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MULTIBRANCHED SURFACES IN 3-MANIFOLDS

Abstract. This article is a survey of recent works on embeddings
of multibranched surfaces into 3-manifolds.

Throughout this article, we will work in the piecewise linear category.
All topological spaces are assumed to be second countable and Hausdorff.

Given a pair (X,Y ) of topological spaces, we regard the following prob-
lems as fundamental ones.

(1) Can X be embedded into Y ?
(2) If X can be embedded into Y , then

(a) In which cases are two embeddings of X into Y equivalent
(with respect to the equivalence relation according to the sit-
uation)?

(b) In what ways can X be embedded into Y ?

In this article, we consider the case where X is a multibranched surface
and Y is a closed orientable 3-manifold.

We say that a 2-dimensional CW complex is a multibranched surface if
removing all points whose open neighborhoods are homeomorphic to the
2-dimensional Euclidean space yields a 1-dimensional complex homeomor-
phic to a disjoint union of simple closed curves.

Multibranched surfaces naturally arise in several areas:

• polycontinuous patterns – a mathematical model of microphase-
separated structures made by block copolymers ([13, 24, 25]),

• 2-stratifolds – as spines of closed 3-manifolds ([17–19]),
• trisections, multisections – as an analog of Heegaard splittings

([16, 28, 38]),
• essential surfaces – as non-meridional essential surfaces in link ex-

teriors ( [9, 10]), essential surfaces in handlebody-knot exteriors
([27]) and in manifolds obtained by Dehn surgeries ([9, 22]).
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The article is organized as follows. In Sec. 1, we define several con-
cepts related to multibranched surfaces. In Sec. 2, we describe some of the
backgrounds for multibranched surfaces. In Sec. 3, we study embeddings
of multibranched surfaces into closed orientable 3-manifolds. In Sec. 4, we
consider multibranched surfaces that cannot be embedded into the 3-sphe-
re.

§1. Preliminaries

1.1. Definition. Let R2
+ be the closed upper half-plane

{(x1, x2) ∈ R2 | x2 > 0}.

The multibranched Euclidean plane, denoted by R2
i (i > 1), is the quotient

space obtained from i copies of R2
+ by identifying their boundaries

∂R2
+ = {(x1, x2) ∈ R2 | x2 = 0}

via the identity map. See Fig. 1 for the multibranched Euclidean plane R2
5.

Figure 1. The multibranched Euclidean plane R2
5.

A second countable Hausdorff space X is called a multibranched surface

if X contains a disjoint union of simple closed curves l1, . . . , ln satisfying
the following:

(1) For each point x ∈ l1∪· · ·∪ ln there exist an open neighborhood U
of x and a positive integer i such that U is homeomorphic to R2

i .
(2) For each point x ∈ X − (l1 ∪ · · · ∪ ln) there exists an open neigh-

borhood U of x such that U is homeomorphic to R2.



MULTIBRANCHED SURFACES IN 3-MANIFOLDS 137

1.2. Construction. To construct a compact multibranched surface, we
prepare a closed 1-dimensional manifold B (corresponding to l1, . . . , ln),
a compact 2-dimensional manifold S (corresponding to the union of the
closures of the components of X−(l1∪· · ·∪ln)), and a map φ : ∂S → B such
that for every connected component c of ∂S, the restriction φ|c : c → φ(c)
is a covering map. Then a multibranched surface X can be constructed
from the triple (B,S;φ) as the quotient space X = B ∪φ S.

A connected component of B, S, or ∂S is said to be a branch, sector,
or prebranch, respectively. The set consisting of all branches or sectors is
denoted by B(X) or S(X), respectively.

1.3. Degrees, oriented degrees, and regularity. For a prebranch c of
a multibranched surface X , the covering degree of φ|c : c → φ(c) is called
the degree of c and denoted by d(c). We give an orientation for each branch
and each prebranch c of X . (In the case where a sector s is orientable and
oriented, the orientations of the prebranches in ∂s are induced by that
of s.) The oriented degree of a prebranch c of X is defined as follows: if
the covering map φ|c : c → φ(c) is orientation-preserving, then the oriented

degree od(c) of c is defined by od(c) = d(c), and if it is orientation-reversing,
then the oriented degree is defined by od(c) = −d(c).

A prebranch c of X is said to be attached to a branch l if φ(c) = l.
We denote by A(l) the set consisting of all prebranches attached to l; the
number of elements of A(l) is called the index of l and denoted by i(l).

A multibranched surface X is regular if for each branch l and each pair
of prebranches c, c′ ∈ A(l), the condition d(c) = d(c′) holds. Let X be
a regular multibranched surface, and let l be a branch of X . Since each
pair of prebranches c, c′ ∈ A(l) has the same degree, the degree of l is well
defined as d(l) = d(c) = d(c′).

1.4. Graph representations. Let X be a compact multibranched sur-
face obtained from (B,S;φ) such that all components of S are orientable
and oriented and have nonempty boundary. (Hereafter, we assume that
the multibranched surfaces under consideration satisfy these conditions
unless otherwise stated.) The multibranched surface X = B ∪φ S has a
graph representation ([10]) defined as follows. Let G = (VS ∪ VB, E) be a
bipartite graph such that |VS | = |S(X)| and |VB | = |B(X)|. To each sector
s ∈ S(X), we assign a vertex v(s) ∈ VS labeled by g(s), where g(s) denotes
the genus of s. To each branch l ∈ B(X), we assign a vertex v(l) ∈ VB .
To a prebranch c ⊂ ∂s, we assign an edge e ∈ E connecting v(s) and
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v(l) and labeled by od(c), where c ∈ A(l). A concept similar to this graph
representation was defined in [17].

Example 1.1. A closed nonorientable surface of crosscap number h can
be regarded as a multibranched surface X with h branches B = l1∪· · ·∪ lh
and a planar surface S with h boundary components such that d(c) = 2
for any prebranch c ⊂ ∂S. Then X has a graph representation G as shown
in Fig. 2.

2 2 2

0

2 2 2

X G

Figure 2. A multibranched surface X and its graph rep-
resentation G.

1.5. Incidence matrices. For a sector s ∈ S(X) and a branch l ∈ B(X)
of a multibranched surface X , we define the algebraic degree d(l; s) as
follows:

d(l; s) =
∑

c∈A(l)∩∂s

od(c).

Then, we define the incidence matrix MX = (aij) (i = 1, . . . , n; j =
1, . . . ,m) by

aij = d(li; sj),

where B(X) = {l1, . . . , ln} and S(X) = {s1, . . . , sm}.

1.6. The first homology group. The multibranched surface obtained
by removing an open disk from each sector except its collar is denoted
by Ẋ.

Theorem 1.2 ( [31, Theorem 4.1]). Let X be a regular multibranched

surface with B(X) = {l1, . . . , ln} and S(X) = {s1, . . . , sm}. Then

H1(X) =

〈

l1, . . . , ln

∣

∣

∣

∣

∣

n
∑

k=1

d(lk; s1)lk, . . . ,

n
∑

k=1

d(lk; sm)lk

〉

⊕ Zr′(X),
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where r′(X) = rankH1(Ẋ)− n.

Therefore, the torsion subgroup of H1(X) can be calculated from the
incidence matrix MX .

Example 1.3. Let X be a multibranched surface with the graph repre-
sentation shown in Fig. 6, where we consider the case of n = 4, gi = 0 (i =
1, 2, 3, 4), and all degrees equal to 1. In [31, Example 4.2], the first homol-
ogy group is calculated by using Theorem 1.2 to be H1(X) = (Z/3Z)⊕Z4.

As we shall see later, the incidence matrix of X is

MX =









0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0









.

This matrix is equivalent to the matrix (3) as follows:








0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0









∼









3 3 3 3
1 0 1 1
1 1 0 1
1 1 1 0









∼









3 0 0 0
1 −1 0 0
1 0 −1 0
1 0 0 −1









∼









3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









∼









3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









∼
(

3
)

.

This shows that the torsion subgroup of H1(X) is Z/3Z.

On the other hand, a natural presentation for the fundamental group of
a 2-stratifold was given in [18]. Thus, we can also obtain the first homology
group via abelianization.

1.7. Circular permutation systems and slope systems. A permu-

tation of a set A is a bijection from the additive group Z/nZ into A. Two
permutations σ and σ′ of A are equivalent if there is an element k ∈ Z/nZ
such that σ′(x) = σ(x+ k) (x ∈ Z/nZ). The equivalence class of a permu-
tation of A is a circular permutation.

For a regular multibranched surface X , we define the “circular permu-
tation system” and “slope system” of X as follows. A circular permuta-
tion of A(l) is called a circular permutation on the branch l. A collection
P = {Pl}l∈L(X) is called a circular permutation system of X if Pl is a cir-
cular permutation on l. For a branch l, a rational number p/q with q = d(l)
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is called a slope of l. A collection {Sl}l∈L(X) is called a slope system of X
if Sl is a slope of l.

1.8. Neighborhoods. Let X = B ∪φ S be a regular multibranched sur-
face, and let P = {Pl}l∈L(X) and S = {Sl}l∈L(X) be a permutation system
and a slope system of X , respectively. We will construct a compact ori-
entable 3-manifold that is uniquely determined up to a homeomorphism
by the pair of P and S, by the following procedure.

First, for each branch l ∈ B(X) and each sector s ∈ S(X), we take a
solid torus l×D2, where D2 is a 2-disk, and take the product s× [−1, 1].
If s is nonorientable, then we take a twisted I-bundle s×̃[−1, 1] over s. We
endow these 3-manifolds with orientations.

Next, we glue them together according to the permutation system P
and the slope system S, where we assign the slope Sl of l to the isotopy
class of a loop kl in ∂(l ×D2), by an orientation-reversing map

Φ: ∂S × [−1, 1] → ∂(B ×D2)

satisfying the condition that for each branch l and each prebranch c with
φ(c) = l, the restriction Φ|c×[−1,1] : c × [−1, 1] → N

(

kl; ∂
(

l ×D2
))

is a
homeomorphism.

Then, we uniquely obtain a compact orientable 3-manifold with bound-
ary, denoted by N(X ;P ,S). The 3-manifold N(X ;P ,S) is called the neigh-

borhood of X with respect to P and S. The set consisting of all neighbor-
hoods of X is denoted by N (X).

§2. Background

2.1. Graphs. A graph G can be regarded as a 1-dimensional CW com-
plex, where a vertex and an edge correspond to a 0-cell and 1-cell, re-
spectively, and the vertices of an edge specify the attaching map for the
1-cell to 0-cells. This structure can be extended to 2-dimensional objects as
in Sec. 1.2, that is, we extend vertices, edges, and the attaching map to a
closed 1-dimensional manifold B (branch), a compact 2-dimensional mani-
fold without closed components S (sector), and a covering map φ : ∂S → B,
respectively. Then a multibranched surface X can be obtained as the quo-
tient space X = B ∪φ S.

Kuratowski ([29]) proved that a graph G as a 1-dimensional CW com-
plex cannot be embedded into R2 if and only if G contains the complete
graph K5 or the complete bipartite graph K3,3 as a subspace. At the
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present time, this result is stated in the following form: G cannot be em-
bedded into R2 if and only if G has K5 or K3,3 as a minor. Robertson
and Seymour ([37]) showed that for any minor-closed property P , the set
of minor-minimal graphs that do not have P is finite. This motivates us
to consider the following problem: Characterize all “minor-minimal” multi-
branched surfaces that cannot be embedded in R3 (Problem 4.1). Since all
closed nonorientable surfaces are minor-minimal multibranched surfaces,
the set of “minor-minimal” multibranched surfaces that cannot be embed-
ded in R3 is infinite. We will give the details in Sec. 4.

2.2. 2-Dimensional complexes. A 2-dimensional CW complex is a mul-
tibranched surface if removing all points whose open neighborhoods are
homeomorphic to R2 yields a 1-dimensional complex homeomorphic to
a disjoint union of simple closed curves. Thus, the set of multibranched
surfaces is a subset of the set of 2-dimensional CW complexes.

Embeddings of 2-complexes into manifolds are widely studied in [23].
Matous̆ek, Sedgwick, Tancer, and Wagner ([30]) showed that there is

an algorithm that, given a 2-dimensional simplicial complex K, decides
whether K can be embedded (piecewise linearly or, equivalently, topolog-
ically) in R3.

Carmesin ([1–5]) proved that a locally 3-connected simply connected
2-dimensional simplicial complex has a topological embedding into the
3-space if and only if it has no space minor from a finite explicit list Z of
obstructions.

2.3. Essential surfaces. The embedding of multibranched surfaces in
the 3-sphere S3 is closely related to the existence of essential surfaces in link
exteriors. Let L be a link in S3, and let F be an essential surface properly
embedded in the exterior E(L) of L whose boundary ∂F is non-meridional.
By shrinking the regular neighborhood N(L) into L and extending F along
it, we obtain an essential multibranched surface X embedded in S3, where
we say that a multibranched surface X with branches B and sectors S em-
bedded in S3 is essential if S ∩ E(B) is essential, namely, incompressible,
boundary-incompressible, and not boundary-parallel in E(B). Conversely,
let X be an essential multibranched surface with branches B and sectors S
embedded in S3. Then B is a link in S3 and S∩E(B) is an essential surface
properly embedded in E(B) whose boundary is non-meridional. Therefore,
the set of all pairs (L, F ) of a link L in S3 and an essential surface F prop-
erly embedded in the exterior of L whose boundary ∂F is non-meridional
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coincides with the set of all essential multibranched surfaces embedded
in S3.

2.4. The fundamental problem. The Menger–Nöbeling theorem ([7,
Theorem 1.11.4]) shows that any finite 2-dimensional CW complex can be
embedded in R5. Furthermore, any multibranched surface can be embed-
ded in R4 ([31, Proposition 2.3]). More generally, any finite 2-dimensional
simplicial complex whose intrinsic 1-skeleton is a proper subset of K7 em-
beds in R4 ([14]).

If for a branch l there exist prebranches c, c′ ∈ A(l) such that d(c) 6=
d(c′), then the multibranched surface embeds in no 3-manifold. The con-
verse also holds; namely, we have shown that a multibranched surface can
be embedded in some closed orientable 3-manifold if and only if the multi-
branched surface is regular ([36, Corollary 2.4], [31, Proposition 2.7]).

We remark that any 3-manifold can be embedded in R5 ([43]). Thus, we
obtain the following diagram showing the embeddability of multibranched
surfaces (Fig. 3).

2-dimensional CW complex

multibranched surface

surface
regular multibranched 3-manifold

Figure 3. The embeddability of multibranched surfaces.

The following problems are fundamental for embeddings of multibran-
ched surfaces.

Problem 2.1. For a regular multibranched surface X , find a simplest
closed orientable 3-manifold M in which X can be embedded. Moreover,
determine the minimal Heegaard genus of such a 3-manifold M .

Problem 2.2. For a regular multibranched surface X , determine whether
or not X can be embedded in the 3-sphere S3.

We consider Problem 2.1 in Sec. 3 and Problem 2.2 in Sec. 4.
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§3. Embeddings into 3-manifolds

3.1. The Heegaard genus. For a closed orientable 3-manifold M , the
Heegaard genus is a fundamental index. The Heegaard genus g(M) of M
is defined as the minimal genus of a closed orientable surface F embedded
in M such that F separates M into two orientable handlebodies.

For an orientable compact 3-manifold N with boundary, the minimal
Heegaard genus of closed orientable 3-manifolds in which N can be em-
bedded is denoted by eg(N) and called the embeddable genus of N . We
remark that eg(N) 6 g(N) ([31, Proposition 3.1]), where g(N) denotes
the minimal genus of Heegaard splittings of N in the sense of Casson and
Gordon ([6]).

For a regular multibranched surface X , we define the minimum genus

min g(X) and maximum genus max g(X), respectively, as follows:

min g(X) = min{eg(N) | N ∈ N (X)},

max g(X) = max{eg(N) | N ∈ N (X)}.

3.2. Upper bounds. The inequalities in the following theorem give up-
per bounds for the minimum and maximum genera. In fact, Theorem 3.5
of [31] states only that min g(X) 6 |B(X)|+ |S(X)|, but its proof is still
effective for max g(X) and implies the latter half.

Theorem 3.1 ( [31, Theorem 3.5]). If X is a regular multibranched sur-

face, then

max g(X) 6 |B(X)|+ |S(X)|.

Moreover, if the degree of each branch of X is 1, then

max g(X) 6 |S(X)|.

Remark 3.2. In the proof of [31, Theorem 3.5], it is shown that X can
be embedded in a connected sum of |B(X)| lens spaces and |S(X)| copies
of S2×S1. Yuya Koda asked me whether any closed orientable 3-manifold
contains a minimal genus embedding of some multibranched surfaces.

The next theorem follows from the two cited results and gives an es-
timate for the embeddable genus of a neighborhood of a regular multi-
branched surface.

Theorem 3.3 ( [31, Theorem 3.6], [11, Lemma 2.2]). If X is a regular

multibranched surface and N ∈ N (X) is a neighborhood of X, then

rankH1(X)− g(∂N) 6 eg(N) 6 rankH1(GN ) + g(∂N),
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where GN denotes the abstract dual graph of N and g(∂N) is the sum of

the genera of all components of ∂N .

3.3. Lower bounds. The following lower bounds for the minimum and
maximum genera are known.

Theorem 3.4 ([11], cf. [40, Theorem 1.3]). If X is a regular multibranched

surface, then

min g(X) > rankH1(X)− max
N∈N (X)

g(∂N), (3.1)

max g(X) > rankH1(X)− min
N∈N (X)

g(∂N). (3.2)

3.4. The graph product G × S1. For a graph G, we obtain a regular
multibranched surface by taking the product with S1. We consider the
genus of a regular multibranched surface that forms G × S1 and, using
Theorem 3.4, obtain the following theorem, which shows an interplay be-
tween the genus of a graph G and the genus of the multibranched surface
G× S1.

The minimum genus min g(G) of a graph G is defined as the mini-
mal genus of closed orientable surfaces in which G can be embedded. The
maximum genus max g(G) of a graph G is defined as the maximal genus of
closed orientable surfaces in which G can be embedded so that the comple-
ment of G consists of open disks. It is remarkable that Xuong and Nebeský
determined the maximum genus of a graph by a completely combinatorial
formula ([44, Theorem 3], [33, Theorem 2]).

Theorem 3.5 ([40, Corollary 1.2], [11]). If G is a graph, then

min g(G× S1) = 2min g(G), (3.3)

max g(G× S1) = 2max g(G). (3.4)

In [40, Corollary 1.2], it was shown that the minimum of dimH1(M ;F),
where F = Zp or Q, for a closed orientable 3-manifold M containing G×S1

is equal to 2min g(G). It is well known that g(M) > dimH1(M ;F ). Hence,
the inequality min g(G× S1) > 2min g(G) in Theorem 3.5 holds.

3.5. Spines of closed 3-manifolds. A multibranched surface X is called
a 2-stratifold if each prebranch c of X satisfies d(c) > 2. Gómez-Larrañaga,
González-Acuña, and Heil studied 2-stratifolds from the viewpoint of 3-ma-
nifold groups. They asked the following questions.
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Question 3.6. Which 3-manifolds have fundamental groups isomorphic
to the fundamental group of a 2-stratifold?

Question 3.7. Which closed 3-manifolds have spines that are 2-stratifolds?

Recall that a subpolyhedron P of a 3-manifold M is a spine of M if
M − int(B3) collapses to P , where B3 is a 3-ball in M . An equivalent
definition is that M − P is homeomorphic to an open 3-ball.

Gómez-Larrañaga, González-Acuña, and Heil completely answered these
questions.

Theorem 3.8 ([19, Theorem 1]). Let M be a closed 3-manifold and XG be

a 2-stratifold. If π1(M) ∼= π1(XG), then π1(M) is a free product of groups

where each factor is cyclic or Z× Z2.

Theorem 3.9 ([19, Theorem 2]). A closed 3-manifold M has a 2-stratifold
as a spine if and only if M is a connected sum of lens spaces, S2-bundles

over S1, and copies of P 2 × S1.

3.6. The neighborhood equivalence. In this subsection, we assume
that a multibranched surface is regular, has no disk sectors, and the degree
is greater than 2 for each branch. Let A be either an annulus sector of
X whose boundary consists of two branches with at least one branch of
degree 1 or a Möbius-band sector of X whose boundary has degree 1. An
IX-move along A is a transformation shrinking A into the core circle, and
an XI-move is a transformation reverse to an IX-move.

If two multibranched surfaces X and X ′ embedded in a 3-manifold M
are related by IX-moves and XI-moves, then the regular neighborhoods
N(X) and N(X ′) are isotopic in M . The following theorem states that
the converse holds.

Theorem 3.10 ([26]). Let X and X ′ be two multibranched surfaces em-

bedded in an orientable 3-manifold M . If N(X) is isotopic to N(X ′) in

M , then X can be transformed into X ′ by a finite sequence of IX-moves,

XI-moves, and isotopies.

For a larger class, the Matveev–Piergallini theorem is known: two simple
polyhedra embedded in a 3-manifold have isotopic neighborhoods if and
only if they are connected by a sequence of 2 ↔ 3 moves, 0 ↔ 2 moves,
and isotopies ([32, 35]).

3.7. Neighborhood partial orders. Let X be an essential multibran-
ched surface embedded in a closed orientable 3-manifold M . We say that
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a sector s of X is excessive if s is boundary-parallel in M − intN(X − s).
A multibranched surface X is said to be efficient if every sector is not
excessive.

In this subsection, we restrict multibranched surfaces to the set X of all
connected compact multibranched surfaces X embedded in a closed ori-
entable 3-manifold M satisfying the following conditions: X is maximally
spread (that is, no XI-move is applicable to X), essential, and efficient in
M , and has neither open disk sectors nor branches of degree less than 3.

Under the influence of Theorem 3.10, we define an equivalence relation
on X as follows. Two multibranched surfaces X and X ′ in X are neighbor-

hood equivalent, denoted by X
N
∼ X ′, if X can be transformed into X ′ by

a finite sequence of IX-moves and XI-moves. Moreover, we define a binary
relation 6 over X as follows. (As in Sec. 1.2, put X = BX ∪φX

SX and
Y = BY ∪φY

SY ; where by using the same symbols we assume that BX ,
SX , BY , SY are embedded in M .)

Definition 3.11. For X = BX ∪φX
SX and Y = BY ∪φY

SY in X , we set
X 6 Y if

(1) there exists an isotopy of Y in M such that Y ⊂ N(X) and BY ⊂
N(BX), and

(2) there exists no essential annulus in N(X)− Y .

We define the neighborhood partial order � over the set X/
N
∼ by setting

[X ] � [Y ] if X 6 Y for equivalence classes [X ] and [Y ] in X/
N
∼.

Theorem 3.12 ([34]). The relation � on the set X/
N
∼ is well defined,

and (X/
N
∼;�) is a partially ordered set.

We say that BX is toroidal if there exists an essential torus T in the
exterior E(BX) of BX in M , that is, T is incompressible in E(BX) and T
is not parallel to a torus in ∂E(BX). We say that EX is cylindrical, where
EX stands for E(BX)∩X , if there exists an essential annulus A in E(BX)
with A∩X = A∩EX = ∂A, that is, A is incompressible and A is parallel
to neither an annulus in EX nor an annulus in ∂E(BX).

Theorem 3.13 ([34]). Let [X ] and [Y ] be equivalence classes in X/
N
∼. If

[X ] � [Y ] and [X ] 6= [Y ], then either BY is toroidal or EY is cylindrical.

Theorem 3.13 provides a sufficient condition for an equivalence class

[X ] ∈ X/
N
∼ to be minimal with respect to the partial order of (X/

N
∼;�),

that is, if BX is atoroidal and EX is acylindrical, then [X ] is minimal.
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3.8. Essential decompositions and Eudave-Muñoz knot types.

Let X be a multibranched surface embedded into the 3-sphere S3, and let
V1, . . . , Vn be the regions into which X decomposes S3. If X is essential,
then we call this decomposition S3 = V1 ∪ · · · ∪ Vn an essential decom-

position. As explained in Sec. 2.3, a link with an essential surface of non-
meridional boundary slope gives an essential decomposition.

In this subsection, we recall the concept of Eudave-Muñoz knots ([9]) in
the language of multibranched surfaces. Let X be a multibranched surface
having a two-holed torus as a unique sector s and a single branch l such that
one prebranch c has od(c) = 2 and another prebranch c′ has od(c′) = −2.

Suppose that X is embedded in S3 so that it is essential and the two
regions of S3 − X are genus two handlebodies, say H and W . Then, by
combining [9] with [22], the branch l forms an Eudave-Muñoz knot. From
the point of view that any essential embedding restricts the knot type
of the branch, this phenomenon is special for low-dimensional geometric
topology.

Eudave-Muñoz knots appear in the last piece of the classification of es-
sential annuli in the exterior of genus two handlebody-knots in the 3-sphere
S3 ([27]). We take a regular neighborhood N(l) and denote two handlebod-
ies S3 −N(l)− s by H and W again. See Fig. 4 for the configuration. Put
A = N(l)∩W . Then H is a genus two handlebody-knot with an essential
annulus A of type 4 in [27].

Figure 4. The (1, 2, 2; 2)-trisection coming from Eudave-
Muñoz knots.

The configuration shown in Fig. 4 also provides a nice example of a
trisection. Let X ′ be a multibranched surface having two branches b∪ b′ =
N(l) ∩ H ∩ W and three sectors s1 = H ∩W , s2 = N(l) ∩ H , and s3 =
N(l)∩W . Then X ′ gives an essential decomposition S3 = N(l) ∪H ∪W ,
where the triple of genera of three handlebodies is (1, 2, 2) and the number
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of branches is 2. Thus, this gives a (1, 2, 2; 2)-trisection of S3. Moreover, it
is shown in [28, Proposition 4.7.1] that this trisection is not a stabilization
of any other trisection.

3.9. Efficient embeddings and universal bounds. Recall the relation
between essential surfaces in link exteriors and essential multibranched sur-
faces from Sec. 2.3, and the definition of efficient embedding from Sec. 3.7.
Suppose that X is an essential and efficient multibranched surface embed-
ded in a 3-manifold. Then we have a link and essential surfaces in the link
exterior, and, moreover, no two essential surfaces are mutually parallel.

Let X be a multibranched surface with a single branch and precisely n
sectors each of which is a one-holed torus with oriented degree 1. Suppose
that X is embedded in S3 so that it is essential and efficient and the
branch forms a hyperbolic knot. Then we have a hyperbolic knot bounding
n pairwise nonparallel Seifert surfaces of genus 1. Tsutsumi first showed
that the number n is at most 7 ([41]). After that, Eudave-Muñoz, Ramı́rez-
Losada, and Valdez-Sánchez showed that n is at most 6 and provided an
example of such an embedding of X for n = 5 ( [12]). Finally, Valdez-
Sánchez showed that n is at most 5 ([42]) and, therefore, this bound is
optimal.

This phenomenon is also special for low-dimensional geometric topol-
ogy. Typically, contrary to the above, there is no upper bound. Tsutsumi
showed that for any positive integer n there is a genus one hyperbolic
knot in S3 that bounds pairwise nonparallel incompressible Seifert surfaces
S, F1, . . . , Fn, where S is of genus 1 and Fi is of genus 2 ([41, Theorem 5.5]).

§4. Forbidden minors for S3

4.1. Minors and obstruction sets. In this subsection, we allow the
degree d(Bi) of a branch Bi to be 1 or 2.

We denote by M the set of all regular multibranched surfaces (modulo
homeomorphism). For X and Y in M, we write X < Y if X is obtained
from Y either by an IX-move or by removing a sector of Y . We define
an equivalence relation ∼ on M as follows: if X < Y and Y < X , then
X ∼ Y .

We define a partial order ≺ on M/ ∼ as follows. Let X , Y ∈ M. We
set [X ] ≺ [Y ] if there exists a finite sequence X1, . . . , Xn ∈ M such that
X1 ∼ X , Xn ∼ Y , and X1 < · · · < Xn.
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A multibranched surface class [X ] is called a minor of another multi-
branched surface class [Y ] if [X ] ≺ [Y ]. In particular, [X ] is called a proper

minor of [Y ] if [X ] ≺ [Y ] and [Y ] 6= [X ]. A subset P of M/ ∼ is said to
be minor-closed if for any [X ] ∈ P , every minor of [X ] belongs to P . For
a minor-closed set P , we define the obstruction set Ω(P) as the set of all
elements [X ] ∈ M/ ∼ such that [X ] 6∈ P and every proper minor of [X ]
belongs to P .

The set of all multibranched surfaces embeddable into S3, denoted by
PS3 , is minor-closed. As a 2-dimensional version of Kuratowski’s and Wag-
ner’s theorems, we consider the following problem.

Problem 4.1. Characterize the obstruction set Ω(PS3).

We summarize all known results on Ω(PS3) at the present moment.
As we shall see later, (2) and (3) in Theorem 4.2 are infinite families of
multibranched surfaces; we shall explain the notation X1, X2, X3, and
Xg(p1, . . . , pn) only after stating Theorem 4.2.

Theorem 4.2. The following multibranched surfaces belong to Ω(PS3):

(1) K5 × S1 and K3,3 × S1 ([39]),
(2) all multibranched surfaces of the forms X1, X2, and X3 ([8]),
(3) all multibranched surfaces of the form Xg(p1, . . . , pn) ([31]).

Remark 4.3. (1) Since any proper minor of K5 and K3,3 is planar, any
proper minor of K5×S1 and K3,3×S1 can be embedded in D2×S1 ⊂ S3.

(2) We say that a multibranched surface X is critical for S3 if X cannot
be embedded in S3 and X − x can be embedded in S3 for any x ∈ X . It is
shown in [8] that all multibranched surfaces of the forms X1, X2, and X3

are critical for S3.
(3) Since each multibranched surface of the form Xg(p1, . . . , pn) has a

single sector, the minimality for PS3 naturally holds.

Theorem 4.2 (1) was proved in [39, Theorem 1]. It also follows from
Theorem 3.5 and Kuratowski’s and Wagner’s theorems.

The families of multibranched surfaces of the forms X1, X2, and X3 in
Theorem 4.2 (2) are defined as follows.

Let X1 be a multibranched surface having a single branch and obtained
from a single sector of genus g with precisely n boundary components by
a covering map of degree ǫi on each prebranch. See Fig. 5 for a graph
representation. We assume that ǫi = ±p for the regularity of X1. Then

the incidence matrix is MX1
=

(

n
∑

i=1

ǫi
)

. If
∣

∣

n
∑

i=1

ǫi
∣

∣ > 1, then H1(X1) has
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torsion and X1 cannot be embedded in S3. Conversely, if
∣

∣

n
∑

i=1

ǫi
∣

∣ 6 1, then,

by [8, Theorem 3.2], X1 can be embedded in S3. Hence, X1 ∈ Ω(PS3) if

and only if
∣

∣

n
∑

i=1

ǫi
∣

∣ > 1.

Figure 5. A graph representation of X1.

Let X2 be a multibranched surface having a graph representation of the
form shown in Fig. 6, where n > 3 and all degrees are 1 (we omit the labels
on edges). Then, by [8, Theorem 3.3], X2 ∈ Ω(PS3).

Figure 6. A graph representation of X2.
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The incidence matrix of X2 is

MX2
=



















0 1 · · · · · · 1

1 0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1
1 · · · · · · 1 0



















.

Since det(MX2
) = (−1)n+1(n − 1) and n > 3, it follows that H1(X2) has

torsion.
Let X3 be a multibranched surface having a graph representation of

the form shown in Fig. 7, where n > 2, ki > 1, k1k2k3 · · · kn > 3, and
all degrees are 1 unless otherwise specified. Then, by [8, Theorem 3.7],
X3 ∈ Ω(PS3).

Figure 7. A graph representation of X3.

The incidence matrix of X3 is

MX3
=

























k1 0 · · · · · · 0 −1

−1 k2 0
. . .

. . . 0

0 −1 k3
. . .

. . .
...

... 0 −1
. . .

. . . 0
...

. . .
. . .

. . . kn−1 0
0 · · · · · · 0 −1 kn

























.

Since det(MX3
) = k1k2k3 · · · kn−1 > 2, it follows that H1(X3) has torsion.
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The multibranched surface Xg(p1, . . . , pn) in Theorem 4.2 (3) was first
presented in [31, Example 4.3]. Let Xg(p1, . . . , pn) be a multibranched
surface having a graph representation of the form shown in Fig. 8, where
n > 1 and p = gcd{p1, . . . , pn} > 1. As we have seen in Example 1.1,
a closed nonorientable surface of crosscap number n is homeomorphic to
X0(2, . . . , 2).

Figure 8. A graph representation of Xg(p1, . . . , pn).

As shown in [31, Example 4.3], we have

H1(Xg(p1, . . . , pn)) = (Z/pZ)⊕ Z2g+n−1.

Hence, Xg(p1, . . . , pn) cannot be embedded in S3, since p > 1.

4.2. Beyond torsion. In the previous subsection, we conclude that some
multibranched surfaces cannot be embedded in S3 because of the torsion
part of the first homology group. We recall that Xg(p1, . . . , pn) in Theo-
rem 4.2 (3) cannot be embedded in S3 if p = gcd{p1, . . . , pn} > 1. Then,
the following inverse problem naturally arises.

Problem 4.4 ([31, Problem, p. 631]). If p = 1, then can Xg(p1, . . . , pn)
be embedded in S3?

The following theorem gives a partial answer to Problem 4.4.

Theorem 4.5 ( [10, Theorem 1.5]). If p = 1, then Xg(p1, p2, p3) can be

embedded in S3 for a sufficiently large g.

But what can we say about Problem 4.4 when g = 0? This is re-
lated to a main theme in [10]. In [10], we characterized nonhyperbolic
3-component links, in the 3-sphere, whose exteriors contain essential
3-holed spheres with non-integral boundary slopes. This implies that we
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can derive a formula for the triple p1, p2, p3 ([10, Proposition 1.4]). For
hyperbolic links, we conjectured the following.

Conjecture 4.6 ([10, Conjecture 1.1], cf. [20,21]). There does not exist an
essential n-punctured sphere with non-meridional, non-integral boundary
slope in a hyperbolic link exterior in the 3-sphere.

It can be checked that the triple (5, 7, 18) does not satisfy the formula
in [10, Proposition 1.4]. Therefore, assuming Conjecture 4.6, we conclude
that X0(5, 7, 18) cannot be embedded in S3.

On the other hand, if we allow embeddings in 3-manifolds other than S3,
then Problem 4.4 holds. We use a result of [15] that a compact 3-manifold
M with connected boundary can be embedded in a homology 3-sphere if
and only if H1(M) is free and H2(M) = 0. Since for a unique neighborhood
N ∈ N (Xg(p1, . . . , pn)), H1(N) is free and H2(N) = 0 when p = 1, we
have the following.

Theorem 4.7. If p = 1, then Xg(p1, . . . , pn) can be embedded in a homol-

ogy 3-sphere.

§5. The prospects

The author would like to conclude this survey article by stating the
following prospects.

Firstly, it is important to characterize essential and efficient decompo-
sitions of S3, where we say that a decomposition S3 = V1 ∪ · · · ∪ Vn by a
multibranched surface X is efficient if X is efficient. This can be applied
to polycontinuous patterns, trisections, essential surfaces as stated in the
introduction.

Secondly, it is a fundamental problem to characterize the obstruction
set Ω(PS3). This problem has a difficulty as stated in Sec. 4.2, but it is
also of interest for Conjecture 4.6.
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