated the following: “The meaning of life is the tradition of the ancient human
reproduction: it is less favorable to the good boy for when to remove her bigger...” [295].
Similar models are easy to train and try for oneself, as shown in, e.g., the documentation
for the Keras library [59].
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We have already mentioned that the deep learning revolution started
with unsupervised pretraining, a way to find good starting point for train-
ing the weights. In modern deep models, instead of unsupervised pretrain-
ing one often simply uses a suitable method of random initialization. One
breakthrough here came in [98], which introduced Xavier initialization, a
simple and well-motivated method for randomly initializing the weights of
a neural network based on controlling the output variance. This approach
was later extended to ReLU units in [120].

Another standard technique in modern deep learning, batch normaliza-
tion [137], was designed to cope with a problem known as covariate shift :
as one layer of a neural network changes, all layers above it get different
distributions of features as input and have to adapt to continuously shift-
ing distributions. Batch normalization transforms the activations of a layer
before feeding it to the next layer so that mean and variance always re-
main unchanged; it has been shown to significantly speed up convergence
in feedforward networks [137]. Again, it was unclear at first how to ap-
ply batch normalization to modern recurrent architectures, but a recent
work [69] shows how to modify the same technique for LSTMs, which is
especially relevant for NLP applications.

There are many important extensions to the basic stochastic gradient
descent algorithm. One class of such extensions deals with momentum β,
which smoothes out the samples produced by stochastic gradient descent.
In its simplest form momentum works as ḡ := (1−β)ḡ+βg, where g is the
current value of the gradient; in adaptive algorithms training speed and
momentum can vary between components. We do not go into details but
note the two currently most popular adaptive gradient descent variations,
AdaDelta [351] and Adam [157].

Finally, another huge factor in the modern success of deep learning
has dealt with advances in hardware. Some neural network architectures
known since the 1990s are being used very successfully in modern appli-
cations but did not achieve comparable success when they were invented
since it was too hard to train them. Apart from obvious advances due to
Moore’s law, there also has been a very important qualitative jump from
CPUs to GPU hardware: a GPU provides many more, albeit weaker cores
than a CPU, which is beneficial for the highly parallelizable training meth-
ods of large neural networks, achieving speedups in the range of 10x-50x
over CPU implementations. At present, GPU computing libraries such as
NVIDIA CUDA and the GPU chips themselves are being developed with
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deep learning in mind, providing fast primitives for deep learning libraries;
see, e.g., the NVIDIA CUDA Deep Neural Network library (cuDNN) [54].
Fortunately, practice has shown that for deep learning research off-the-shelf
GPUs such as the NVIDIA GeForce series work as well or even better as
top-of-the-line specialized GPUs such as the NVIDIA Tesla line.

§3. Distributed representations of words and text

chunks

In this section, we review some of the fundamentals for using deep learn-
ing and neural networks for natural language processing, concentrating on
the basic building blocks that serve as first layers and/or inputs to deep
models: word and sentence/paragraph embeddings.

3.1. Word embeddings. In classical NLP, words are treated as indepen-
dent entities, and the models usually start with one-hot representations:
each word is represented as a vector of dimension |V |, where V is the
vocabulary, which consists of zeros with a single one at the index corre-
sponding to this word. One-hot representations suffer from an obvious flaw:
in reality, words in a language are definitely not independent entities, they
are very closely related to each other. It would be very useful to leverage
this additional information by moving to a better representation.

Recent advances have made distributed word representations into a
method of choice for modern natural language processing [101]. In these
models, each word from the dictionary is mapped to a Euclidean space
R

d (i.e., to a vector of d real numbers), attempting to capture seman-
tic relationships between the words as geometric relationships in R

d. In
a classical word embedding model, one first constructs a vocabulary with
one-hot representations of individual words, where each word corresponds
to its own dimension, and then trains representations for individual words
starting from there, similar to a dimensionality reduction problem. For this
purpose, researchers have usually employed a model with one hidden layer
that attempts to predict the next word based on a window of several pre-
ceding words. Then representations learned at the hidden layer are taken
to be the word’s features.

The modern field of word embeddings started with the work [16], subse-
quently extended in [21]. Extending previous work on statistical language
models, usually based on word n-grams [42, 51, 103, 161], Bengio et al.
proposed distributed word representations that operate as follows:
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(1) for each vocabulary word w ∈ V , associate it with a feature vector
(word embedding) vw ∈ R

d; typical values of d lie in the hundreds;
(2) express the probability of a word appearing in its context window of

size n via the vectors of previous words as

p(wt|wt−1, . . . , wt−n) = g(t,vwt−1
, . . . ,vwt−n

,ω),

where vwt−1
, . . . ,vwt−n

are vectors of context words and g is the func-
tion computed by the neural networks with parameters ω;

(3) train from a large unlabeled text corpus both the vectors vw and
parameters ω; the objective maximized during training is the corpus
log-likelihood

L =
1

T

∑

t

log f(wt, wt−1, ..., wt−n+1;W,ω) +R(W,ω),

where W is the |V |× d matrix of weights vw and R(V,ω) is a regular-
ization term.

The two most commonly used modern models for word embeddings,
Continuous Bag-of-Words (CBOW) and skip-gram, were both introduced
in [214]. During its learning, a CBOW model is trying to reconstruct
each word from its context with a network whose architecture is shown
on Fig. 8a. The training process proceeds as follows:

(1) each input of this network is a one-hot encoded vector of size |V |;
(2) the hidden layer represents the matrix of vector embeddings of words

W , so the jth row represents an embedding of the jth word in the
vocabulary;

(3) the hidden layer’s output is the average of all input vectors, h =
1
C (vw1

, . . . ,vwC
), where w1, . . . , wC are words in the context of the

target word w; usually word embeddings are trained with a context
spanning both past and future words;

(4) the neural network’s output layer produces a score uw = h
⊤
vw for

each word w ∈ V ; to obtain the posterior multinomial distribution,
uw go through the softmax to get

p(w|wt−1, . . . , wt−n) =
exp(uw)

∑

w′∈V exp(uw′)
,
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Figure 8. Network architectures for training word2vec
models [250]: (a) CBOW; (b) skip-gram.

and the loss function E is defined as the negative log-likelihood of the
true word w∗:

E = − log p(w∗|w1, . . . , wC) = −uw∗ + log
∑

w∈V

exp(uw)

= −h
⊤
vw∗ + log

∑

w∈V

exp(h⊤
vw).

The skip-gram model operates in an inverse manner (see the architecture
on Fig. 8b): the target word w∗ is now at the input layer, the context words
are at the output layer, the hidden layer output h is simply the target
word’s vector, h = vw∗ , and the loss function corresponds to C separate
multinomial distributions:

E = − log p(w1, . . . , wC |w
∗)

= −

C
∑

c=1

uwc
+C log

∑

w∈V

exp(uw) = −

C
∑

c=1

v
⊤
w∗vwc

+C log
∑

w∈V

exp(v⊤
w∗vw).

The idea of word embeddings has been applied back to language mod-
eling, e.g., in [215,216,220], and then, starting from [214,217], word repre-
sentations have been applied for virtually all natural language processing
problems, including text classification, extraction of sentiment lexicons,
part-of-speech tagging, syntactic parsing and so on. Most of the models
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that we review below make use of either one of the word embedding mod-
els or a character-level embedding model (see Section 3.3).

The second important model for word embeddings is Glove (GLObal
VEctors for word representations) [241]. In the Glove model, the objective
function for training word embeddings vwi

and ṽwi
is

J =
V
∑

i,j=1

f(Xij)
(

v
⊤
wi
ṽwj

+ bi + b̃j − logXij

)2

,

where X ∈ R
V ×V is the cooccurrence matrix between words, so Xij is

the frequency of word i cooccurring with word j and Xi =
∑

j Xij is

the total number of occurrences for word i, w̃ ∈ R
d is a separate word

embedding used when it is the context word, also in dimension d, and f
is a function that does not overweigh frequent cooccurrences too much;

usually f is bounded by a constant for large Xij , e.g., f(x) =
(

x
xmax

)α

if

x < xmax and 1 otherwise. The idea is to directly express p(wj | wi) =
Xij

Xi
,

the probabilities that word j occurs in the context of word i; natural
requirements on the objective function (e.g., the fact that after transposing
the X matrix we should replace vwi

with ṽwi
and vice versa) lead to this

optimization problem. [241] reported improved results for named entity
recognition, and since then Glove vectors have been used for many different
NLP tasks.

Variations of word embeddings have been developed in the Polyglot
system [3], and a completely different direction with a graph-based model
is proposed in [2]. More efficient and/or stable algorithms for training word
embeddings have been developed in [197,198,214,221].

In a way, word embeddings rely upon what is known in linguistics as
the distributional hypothesis: words with similar meaning will occur in
similar contexts. This hypothesis appeared in computational linguistics at
least as far back as the 1960s [253]; for earlier discussions and applica-
tions of the distributional hypothesis, see [167, 234, 257]. However, exper-
iments in [241] and subsequent works also show very interesting effects
in word embeddings: semantic relations between concepts represented by
words turn into simple geometric relations between word vectors. This
general phenomenon, namely combining lexical vectors to model the com-
posed meaning of phrases or larger chunks of text, has become known as
distributional compositional semantics. The phenomenon of compositional
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semantics has been supported in cognitive science [218], including experi-
mental evidence [77]; see also a standard dataset presented in [209] and a
survey of vector space models of semantics [309].

Despite the fact that word embeddings have been successfully applied
throughout the field, they have at least one obvious shortcoming: in the
basic formulation, every word is mapped to a single vector, while in reality
natural languages are highly polysemic, with numerous homonyms that
often have nothing to do with each other. Rather than try to capture all
possible meanings in a single vector, it might make more sense to model dif-
ferent meanings of the same word with different vectors, a problem known
as word sense disambiguation for word embeddings. Recent efforts in this
direction include multi-prototype word embeddings that cluster the con-
texts for each individual words and introduce a separate vector for every
such cluster [133,134,249,331]; other models attempt disambiguation with
a topic model such as LSA [344] or LDA [193], extending this approach
to a unified tensor skip-gram model that trains word and topic embed-
dings [192]. A conceptually sound Bayesian approach would be to use non-
parametric methods to model the unknown number of senses for a word
and use approximate inference to cope with the huge number of resulting
latent variables; this is exactly what has been recently done in [14].

3.2. Compositional semantics: sentence and paragraph embed-

dings. Word embeddings capture the meaning of a single word; however,
it is highly dependent on the context, and the meaning of a text is not
(always) the sum of meanings of its words. Hence, a natural next step af-
ter training word embeddings is to try and capture the meaning of larger
chunks of text: one has to find a way to compose word embeddings into
some representation of a document, or at least a text chunk such as a sen-
tence or a paragraph. Several different approaches have been proposed for
training such larger-scale embeddings:

(1) the simplest idea is to use the sum and/or mean of word embeddings
to represent a sentence/paragraph; this has been used as a baseline
in [172] but was proposed as a reasonable method for short phrases
in [217] and has been shown to be effective for document summariza-
tion in [145]; while it is surprising that simple averaging can be an
excellent and baseline, hard to beat in most applications, in our opin-
ion this is due to the linear structure which is automatically trained in
the semantic space of word embeddings; we recommend to start with
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this approach and only branch out further if it proves to be unsatis-
factory;

(2) in the Distributed Memory Model of Paragraph Vectors (PV-DM) [172],
a sentence/paragraph vector is introduced as an additional vector for
each paragraph; it acts as a “memory” to provide longer context than
the current window;

(3) in the Distributed Bag of Words Model of Paragraph Vectors (PV-
DBOW) [172], context words in the input are ignored, and the model
is forced to predict words randomly sampled from a specific paragraph
in the output; the paragraph vector is trained to help predict words
from the same paragraph in a small window;

(4) in [203], convolutional neural networks are used to model sequences on
tree-based n-grams that account for dependency structure, achieving
state of the art results in sentiment and question classification tasks;

(5) a different convolutional architecture to model sentences has been pro-
posed in [149];

(6) the work [160] brings the idea of skip-gram word vectors one level up,
introducing the so-called skip-thought vectors that capture the mean-
ings of a sentence by training from skip-grams constructed on sentences
and pretrained word embeddings;

(7) in [74], distributed representations continue to the level of entire doc-
uments, concentrating on large text streams; this work constructs a
hierarchical neural language model with a document level and a token
level.

To compare all these different approaches, [328] proposes a method for
evaluating different sentence embeddings and comparing their quality. The
work [124] performs a comprehensive comparison of different approaches
to learning distributed representations of sentences (rather than words)
from unlabeled data. They find that the results depend on the application
in mind, with deeper, more complex models better for supervised systems
and shallow log-linear models preferable for representation spaces with
simple spatial distance metrics. They also introduce two new interesting
approaches, one based on sequential denoising autoencoders and another
simplifying the SkipThought model of [160].

Another approach to implementing compositional semantics in terms of
word embeddings is to treat some words as modifiers of others, i.e., rep-
resent some words as vectors and others as operations on the vectors. For
example, the work [13] attempts to represent adjective-noun phrases by
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modeling adjectives as matrices performing linear operations on the nouns
that they modify. Implementing the mathematical foundations laid out in
the works of Clark, Coecke, and Sadrzadeh [63–65] for an abstract cate-
gorical model of compositional meaning, the work [108] models relational
words with matrices and devises a procedure to compose these represen-
tations into sentence vectors; they report improved evaluation results as
evidence that the basic assumptions of the model do indeed make sense;
similar results are reported in [41, 109, 152, 256]. This direction of study
currently continues with representing verbs as low-rank tensors [87], mul-
tilingual models [122], modeling semantic composition through function
application [235], and other works attempting a formal distributional se-
mantics [107,110,219]; we do not go into more details of these approaches.

A more general and straightforward approach to such composition is
taken in the works of Socher et al. on recursive neural networks, which we
discuss in detail in Section 4.2.

3.3. Character-level representations. Word embeddings as introdu-
ced in Section 3.1 suffer from several conceptual flaws:

(1) the vectors trained for every word are completely independent; this
means that we cannot really reuse our knowledge about one word
to get an understanding for another, like people do; in particular, in
morphology-rich languages each word comes with a plethora of dif-
ferent morphological forms, various derivative words in other parts of
speech, derivative words formed by prefixes and suffixes, and so on; a
human being understands all these derivative words immediately after
he or she understands the basic word but a word embedding model
would have to either cluster all of them together in the same vector or
obtain a sufficient quantity of usage examples for every form, which is
often impractical;

(2) the same applies to out-of-vocabulary words: a word embedding can-
not be extended to new words without a reasonably sized set of usage
examples while a human being can extrapolate the meaning from the
form of a word; e.g., you have probably never seen the word “polydis-
tributional ”3 but you already have a good idea of what it means;

(3) in practice word embedding models may grow large for large vocabu-
laries; although applying a trained model is very fast (it is just lookup

3At the time of writing, it got a mere 48 hits on Google even with inexact search.
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Figure 9. The character-aware neural language model from [155].

to the table of word vectors), either the model has to be stored in
memory or access will still be slow.

These problems lead to the idea of character-level representations: what
if we descend down to the most basic level of written speech and train word
embeddings that take into account the actual characters that comprise a
word.

First attempts at this problem involved decomposing a word into mor-
phemes, the smallest units of meaning in written language [36,200,285]. If
morphemes were available explicitly they would indeed be a perfect build-
ing block for a low-level word representation model since they are precisely
what carries the meaning. However, in practice morphemes are not imme-
diately evident from a word, and one has to rely on morphological analyzers
that work imperfectly and basically introduce the need to train a separate
morphology model, so the problem merely shifts to that model.

In [186], Ling et al. present a character to word (C2W) model for learn-
ing word embeddings based on bidirectional LSTMs (see Section 2.3). In
the model, input characters are first embedded into a distributed represen-
tation themselves, and then fed into a bidirectional LSTM which outputs
the word embedding. Ling et al. report state of the art results in language
modeling (in terms of perplexity) and part-of-speech tagging, especially
for morphology-rich languages.

Another natural approach to constructing character-level representa-
tions is based on convolutional neural networks. In [353,354], Zhang et al.
develop a method for “text understanding from scratch” based on character-
level embeddings. Starting from character quantization with a simple 1-
of-m encoding, they then feed this unprocessed data to a convolutional
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net with 6 convolutional layers, 3 fully connected layers, and 2 dropout
units between the fully connected layers for regularization. They report
significant improvements for standard text classification problems.

All of these ideas have been combined in a recent work [155], which con-
structs a character-aware neural language model. We present this model
as a characteristic example of modern character-aware efforts; the model
structure is shown on Fig. 9. It begins with a distributional representation
of the characters, followed by 1-d convolutions with max-pooling over time.
The convolutional features from several different filter sizes are concate-
nated and fed into a highway network, a recently developed architecture
that allows for training very deep models by preserving a direct path for
the gradient flow through the layers [288]. Only then the results are used in
a recurrent network (with LSTM units), and then used to predict the next
word in the text. The authors report significantly improved language mod-
eling, including a reduction in perplexity and reasonable nearest neighbors
for out-of-vocabulary words.

Note that applying a character model is relatively expensive, and it
would slow down applications significantly if one had to run such a com-
plicated model or even simply a bidirectional LSTM for every word. Fortu-
nately, since character-aware models usually depend only on the characters
it is easy to store the representations of common words in memory, recal-
culating them only for rare words; this way, one can strike a proper balance
between memory and computational time.

There is, however, one more interesting idea in [354] which is worth
noting. In computer vision, it is common practice to augment the input
datasets by slight changes in the input images. Computer vision yields itself
very easily to such modifications: if we slightly crop, shift, or contract an
image, change lighting conditions or downsample to reduce resolution, the
objects on the image will remain the same, and the recognition target can
be reused. This is not even denoising as used in denoising autoencoders, it
is simply new training data for free. Computer vision is lucky to have an
almost unlimited source of new training samples but in natural language
processing one cannot simply change a word at random and assume that
the “big picture” will remain exactly the same. Ideally, we might use human
paraphrases but they are impossible to obtain in the necessary quantities.
Zhang et al. [354] propose a straightforward idea for such data augmenta-
tion: use a human-generated standard thesaurus (from WordNet in their
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case) and replace some words at random with their direct synonyms, re-
porting improved results with this augmentation. We believe that there
might be other transformations helpful for NLP data augmentation, and
this problem may warrant further study.

3.4. Other approaches and extensions of word embeddings. A
number of works extend and refine the basic algorithms for word embed-
dings; some of them study and/or improve the basic idea of training word
embeddings from large raw text corpora, while others attempt to incor-
porate additional knowledge to produce better embeddings. The RC-NET
framework [333] incorporates information from knowledge graphs that con-
tain both relational knowledge (in the form of both semantic and syntactic
relations) and categorical knowledge (sets of synonyms, domain knowledge
etc.) into a model to train better word embeddings, extending the skip-
gram model with additional information. In [81], words are represented as
regions of the semantic space rather than individual vectors, leading to
improved performance in classification.

Word embeddings and related models have also been applied to other
problems, e.g., in [297] paragraph vectors are used as a basic model to
represent user behaviour on the Web, treating user activities as words that
comprise user descriptions like words comprise a paragraph. This reuse is
also a potentially rich area for further study.

We also mention a number of minor word embedding modifications ei-
ther trained specifically for certain problems and domains or augmenting
the model with additional explicit information: semi-supervised approaches
to training word vectors have been developed in [308], while [204] intro-
duces a mix of unsupervised and semi-supervised training specifically for
sentiment analysis; the work [39] presents distributed word representa-
tions designed specifically for natural logic reasoning; in [26] word embed-
dings are extended with more explicit knowledge (morphological, syntac-
tical, and semantic), with improved results on analogical reasoning and
word similarity; in [114], word embeddings are trained with respect to a
knowledge graph, while in [228], word embeddings are augmented with a
knowledge base; the work [293] improves word representations by jointly
modeling syntagmatic and paradigmatic relations, and [180] mines vector
representations for linguistic regularities.
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A middle ground between character-level and word-level models was
struck in the approached presented by Microsoft researchers in Deep Struc-
tured Semantic Models (DSSM) [93,135,272]. DSSMs use sub-word embed-
dings obtained with word hashing, where a word is represented as a bag of
letter trigrams. For example, “model” is encoded as

{#mo,mod, ode, del, el#}.

With this approach, the vocabulary shrinks to |V |3 (tens of thousands in-
stead of millions), but collisions are very rare; experiments in [135] show
that a vocabulary with 500K words had only 22 collisions, while the vector
dimension shrank from 500K to only 30K. This representation is also ro-
bust to typos and misspellings, which is very important for user-generated
texts.

We have already seen that word embeddings capture some basic se-
mantic properties in a natural way: words are semantically similar if their
embeddings are close in the semantic space, and simple linear relations
between word vectors may represent semantic relations between the corre-
sponding concepts. Another interesting question about distributed repre-
sentations is whether word embeddings are able to support more sophisti-
cated properties of words than just semantic similarity. For example, the
work [352] attempts to extract the logical form of sentences from unstruc-
tured text with an eye towards question answering, and there are many
works concentrating on event extraction [35, 53, 231,312].

In [49, 278], Chen, Socher et al. are using distributed representations
with newly introduced neural tensor networks (NTN) for detection of new
semantic relations in knowledge bases. In a neural tensor network model,
one of the layers is bilinear and serves for multiplication of input vectors,
which allows to consider more flexible operations in embedding space. Bow-
man et al. showing the ability of the same neural tensor networks to learn
logical relations (such as entailment, reverse entailment, equivalence, al-
ternation, negation, and independence) between concepts from distributed
representations in [39] and extend this work in [40] to more complex ex-
pressions. In the latter, natural language inference is performed for pairs of
sentences; representation of each sentence is computed in the tree-shaped
part of network, and the last layer is using tree outputs as input. The
whole network is then trained by maximizing the softmax objective on
relation classes. Tensor networks have also been applied to machine trans-
lation [268].
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In conclusion, we note that although word embeddings have become a
staple of neural models in NLP, and most models that follow in the next
section treat underlying word embeddings or word embedding architectures
as given, this field is still far from exhausted. We believe that the problem of
combining word vectors into sentence, paragraph, and/or document vectors
and the problem of introducing additional explicit information to word
vectors remain widely open and expect exciting developments along these
lines. However, we would specifically like to advocate augmenting word
embeddings with character-level models; as we have seen, they can serve
as a natural extension of word embeddings but at the same time capture
relations between similar words, morphological features, and even handle
out-of-vocabulary words.

§4. Neural architectures for specific NLP applications

4.1. NLP tasks and evaluation problems. In this main section, we
survey the most important neural architectures intended to solve specific
NLP tasks. However, NLP is a very diverse field, and there are many
different types of NLP problems. We divide these tasks into three broad
categories. Interestingly, the harder the problems are the greater has been
the contribution of deep learning.

1. Well-defined syntactic problems with semantic complications. This
class contains the problems that have a clearly defined unambiguous an-
swer and can usually be framed as classification problems with available
datasets, usually syntactic problems. Examples include part-of-speech tag-
ging, morphological segmentation (break a word up into morphemes),
stemming and lemmatization, sentence boundary disambiguation and word
segmentation (especially relevant for Asian languages), named entity recog-
nition, word sense disambiguation, syntactic parsing (construct a parse
tree), and coreference resolution.

Note that although these problems appear mostly syntactic in nature,
they require semantic insight to answer correctly. For example, it is mostly
a syntactic problem to construct a parse tree, but for many real sentences
parsing hinges on common sense. E.g., in Hamlet’s “For in that sleep of
death what dreams may come” do the dreams come (dependency between
“dreams” and “may come”) or is some entity, which is currently dreaming,
coming later (dependency between “what” and “may come”)? The latter,
rather Lovecraftian interpretation is rejected by our common sense, but
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syntactically is quite possible. In many of these problems, existing tech-
niques make errors precisely where common sense and semantic under-
standing is required, and it still appears very far out of our reach. Hence,
while deep learning has brought new advances in this field, it has not been
revolutionary yet.

2. Well-defined, but obviously semantic problems. Here we can mention
language modeling, sentiment analysis, relationship/fact extraction, and
question answering. Again, we know a clear answer, but the problem is
obviously semantic in nature. In these problems, deep learning has brought
significant advances. For example, neural language models, one of which we
have considered in Section 3.3, significantly outperform their counterparts
based on n-grams, and sentiment analysis has become a staple application
for recurrent neural networks, including new recursive architectures we
considered in Section 3.2. Since many NLP models can serve as language
models and can be used for text generation, here we do not attempt to
review all neural language models; see the review of deep language models
in [5] and a survey of character-level neural language models in [155].

3. Finally, the most vague type of problems are those that involve text
generation: text generation per se4, automatic summarization (in the sense
of writing a summary rather than just choosing the most representative
sentences), machine translation, dialog and conversational models, and so
on. The vagueness here comes from the ill-defined objective function: how
do we objectively measure how good the output is in, say, machine trans-
lation? Even if we know a correct answer produced by a human translator,
there can be plenty of equally correct or even better translations that look
nothing like it. The same problem arises for conversational/dialog models:
how do we evaluate whether this is a good response?

One possible answer is the Bilingual Evaluation Understudy (BLEU)
(see [236]) metric, invented for evaluating machine translation. It repre-
sents a modification of precision, but weighted and applied to n-grams.
The BLEU score for the whole corpus is computed as follows:

BLEU = BP · exp
(

N
∑

n=1

wn log pn

)

, where BP =

{

1, if c > r,

e1−r/c, otherwise,

4Note the difference with language modeling: a language model predicts the next
word in an existing text, so it is basically solving a classification problem; it is much
less clear how to evaluate “freely generated” text.
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where r is the total reference length, c is the total candidate length, pn
is modified precision, and wn are positive weights summing to one. Mea-
sured against candidate translations, BLEU avoids the pitfalls of simple
precision, where a text with only one word from the candidate translation
would be considered perfect, and highly correlates with human evalua-
tions. Another highly popular measures include METEOR [170], which is
the harmonic mean of unigram precision and unigram recall, Translation
Edit Rate (TER) [275], which is the number of edits between the out-
put and reference divided by the average number of reference words, and
LEPOR [118] that combines basic factors and language metrics with tun-
able parameters. Yet another similar class includes metrics that measure
the deviation in the semantic space of word embeddings, e.g., between av-
eraged word vectors for the correct translation and averaged word vectors
for the candidate translation. These metrics correlate well with BLEU and
with each other but show improvements in terms of alignment with human
evaluations in several reference settings; they also can be used to evalu-
ate other sequence-to-sequence models with a dataset of known responses,
e.g., conversational models. We also note some recent attempts to develop
a better quality metric [48, 115,116,270].

Other direct evaluation metrics proposed so far in the literature on
text generation and conversational models include perplexity and word
classification results [266, 317], human evaluation [271], response selection
task evaluated, e.g., on the Ubuntu Dialogue Corpus [196], and dialog act
prediction task [150].

Apart from these direct evaluation metrics, usually the quality of a lan-
guage model or text generation model is evaluated with auxiliary NLP
tasks with clear evaluation criteria. For instance, the seminal work [68],
while in essence presenting a language model, covers the following stan-
dard NLP tasks with well-known standard datasets: part of speech tagging
evaluated on a dataset from [306], chunking, or shallow parsing evaluated
on the CoNLL-2000 shared task [304], and semantic role labeling evalu-
ated on the CoNLL-2005 shared task [47]. Later works also often include
sentiment analysis as one of the standard problems (see Section 4.2).

But before we proceed, a note of caution: while BLEU/METEOR scores
remain a commonly accepted evaluation standard, they are heavily criti-
cized. The work [191] shows stunning evaluation results in the context of
dialogue response generation: human evaluation scores had very small or
even nonexistent correlations with all considered automated metrics! The
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Figure 10. A deep recurrent architecture with skip-layer
connections applied to sentiment analysis.

best correlations between BLEU variants and human scores were about
0.35 (on one dataset, on the other they were as low as 0.12); at the same
time, human evaluations were correlated with each other at the level of
0.95 or higher, so it was not for lack of a clear gold standard, but only
because the standard is so hard to formalize. This critique has already led
to new automatically trained evaluation metrics [195], and we expect that
this direction will bring new exciting developments.

Over the remainder of this section, we will present an overview of neu-
ral architectures used for various NLP tasks. We begin with sentiment
analysis, a standard problem that lets us showcase modern recurrent ar-
chitectures and then proceed to more specialized ideas such as recursive
neural networks.

4.2. Sentiment analysis and recursive neural networks. Sentiment
analysis [45, 188, 189, 233] is the problem of extracting subjective evalua-
tions encoded in a natural language text, e.g., extracting from a free-text
review whether a user liked the product and what specifically did she like
and/or dislike. In neural network approaches to NLP, sentiment analysis
has become one of the standard tasks for testing the quality of text un-
derstanding. Since there are widely available standard training corpora for
sentiment analysis in English such as the Rotten Tomatoes movie review
dataset [232] later augmented by parse trees by Socher et al. in the Stan-
ford Sentiment Treebank [282], sentiment analysis is often accepted in text
modeling and generation as a means of experimental evaluation, and many
above-mentioned works also provide results on sentiment analysis datasets.
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In particular, long short-term memory networks (LSTM) over word em-
beddings have been successfully applied to sentiment analysis in [319],
while convolutional networks, which are good at discerning local features
(e.g., sentiment words in this case), have been used for sentiment analysis
in [150].

Over the last few years, recurrent architectures based on LSTM and
GRU units have accumulated certain common techniques that improve
their training speed and resulting quality. A sample modern recurrent ar-
chitecture with three layers of LSTM units is shown on Fig. 10; in our
experiments, it has produced reasonable results on sentiment analysis for
short texts (tweets and blog comments). We note several important fea-
tures:

• dropout is present between the layers but not between LSTMs in-
side a layer; this is the standard recommended practice for recur-
rent architectures [350]; however, recent research suggests that it
is both theoretically sound and practically beneficial to use a spe-
cial form of variational dropout in the LSTMs themselves, where
we choose the units to be dropped once for every input sequence
(sentence) and do not change them between LSTMs in the se-
quence [90, 158];

• there are skip-layer connections that go around a layer; on Fig. 10
we concatenated vectors from lower and higher layers; another pos-
sibility is to add them, thus making higher layers learn only the
remainder of the objective which has not been already learned by
previous layers; this is the basic idea of deep residual networks
that have been instrumental in training very deep convolutional
architectures for image processing [121];

• such networks are usually trained with adaptive gradient descent
algorithms such as Adam [156] or AdaDelta [351].

These recurrent architectures are the staple of modern NLP based on deep
learning: they take a sequence as input and can learn virtually any super-
vised task.

However, in sentiment analysis specifically the modern state of the art
is closely related to syntactic parsing, i.e., constructing parse trees from
natural language sentences. It is obvious that syntactic parsing must be
present in a good sentiment analysis system at least implicitly, and bag-of-
words approaches cannot even in principle distinguish phrases with very
different sentiment: compare “not bad, it was a good movie” with “bad,
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Figure 11. Recursive neural networks: (a) general model;
(b) deep recursive NN.

it was not a good movie”. Hence, it is natural to extend the syntactic
parsing model to capture sentiment from the leaves of the parse tree up,
an approach directly related to compositional semantics that we discussed
in Section 3.2.

In particular, recursive neural networks defined first for syntactic pars-
ing [277] were subsequently applied by Socher et al. to sentiment anal-
ysis [281, 282]. A recursive neural network is trained to compose a part
of a chunk of text (usually a sentence) with another part, starting from
the word vectors and working its way up to the root of the parse tree.
In particular, the work [281] introduces recursive autoencoders (RAEs).
First, note that an autoencoder is a natural way to capture compositional
semantics if the parse tree is already constructed:

(1) each node is represented as a vector of length n;
(2) children of a node are concatenated to form a vector twice this length;
(3) the resulting vector serves as input for the autoencoder, the output is

again a vector of length n, and it can serve as the next input up the
tree.

Figure 11a shows the intuition of this approach with the example of senti-
ment analysis: note how the “very good” node has a highly positive label
but it is flipped when combined with “not”. Formally speaking, we rep-
resent a tree node v with a vector xv and construct a recursive network
as

xv = f(WLxl(v) +WRxr(v) + b),

where l(v) is the left child of vertex v, r(v) is its right child, WL and WR

are the corresponding weight matrices, b is the vector of biases, and f is
a nonlinear activation function, usually either logistic or ReLU. Note that
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matricesWL and WR remain the same throughout the tree, we are applying
the same transformation at every node, hence the term “recursive”.

In the Unfolding Recursive Auto-Encoder model (URAE) [279], a re-
cursive autoencoder is trained to collapse all word embeddings into a sin-
gle vector following the parse tree and then reconstruct back the original
sentence; this single collapsed vector can be treated as a representation of
the sentence/paragraph. The work [279] successfully applies this technique
to paraphrasing and paraphrase detection. This work has been extended
in [282] by using recursive autoencoders for sentiment analysis of sentence
syntactic trees. In these works, a node is represented by both a vector
and a matrix, and the composition becomes more complex, but the main
recursive idea remains the same. Moreover, it is relatively straightforward
to extend this architecture to deep recursive networks, with several layers
of the same tree-like recursive architecture one above another; we have
illustrated this architecture on Fig. 11b, where we show first level nodes in
grey and second level nodes in black, and dashed lines show connections
between layers.

This approach allows to assign labels for each node in a tree. In the
example above, tree substructure with negation reversed the sentiment of
its substructure, a feat impossible for the bag-of-words approach. Socher
et al. report significant improvement (from 80% up to 85.4%) for sentence
sentiment classification over previous methods, but this architecture can
also be applied in other natural language processing tasks [40,273,279,300].

Interestingly, the same research group recently produced a work that at-
tempts to unite tree-based reasoning with standard recurrent architectures.
In [298], the basic LSTM architecture is generalized to be able to handle an
arbitrary number of input vectors. This lets one organize LSTMs in a tree
with an arbitrary number of children for every node; the work [298] reports
improved results for sentiment analysis. On the other hand, recursive net-
works and tree-based LSTMs rely heavily on the quality of the parse trees
and available supervision; while for sentiment analysis in English we have
the Stanford Sentiment Treebank [282] which has been labeled by hand,
in other applications (or even in sentiment analysis for other languages)
this approach proves to be much more problematic.

Other neural network approaches to sentiment analysis include a direct
application of deep RNNs over word embeddings [138], domain adapta-
tion for sentiment classifiers with deep RNNs [100], and weakly supervised
aspect-sentiment models [246]. Automated mining of of sentiment word
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lexicons based on word embeddings has been proposed in [185]. We also
note new large-scale sentiment evaluation datasets based on automatically
mined tweets with sentiment-related hashtags and emoticons [159].

4.3. Dependency parsing and stack LSTMs. In the last section, we
have seen that syntactic parsing In general, current state of the art in
dependency parsing relies on continuous-state parsers, where the current
state of the parsing algorithm is encoded as a continuous vector in a Eu-
clidean space [9, 44, 52, 79, 289, 303, 320, 356]. This idea is similar to dis-
tributed word representations, and it is no wonder that deep learning does
help in this case too, but one has to make special provisions because we are
now trying to learn a stack-based algorithm rather than just an abstract
function.

In particular, Dyer et al. [79] propose a transition-based parser with con-
tinuous embeddings trained from an LSTM; in their approach, the parser
manipulates three basic data structures:

(1) a buffer B that contains the sequence of words, represented at time t
as a vector bt;

(2) a stack S that stores partially constructed parses, represented at time
t as a vector st;

(3) a list A of actions already taken by the parser, represented at time t
as a vector at.

The vectors bt, st, and at are represented as hidden states of their re-
spective stack LSTM s, a modification of LSTM developed in [79]. A stack
LSTM augments a regular chain of LSTMs with a “stack pointer” that
indicates which output will be read; see Fig. 12 for an illustration, where
xi represent the stack contents. During the “pop” operation, the pointer is
simply moved to the left, and during a “push” operation a new LSTM cell
is added to the right of the current stack pointer position. To perform a
“reduce” operation, the model uses a recursive neural network, composing
two subtrees popped from S into a new vector which is then pushed into S.

Note that other successful approaches to syntax parsing and constituen-
cy parsing have used conditional random fields (CRFs), with latest CRF-
based parsers outperforming even neural network models [117]. A recent
work [78] combines CRFs with neural networks, using nonlinear potentials
modeled by a neural network instead of linear potential functions based
on sparse features.
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Figure 12. Stack LSTM: a “pop” operation followed by a
“push” operation [79].

Another angle for further development is to take morphology into ac-
count. Morphology is obviously important for syntactic parsing, but the
baseline model of [79] produced state-of-the-art results for the English lan-
guage by representing each word by its vector representation (word embed-
ding) w and a part-of-speech tag t provided separately; unknown words are
represented by a single “UNK” token. The work [9], which considers depen-
dency parsing in morphologically rich natural languages, produces basic
representations by bidirectional character-level LSTMs, similar to [186].
The resulting representations are now available for all words, including
out-of-vocabulary ones, and capture the morphological structure of a word
well; the authors report experiments with a wide range of morphology-rich
languages: Arabic, Basque, French, German, Hebrew, Hungarian, Korean,
Polish, Swedish, and Turkish [9]. We mark this, and in general the use of a
combination of regular and character-level word embeddings as basic mod-
els for deep learning, as an important but still incomplete development,
and expect new results along these lines.

4.4. Machine translation and attention-based models. Machine
translation is a natural application of large-scale language models; it is a
very high-level problem that seems both theoretically tempting and ob-
viously useful as one of the end products of NLP. Good translation is
virtually impossible without deep understanding of the underlying text, so
hopefully we might get the latter while aiming for the former; see also a
recent review [199].

The general modern paradigm of statistical machine translation (SMT)
models the conditional probability p(y | x) of a target sequence y (transla-
tion) given the source sequence x (text, usually a sentence) [194]. In classi-
cal SMT, one usually approximates log p(y | x) with a linear combination
of features and then constructs these features, mostly by hand [43, 162].
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Figure 13. Encoder-decoder architectures for machine
translation: (a) basic idea [147]; (b) encoder-decoder with
a soft alignment model [7]; (c) encoder-decoder architec-
ture with soft attention [55].

Neural network approaches have been used both for reranking the best
lists of possible translations [264] and as part of feature functions [73].
The latter approach is being developed to this day, with state of the art
results [210, 212, 230, 268, 290], but here we concentrate on the sequence-
to-sequence approach.

The idea is that RNNs can be naturally used to probabilistically model
a sequence [104], i.e., we can train an RNN that for a sequence X =
(x1, x2, . . . , xT ) sequentially models p(x1), p(x2 | x1), . . ., p(xT | x<T ) =
p(xT | xT−1, . . . , x1), and then the joint probability p(X) is just their
product p(X) = p(x1)p(x2 | x1) . . . p(xk | x<k . . . p(xT | x<T ). This is
precisely the intuition behind using RNNs for language modeling [213]:
the hidden state is used as the summary for all previous history (note
how this avoids the problem of variable input size, which is a big issue for
feedforward networks), and we predict the next word based on the hidden
state learned from all previous parts of the sequence. See [10] for a survey
of neural language modeling with applications to machine translation.

However, when we try to translate a sentence, we do not really go word
by word but rather first construct some semantic representation of this
sentence and then unroll this representation in a different language. This
intuition is formally captured in the encoder-decoder architecture as shown
on Fig. 13a: use an RNN to construct a hidden state corresponding to the
entire sequence (encoding) and then unroll it back to get a sentence in a
different language (decoding) [58]. This model can be trained directly with
a parallel translation corpus, as has been done in [7, 57, 147,148,296]; the
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work [92] trains continuous phrase representations in a common semantic
space and shows improvements in translation quality.

However, this is not the whole story. One problem with the encoder-
decoder approach of [56] is that the entire sentence must be compressed
to a single fixed-dimensional vector; hence, the quality drops dramatically
for longer sentences, and a much larger model is required which may be
hard to train due to lack of training data and impractical computational
requirements. Some works have attempted to combat this problem by au-
tomatic segmentation [242], but the current solution to this is to introduce
a soft attention mechanism.

One of the first attempts in this direction was made in [7], where a soft
alignment model produces weights αt,i that control how much each input
word influences the word currently being translated; these weights were
trained with a separate neural network. This idea is shown on Fig. 13b;
note how encoder RNNs are replaced with bidirectional RNNs, so that at
every word we get a “local” representation that combines the context from
both left and right of the sentence but at the same time is more “focused”
on the current word.

Starting from [55], the method of choice was soft attention depicted on
Fig. 13c: we introduce an additional small neural network that takes as
input the current decoder’s hidden state and the local representation of
the current word and outputs the relevance score for this specific word.
This score, again denoted by αij on Fig. 13c, is then used as indicator
of whether the translation model should be focusing on this specific word
right now. Note that the model is trained end to end: since attention is
soft (in the form of real weights), the gradients are able to flow through
the entire network. It turned out that soft attention drastically improves
translation for longer sentences, and is now the standard technique for
machine translation.

Attention-based techniques have been extended in various ways in recent
works in machine translation that represent the current state of the art:

• the work [202] addresses the problem of rare words, which has al-
ways been an issue for statistical machine translation, by explicitly
training a word alignment model that outputs correspondences be-
tween specific words in the source and target sentences, which lets
them use a vocabulary to substitute translations for rare words;
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• the work [141] attacks the same problem from a different angle,
augmenting the basic attention model with importance sampling
that lets them extend the model to very large vocabularies;

• the work [201] studies different architectures of attention-based
models for machine translation, reporting significant improvements
just from selecting the best architecture with the same basic idea.

An influential recent work [330] shows how Google’s Neural Machine
Translation system (GNMT), which is the backend for Google Translate,
actually operates. It is promising for NLP researchers that the basic archi-
tecture is exactly the same and consists of encoder, decoder, and attention
networks. However, GNMT brings to the table a few important tricks and
modifications:

• RNNs have to be deep enough to capture language irregularities,
so they use 8 layers for encoder and decoder each;

• at the same time, simply stacking LSTMs does not really work,
the gains completely disappear after 4–5 layers; to be able to train
deeper architectures, they add residual connections between the
layers, similar to [121] (see Section 4.2);

• again, the bottom layer is bidirectional in order to capture as much
context as possible;

• GNMT also uses two new ideas for word segmentation:
– the wordpiece model breaks words into smaller chunks (with a

separate model); interestingly, this model steps originated as
a word segmentation model for Asian languages but proved
to be useful for European ones as well;

– the mixed word/character model converts out-of-vocabulary
words into characters (specifically marked so that they can-
not be confused); this usually applies to proper names, e.g.,
Google might become

<B>G <M>o <M>o <M>o <M>g <M>l <E>e.

Attention-based models with similar mechanisms are not restricted to
machine translation. Approaches similar to attention appeared in neural
networks back in 2010 for Boltzmann machines [169]. Modifications such as
the ones above can also be applied to any model based on a recurrent neu-
ral network; it is also quite natural that they have been applied to image
processing [6, 222] and speech recognition [8, 60]. One could argue that in
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these works, “attention” is even closer conceptually to what we usually un-
derstand by the word, since in the case of machine translation “attention”
trains additional weights to find correspondences, while in image process-
ing “attention” actually restricts the area the model is concentrating on.
We note a few more applications of attention-based models relevant to
NLP:

• a paper called “Show, Attend, and Tell” [334] combines a convolu-
tional network that constructs a representation of an image with
a recurrent attention-based network that generates a description;

• in [316], models with attention mechanisms are applied to syntactic
parsing, achieving state of the art results with a domain-agnostic
sequence-to-sequence model enhanced with attention;

• in [346], Attention-Based Convolutional Neural Networks (ACBNN)
are introduced for modeling pairs of sentences, with three different
architectures;

• in [123], an attention-based RNN reads a text, reads a question
about this text, and generates an answer based on the attention
matrix.

The work [86] extends attention-based statistical machine translation
techniques to a multilingual model, with a single model for all languages
whose number of parameters grows only linearly with the number of lan-
guages. And, finally, the work [61] explores the possibilities of constructing
a machine translation model which is not based exclusively on word em-
beddings but augments it with a character-level model, producing a unified
character-level model with machine translation, achieving state-of-the-art
results. Although these results do not significantly outperform word-based
approaches, the work [61] clearly shows that it is possible to construct
character-level models for machine translation, and they do not break
down despite the fact that text measured in characters is much longer
than measured in words (recall that long sentences had been a stumbling
block for machine translation); we expect new exciting work to be done
along these lines.

4.5. Dialog and conversational models. Another exciting application
for natural language processing based on neural networks and word em-
beddings are conversational and dialog models that attempt to model and
predict dialogue in natural language [307]; in the case of conversational
models, the model is actually supposed to actively participate in a dialog



176 E. ARKHANGELSKAYA, S. NIKOLENKO

Figure 14. The seq2seq conversational architecture from [317].

with a human user. Note that while the objective is similar to that of chat
bots that have been developed for many decades already, starting from the
seminal ELIZA [321] and continuing to this day, the models we consider
here concentrate on actually modeling the meaning and flow of conversa-
tion rather than selecting the most plausible answers in order to appear
human to third party judges.

Dialog modeling are a characteristic example of sequence-to-sequence
problems: given a sequence of words and/or symbols, the model has to
produce a reasonable reply, i.e., another sequence of words/symbols. The
neural conversational model introduced in [317] uses the seq2seq framework
from [296]; see Fig. 14 for an illustration. This direct seq2seq approach can
be easily extended to many applications, including machine translation
and question answering, but unlike machine translation in this case it
cannot really be expected to model the dialogue since human dialogue
usually carries over the context for a very long time, pursuing long-term
goals that probably cannot be modeled within seq2seq. Still, experiments
in [317] show very reasonable dialogues both in the IT helpdesk context
and in the general context of movie subtitles.5

The work [266] extends the hierarchical recurrent encoder decoder ar-
chitecture (HRED) proposed in [284], where it was used for context-aware
query suggestion for information retrieval. The basic idea of [266] is to view
dialogue as a two-level system: a sequence of utterances, each of which is
in turn a sequence of words. To model this two-level system, HRED trains:

(1) encoder RNN that maps each utterance in a dialogue into a single
utterance vector;

(2) context RNN that processes all previous utterance vectors and com-
bines them into the current context vector;

5Note a very interesting OpenSubtitles dataset based on movie subtitles that provide
high-quality parallel text corpora with conversational language, priceless for both dialog
modeling and machine translation [302].
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Figure 15. The HRED architecture for a conversational
model from [266,284].

(3) decoder RNN that predicts the tokens in the next utterance, one at a
time, conditional on the context RNN.

Figure 15 shows the HRED architecture with a sample dialogue excerpt.
Serban et al. use bidirectional RNNs, initialize the weights with word2vec
representations trained on a large dataset (Google News), bootstrap from a
question-answer subtitle corpus with short questions and answers, and per-
form the main training with the MovieTriples dataset based on the Movie-
DiC dataset [12], with promising results both quantitatively (in terms of
perplexity) and qualitatively, judging by dialogue excerpts.

This line of work was continued in [267], which develops a variational
lower bound for the hierarchical model and optimizes it; the resulting
Variational Hierarchical Recurrent Encoder-Decoder (VHRED) model es-
timates latent variables in the dialogue that model the complex dependen-
cies between individual utterances. A very recent extension [265] extends
this to a different form of priors (piecewise constant), which leads to mul-
timodal document modeling, generating responses to the time and events
in the original query.
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Another rising trend in dialog and conversation models is adversarial
(reinforcement) learning. We begin with the work [113], which presents a
model for text generation based on Deep Q-Networks (DQN) [224,254], a
recently developed reinforcement learningmodel that has led to many excit-
ing advances in applications of reinforcement learning: world-class results
in the game of Go [274], learning to play Atari video games from visual
inputs [223], continuous control in simulated physics tasks [182], and even
training neural Turing machines [349]. The model uses an encoder-decoder
LSTM network similar to [296] to extract features from the input sentence,
but decoding proceeds iteratively: DQN changes the output sentence and
makes it closer to the input sentence (encoded by LSTMs) in terms of the
BLEU score [184, 237], which is used as the reward. DQN appears to sig-
nificantly outperform regular LSTM networks when decoding previously
unseen sentences [113]. In other applications, the work [181] presents a
more direct application of reinforcement learning to improve specifically
dialogue response generation, while [291] improve dialogue systems with
online active reward learning, also a reinforcement learning technique. The
active reward learning uses a Gaussian process to model dialogue success,
with the dialogue represented in the semantic space, where it is mapped
by an encoder-decoder architecture.

Dialog and conversation models are developing very rapidly, with many
new recent exciting developments. In the “attention with intention” model
(see. [340]), a separate network is used to to model the intention process
for the dialogue. In [322], snapshot learning is used together with some
weak supervision in the form of particular events occurring in the output
sequence (i.e., whether we still want to say something or have already said
it). In [112], the authors propose to add an explicit copying mechanism to
seq2seq: we often need to copy some part of the query in the response, and
in [112] this copying is implemented with state changes and attention.

4.6. Question answering and memory networks. General free-text
question answering (QA) is one of the hardest NLP challenges; this is one of
the problems that come closest to true language understanding. Apart from
direct applications for answering questions, a sufficiently general solution
for question answering can also be applied to a wider range of tasks: for
instance, some NLP problems can also be formulated as questions about
text, e.g., “Who is an author of this story?” or “What is it about?”.

While question answering in terms of trivia-like questions has long
reached very high levels, with IBM Watson outperforming top Jeopardy!
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Task 1: Single Supporting Fact

Mary went to the bathroom.
John moved to the hallway.

Mary travelled to the office.
Where is Mary? A: office

Task 4: Two Argument Relations
The office is north of the bedroom.

The bedroom is north of the bathroom.
The kitchen is west of the garden.

What is north of the bedroom? A: office
What is the bedroom north of?
A: bathroom

Task 7: Counting

Daniel picked up the football.
Daniel dropped the football.
Daniel got the milk.

Daniel took the apple.
How many objects is Daniel holding?

A: two

Task 10: Indefinite Knowledge

John is either in the classroom
or the playground.

Sandra is in the garden.
Is John in the classroom? A: maybe
Is John in the office? A: no

Task 15: Basic Deduction
Sheep are afraid of wolves.
Cats are afraid of dogs.

Mice are afraid of cats.
Gertrude is a sheep.

What is Gertrude afraid of? A: wolves

Task 20: Agent’s Motivations

John is hungry.
John goes to the kitchen.

John grabbed the apple there.
Daniel is hungry.
Where does Daniel go? A: kitchen

Why did John go to the kitchen? A: hungry

Figure 16. Sample question answering tasks proposed in [326].

contestants in 2011 [85], actual comprehension of the questions that re-
quire human-like reasoning remains a very challenging problem. Again, we
begin with evaluation. To ensure that some QA system is performing well
not only due to a large and elaborate knowledge base but with actual text
comprehension, the work [326] proposed a set of fairly simple tasks consist-
ing of questions and supporting facts. These questions do not require any
special knowledge, and all of them can be easily answered by a human,
but they do require reasoning and understanding of semantic structure;
we show some sample problems from [326] on Fig. 16. Current QA models
are often tested on these tasks with various levels of access to supporting
facts and external resources. Note also the work [318] that constructs deep
models for adding new information to knowledge bases.

While these tests show the reasoning abilities of a model, question an-
swering is still tightly connected with information retrieval. An important
part of question answering is to find semantically close entities; see a sur-
vey [163] and references therein. Recent works in this direction map ques-
tions to logical queries over a graph of facts, a knowledge base, constructed
in the system [23, 341]. Deep learning approaches have been used in this
direction; e.g., [139] uses DT-RNN, a model introduced in [280], for map-
ping answers and questions from the Quiz Bowl game to the same semantic
space using the max-margin objective. The correct answer is assumed to
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Figure 17. The general IGOR architecture of memory networks

be the one closest to the question. The modularity and flexibility of this
model make it appealing for other tasks as well.

The current state of the art in question answering as shown in [326] are
memory networks. The basic memory network model is presented in [327].
A memory network consists of an array of objects (memory) and the fol-
lowing components (that are learned during training; see Fig. 17 for the
architecture flowchart):

I (input feature map) that converts the input to the internal feature
representation;

G (generalization) that updates old memories after receiving new in-
put;

O (output feature map) that produces new output given a new input
and a memory state;

R (response) that converts the output of O into the output response
format (e.g., text).

In [327], memory networks improved the state of the art in question an-
swering, and extensions have already been developed since then. In [165],
Kumar et al. present dynamic memory networks, a model that changes
memory to an episodic memory module that chooses which parts of the
input to focus on with an attention mechanism, with improved results
in question answering and other applications including sentiment analy-
sis and part-of-speech tagging. The work [292] presents an extension of
memory networks called end-to-end memory networks that can be viewed
as a continuous version of memory networks; the difference is that the
latter require supervision on each layer of the network, while end-to-end
memory networks can be trained with input-output pairs. The work [292]
reports state of the art results on question answering and language mod-
eling. Memory networks have been applied to large-scale simple question
answering with transfer learning [33]; other applications include learning
algorithms [144, 146] and an interesting application to answering visual
questions, i.e., questions about images [339].
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Yih et al. [301], on the other hand, combine a more classical approach
of knowledge database queries with deep learning. The main idea is that
apart from simple similarity of question and answer, we should also capture
the relation to the answer entity. The scope of this work is limited to
single-relation questions only. Extraction is done by a CNN-based semantic
model, and the inputs are processed by a technique proposed in [135]:
the words are first segmented to letter-n-grams and then represented as
count-vectors of n-grams. Convolutional layer of the network is then used
to embed local window vectors to contextual features, and max-pooling
layers are supposed to extract key words, critical to answering the question.
In [76], question answering is done with multi-column convolutional neural
networks, an architecture with parallel vertical columns instead of fully
connected layers.

However, deep structures are not the only possible approach. The key
foundation for most of the current work is word embeddings and, as Zhou et
al. demonstrate in [355], a proper embedding model can lead to significant
improvements over the baseline even with a simple bag-of-words approach;
compare also with approaches of [82, 343].

What current state of the art question answering systems generally lack
is the ability for the so-called common sense reasoning, i.e., understanding
of various aspects of the world that humans find so easy and natural; this
is clear from the questions in Table 16. Note that while the best results on
those was given by extended MemNN introduced in [327], it still failed on
some questions even when supporting facts were provided, so QA models
still have a very long way to go. Current attempts to model common sense
reasoning are usually of logical nature [4,11,205], and it would be an inter-
esting challenge to bring them together with neural network approaches.

A recent work from Google DeepMind [123] discusses how one can de-
fine that a machine has actually learned to read and comprehend written
text. There are very few datasets on text comprehension, and supervised
learning has been virtually absent from this field since it is unclear even
simply what kind of a supervised dataset one could need. In [123], the
authors propose a relatively simple and straightforward way to convert
unlabeled datasets in the form of, say, a newspaper article and its match-
ing summary, into (context, query, answer) triples that could then be used
for supervised training of text comprehension models; their approach to
creating question answering datasets may lead to new breakthroughs in
machine reading comprehension.



182 E. ARKHANGELSKAYA, S. NIKOLENKO

4.7. Topic models with word embeddings. There have been several
attempts to use distributed word representations to construct topic models.
For example, the Neural Topic Model developed by Cao et al. [46] models
both topic-word and document-topic distributions with neural networks,
training n-gram embeddings together with document-topic embeddings;
this model has also been extended to the supervised setting.

Yang et al. [337] model a topic as a Gaussian cluster in the semantic
space, thus making the topic model into a Gaussian mixture. Word em-
beddings are trained with the usual models, trying to predict the current
word from its near context, but embeddings are sampled from a Gauss-
ian mixture; an Expectation-Maximization scheme is used to train both
mixture parameters and word embeddings.

In a recent work [310], Tutubalina and Nikolenko developed a new tech-
nique that extends existing approaches to sentiment-based topic modeling;
it is also called aspect-based opinion mining in this field since these models
are usually applied to user reviews and opinions regarding certain prod-
ucts with the goal to mining specific aspects [190]. Using already existing
pretrained word embeddings, the work improved sentiment classification in
such sentiment topic models as JST and Reverse-JST [183], ASUM [347],
and USTM [348], training new aspect-specific lexicons of sentiment words
based on a small set of “seed” sentiment words.

The work [247] presents a new topic modeling algorithm, Vec2Topic,
that combines distributed representations and topic modeling in a new
way. Specifically, they introduce two new interesting metrics for a word’s
topical relevance:

(1) depth: given a hierarchical (agglomerative) clustering of all word vec-
tors from the corpus’ vocabulary, the depth of a word w is the number
of links from the root of the clustering graph to w; this means that if
a word is part of a tighly linked cluster of similar words, it is probably
going to be deeper than a word which is all alone;

(2) degree: the degree of a word w is the number of unique words cooccur-
ring in the same sentence with w; the idea here is that most important
words, words that define their respective topics, should probably be
used in many different contexts, cooccurring with many other words.

Combining depth and degree in a multiplicative score of a word, the au-
thors extend it to the score of a topic, and then mine the top scoring
topics, by which they mean clusters of word vectors in the the semantic
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space. This approach is reported to produce good topics [247], and it is
computationally very efficient.

Still, this field seems to be open for new research, and it appears that
existing neural topic models can be significantly improved.

4.8. Other applications. One important natural problem in natural
language processing is semantic matching of text chunks, i.e., semantic
similarity between sentences, paragraphs, or other parts of text; this is rel-
evant, for instance, for paraphrasing and clause coherence [32,336]. In [132],
a convolutional architecture is used to match sentences. Unlike previous
works, in [345], a convolutional architecture is used to match semantic
similarity across different levels of granularity (providing what is called
multigranular comparability in the architecture). Experiments in [345] show
promising results in paraphrase identification. This is also very similar to
evaluating text similarity, another common problem for testing various
language models. The work [153] considers the text similarity problem for
short texts, suggesting several metrics for combining word embeddings into
semantic representations of short texts; the results are evaluated on the
standard Microsoft Research Paraphrase Corpus data set [75, 332].

Relational learning is another important factor: it many application do-
mains, multirelational data in the form of graph-like structures, sometimes
called knowledge bases where nodes represent entities and edges represent
relations between these entities have become widely available and have to
be used in intelligent data mining/processing. In the case of natural lan-
guage processing well-known examples of such knowledge bases are pro-
vided by, e.g., WordNet [30, 83, 84] and Semantic Web resources such as
FreeBase [28]. In general, this field is known as statistical relational learn-
ing [96]. While these knowledge bases have been previously used to help
solve NLP problems [229, 276], deep learning has led to new approaches
proposed for relational learning.

In [31], Bordes et al. develop a deep learning approach to constructing
meaning representations based on WordNet synsets, getting entity em-
beddings rather than word embeddings, reporting state of the art results
on semantic parsing and word sense disambiguation. In particular, Bor-
des et al. introduce a semantic matching energy function which was later
extended in [32] to other kinds of multirelational data, where it provided
state of the art results on link prediction in a wide variety of multirelational
datasets.
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Neural networks have been used for learning to rank with text pairs,
a problem most relevant for information retrieval (a search needs to rank
query-document pairs) but also relevant for question answering. In infor-
mation retrieval, word embeddings are used and retrained to learn good
semantic representations for search queries and Web documents that can
be easily matched with each other, with search results ranking as the final
goal in mind. The work [272] presents a convolutional latent semantic model
(CLSM) trained on clickthrough data. In [283], the classical RankNet ar-
chitecture is modified to achieve personalized search with the help of deep
models. A recent work [255] concentrates on extracting answer-entailing
structures under the assumption that there is a part of text that explic-
itly explains the answer to a given question. In [269], convolutional neural
networks are used to develop a joint representation for short text pairs.
In a related application to Web search, recurrent networks (both Elman
RNNs and LSTMs) serve as a basis for a click model, where user clicks in
web search results are used to rerank query-document pairs and improve
search results [34].

Domain adaptation is the problem of adapting the models from one
domain to another; in NLP, this means using one kind of texts (e.g., lit-
erary works from the XIX and XX century) to process another kind (e.g.,
user-generated content on the Web) [143]. Unsupervised domain adapta-
tion is usually based on feature cooccurrence statistics; recent methods for
domain adaptation include learning such features via denoising autoen-
coders [50, 240], domain disambiguation techniques to be applied during
the training of word embeddings [29], and learning feature embeddings
for domain features with a model similar to word embeddings [338]. The
domain adaptation problem is also naturally useful for word sense disam-
biguation [244].

§5. Conclusion

In this survey, we have seen plenty of applications for deep neural archi-
tectures in natural language processing. For many problems, approaches
based on modern neural networks have outperformed previous state of the
art techniques, almost the entire field of NLP has already been transformed
by deep learning, and this process will no doubt continue in the future.

However, deep learning for NLP has not yet been quite as revolution-
ary as in some other fields. While in image processing tasks such as face
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recognition recent advances bring neural networks to human-level perfor-
mance [299], nothing even close to that has so far happened for NLP
problems. In our opinion, this is in a big part due to the fact that even
NLP problems that appear purely syntactic on the surface often have deep
semantic implications. For example, let us rephrase a problem from the
Winograd Schema challenge, a competition for commonsense reasoning
models [226], as anaphora resolution. Which noun does the pronoun “it”
refer to in the following sentences:

• the suitcase did not fit in the trunk because it was too big;
• the suitcase did not fit in the trunk because it was too small.

Any human familiar with car trunks and suitcases will have no problem
with parsing these sentences, but syntactically they are absolutely identi-
cal, and a machine learning model would have to know quite a lot about
the actual physical environment to be able to give a better than random
answer.

We believe that commonsense reasoning and capturing this “intuitive”
information that any human learns in the first years of his or her life is
a major obstacle to further NLP progress. It might be one of the keys to
not only superficially passing the Turing test but also achieving true text
understanding, which appears to be a requirement for general artificial
intelligence. But even without these prospects, which for now remain rather
far-fetched, neural networks for natural language processing represent a
burgeoning field where much has been done, more is being done right now,
and yet more remains to be done in the future.
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58. K. Cho, B. van Merrienboer, Ç. Gulçehre, D. Bahdanau, F. Bougares, H. Schwenk,
Y. Bengio, Learning phrase representations using RNN encoder-decoder for sta-
tistical machine translation, Proc. EMNLP 2014, 2014, pp. 1724–1734.

59. F. Chollet, Keras, https://github.com/fchollet/keras, 2015.
60. J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention-based mod-

els for speech recognition, arXiv (2015).
61. J. Chung, K. Cho, Y. Bengio, A character-level decoder without explicit segmen-

tation for neural machine translation, arXiv (2016).
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