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ON SEMI-RECONSTRUCTION OF GRAPHS OF

CONNECTIVITY 2

Abstract. Recall that the deck of a graph G is the collection of
subgraphs G− v for all vertices v of the graph G. We prove that at
most two graphs of connectivity 2 and minimal degree at least 3 can
have the same deck. Let D(G) be a deck of a 2-connected graph G.
We describe an algorithm which construct by the deck D(G) of a
2-connected graph G with minimal degree at least 3 two graphs
G1, G2 such that G ∈ {G1, G2}.

§1. Introduction

1.1. Definitions and notation. We consider graphs without loops and
multiple edges and use the standard notation. For a graph G, we denote
the set of its vertices by V (G) and the set of its edges by E(G). We use
the notation v(G) for the number of vertices of G.

For a vertex x ∈ V (G), we denote by dG(x) its degree in the graph G.
The minimal vertex degree of G is denoted by δ(G).

Let NG(w) denote the neighborhood of a vertex w ∈ V (G) (i.e. the set
of all vertices of the graph G, adjacent to w).

We say that a vertex u ∈ V (G) is adjacent to a set W ⊂ V (G) if u /∈W
and u is adjacent to a vertex of W .

For a subset W of V (G), we denote by G(W ) the induced subgraph of G
on the set W .

A xy-path is a simple path between the vertices x and y. We say that
k different xy-paths are independent if any two of them have no common
inner vertex.

Definition 1. Let R ⊂ V (G) ∪ E(G).
1) We denote by G−R the graph obtained from G upon deleting all

vertices and edges of the set R and all edges incident to vertices of R. The
set R is a cutset if the graph G−R is disconnected.

If R is a cutset, R ⊂ V (G) and |R| = k then R is called a k-cutset.
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2) The connectivity κ(G) of a graph G is the minimal size of its vertex
cutset. A graph G is k-connected if v(G) > k and κ(G) > k (i.e. G has no
vertex cutset of size less than k).

3) Let X,Y ⊂ V (G). We say that R separates X from Y if X 6⊂ R,
Y 6⊂ R and there is no path from X \R to Y \R in G−R.

4) For X ⊂ V (G), we say that R splits X if X 6⊂ R and the set X \ R
is disconnected in graph G−R.

For x, y ∈ V (G), we denote by G + xy the graph obtained from G by
adding the edge xy. (If xy ∈ E(G) then G+ xy = G.)

Definition 2. Let G and H be two graphs with the same number of
vertices. A graph isomorphism ϕ : G→ H is a bijection ϕ : V (G) → V (H)
such that

xy ∈ E(G) ⇐⇒ ϕ(x)ϕ(y) ∈ E(H)

for all x, y ∈ V (G). In this case, we say that the graphs G and H are
isomorphic and denote this by G ≃ H .

Definition 3. Let G be a graph with V (G) = {v1, . . . , vn}. Then the deck
D(G) is the collection of graphs G− v1, . . . , G− vn.

Remark 1. 1) Note that some graphs in D(G) may coincide.
2) In this paper, dealing with collections (not sets) of objects, we will

use notations like the following: D(G) = {G− v : v ∈ V (G)}.

1.2. The history and the main results. The Graph Reconstruction
Conjecture formulated by Kelly [1] and Ulam [2] is well known.

Conjecture. If both graphs G and H have at least 3 vertices and D(G) =
D(H) then G ≃ H.

Note that several graph parameters can be reconstructed from D(G) for
graphs on at least 3 vertices: the number of vertices and the number of
edges, the collection of vertex degrees of G, the connectivity κ(G).

The Reconstruction Conjecture is rather simple for disconnected graphs.
In 1957, Kelly [1] proved this conjecture for trees. In 1969, Bondy [4]
proved the Reconstruction Conjecture for graphs of connectivity 1 without
pendant vertices. Finally, in 1988, Yongzhi [5] proved the Conjecture for
all graphs which are not 2-connected. No results for 2-connected graphs
are known now.

This paper can be considered as a beginning of studying reconstruction
of graphs of connectivity 2. We will prove that at most two graphs of
connectivity 2 and minimal degree at least 3 can have the same deck.
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In general, the proof of our result follows Bondy’s way [4]. However, in-
stead of the classic tree of blocks and cutpoints we need a similar tree BT(G)
which shows the structure of decomposition of a 2-connected graphG by its
2-cutsets. For the first time, such a tree was presented in 1966 by Tutte [3].
We will define the tree BT(G) in detail in Section 2.2 and list its prop-
erties that we need. This tree is an important characteristics of graphs of
connectivity 2 and also can be reconstructed from D(G).

The following theorem is the main result of our paper.

Theorem 1. Let G be a graph with κ(G) = 2 and δ(G) > 3. Then, having
D(G), we can find a pair of graphs G1, G2 such that BT(G1) = BT(G2)
and G ∈ {G1, G2}.

Let’s discuss the obstacle in reconstruction of graphs of connectivity 2.

Definition 4. Let G′, G′′ be two graphs such that V (G′) ∩ V (G′′) = T
and let ψ : T → T be a bijection. To glue the graphs G′ and G′′ by the
set T is to identify each vertex a ∈ T of the graph G1 with the vertex
ψ(a) ∈ T of the graph G2.

Let induced subgraphs H ′ and H ′′ of G be such that V (H ′)∪V (H ′′) =
V (G) and V (H ′) ∩ V (H ′′) = T . Assume that we know the graphs H ′

and H ′′ and the set T is marked in both these graphs. If |T | = 1 then we
can easily glue the graph G from H ′ and H ′′. In the case |T | = 2, there
are two ways of gluing together H ′ and H ′′ by the set T (see figure 1).
Unfortunately, the problem of how two distinguish two such graphs G1

and G2 by their decks is not trivial.
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Figure 1. Two ways of gluing by a 2-vertex cutset.
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At the end of this paper, we will formulate a theorem which describes
the non-uniqueness which probably can appear in the reconstruction of
graphs of connectivity 2. The formulation of this Theorem is not very
elegant, but we hope that it will help to prove that, really, every graph of
connectivity 2 can be uniquely reconstructed from its deck.

§2. Necessary tools

We need to describe the structure of decomposition of a 2-connected
graph by its 2-cutsets. We define the decomposition tree of a 2-connected
graph as in [9]. In general, this structure is similar to Tutte’s one [3]. Let’s
start with the decomposition of a graph by a set of cutsets [7].

2.1. The decomposition of a graph by a set of cutsets. In this
section, k > 2 and G is a k-connected graph. Denote by Rk(G) the set of
all k-cutsets of G.

Definition 5. Let S ⊂ Rk(G).
1) A set A ⊂ V (G) is a part of decomposition of G by S if no cutset of

S splits A and A is a maximal up to inclusion set with this property. By
Part(G;S), we denote the set of all parts of decomposition of G by S.

2) Let A ∈ Part(G;S). A vertex of A is inner if it does not belong to
any cutset of S. The set of all inner vertices of the part A is called the
interior of A, which is denoted by Int(A).

The boundary of A is the set Bound(A) = A \ Int(A).
3) For a set S ∈ Rk(G), we will write simply Part(G;S) instead of

Part(G; {S}).

It is clear that if two parts of Part(G;S) have nonempty intersection
then their intersection is a subset of a certain cutset of S.

Lemma 1 ([8, Theorem 2 and Corollary 2]). Let G be a k-connected graph
and S,T ⊂ Rk(G).

1) Let A ∈ Part(G;S). Then Bound(A) consists of all vertices of the
part A which are adjacent to V (G) \ A. If Int(A) 6= ∅ then Bound(A)
separates Int(A) from V (G) \A.

2) Assume that A ∈ Part(G;S) and A ∈ Part(G;T). Then the boundary
of A as a part of Part(G;S) coincides with the boundary of A as a part of
Part(G;T).
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Thus, the notions of the boundary and the interior of a part of de-
composition do not depend on the set of cutsets S. Hence, the notation
Bound(A) and Int(A) without referring to the set of cutsets is correct.

A part of Part(G;S) can be represented as an intersection of parts of
decomposition of G by cutsets of S.

Lemma 2 ([8, Theorem 1]). Let S = {S1, . . . Sn} ⊂ Rk(G). Then

Part(G;S) consists of maximal up to inclusion sets of type
n⋂

i=1

Ai where

Ai ∈ Part(G;Si).

Lemma 3 ([8, Corollary 1]). Let S,T ⊂ Rk(G) and let a part A ∈ Part(S)
be such that no cutset of T splits A. Then A ∈ Part(S ∪ T).

Definition 6. Let G be a k-connected graph, T ∈ Rk(G) and let U be a
union of several (maybe, one, but not all) parts of Part(G;T ). Then U is
a T -fragment and G(U) is a T -subgraph of G.

The interior Int(U) is the union of the interiors of all parts of Part(G;T )
which union is U .

If T = {a, b} then, for a T -subgraph H , we will use the notation H+ =
H + ab.

Remark 2. Let G be a k-connected graph and let U be a T -fragment for
T ∈ Rk(G). Then the set T is uniquely determined by U : by Lemma 1, T
consists of all vertices of U which are adjacent to V (G) \ U .

Definition 7. Two cutsets S, T ∈ Rk(G) are independent if S does not
split T and T does not split S. Otherwise, these sets are dependent.

In [6], it is proved that, for a k-connected graph G and cutsets S, T ∈
Rk(G), only two variants are possible: either S and T are independent, or
each of them splits the other.

Lemma 4 ([8, Lemma 1]). Assume that S, T ∈ Rk(G), A ∈ Part(G;S)
and B ∈ Part(G;T ) are such that A ⊃ T and B ⊃ S. Then S and T are
independent and A contains the union of all parts of Part(G;T ), except
for B.

2.2. The decomposition of a 2-connected graph and its proper-

ties. In this section, G is a 2-connected graph. We will list some definitions
and results proved before and, after that, we will prove several new lemmas.

Definition 8. 1) A cutset S ∈ R2(G) is single if S is independent with all
other cutsets of R2(G). Denote by O(G) the set of all single cutsets of G.
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2) We will write simply Part(G) instead of Part(G;O(G)) and will call
these parts simply parts of G.

Lemma 5 ([9, Lemma 6]). Let S = {a, b} ∈ R2(G) be a non-single cutset.
Then |Part(S)| = 2 and, for every part A ∈ Part(S), the graph G(A) has
a cutpoint which separates a from b.

Lemma 6. Let S = {a, b} ∈ R2(G). Then S ∈ O(G) if and only if
there exist three independent ab-paths in G. In particular, dG(a) > 3 and
dG(b) > 3.

Proof. Clearly, the existence of three independent ab-paths in G is equiva-
lent to the fact that no cutset of R2(G) separates a from b i.e. is dependent
with S. �

Definition 9. The decomposition tree BT(G) of a 2-connected graph G is
a bipartite graph with bipartition (O(G),Part(G)), where a single cutset S
and a part A are adjacent if and only if S ⊂ A.

The following lemma is a particular case of Theorem 1 of [9].

Lemma 7. For a 2-connected graph G, the following statements hold.
1) BT(G) is a tree. Every leaf of BT(G) corresponds to a part of Part(G).
2) For any S ∈ O(G), dBT(G)(S) = |Part(G;S)|. Moreover, for any

part A ∈ Part(G;S), there exists exactly one part B ∈ Part(G) such that
B ⊂ A and B is adjacent to S in BT(G).

3) Let B,B′ ∈ Part(G). Then a cutset S ∈ O(G) separates B from B′

in G if and only if S separates B from B′ in BT(G).

Definition 10. A part A ∈ Part(G) is pendant if it corresponds to a leaf
of the tree BT(G).

Remark 3. 1) If A ∈ Part(G) is a pendant part then Bound(A) ∈ O(G).
2) Interiors of two distinct parts of Part(G) are disjoint.

Definition 11. 1) For a 2-connected graph G, we denote by G′ the graph
obtained from G upon adding all edges of type ab where {a, b} ∈ O(G).

2) Let A ∈ Part(G). If G′(A) is a 3-connected graph then A is called a
3-block. If the graph G′(A) is a cycle then A is called a cycle and |A| is the
length of A.

Lemma 8 ([10, Lemma 2]). For a 2-connected graph G, the following
statements hold.

1) Every part of Part(G) is either a cycle or a 3-block.
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2) If A ∈ Part(G) is a cycle then all vertices of Int(A) have degree 2 in
the graph G. If δ(G) > 3 then all pendant parts of Part(G) are 3-blocks.

3) Let A ∈ Part(G) be a cycle of length at least 4. Then any pair of
its non-neighboring vertices form a non-single cutset of the graph G. All
non-single cutsets of G are of such type.

Lemma 9 ([11, Lemma 3]). If B ∈ Part(G) is a 3-block and w ∈ Int(B)
then the graph G− w is 2-connected.

Lemma 10 ([12, Lemma 5]). Let S = {a, b} ∈ R2(G) and D ∈ Part(G;S).
Then one of the two following statements holds.

1◦. G(D) is an ab-path.
2◦. There exists a pendant part A ∈ Part(G) such that Int(A) ⊂ Int(D).

Corollary 1. Let S ∈ O(G) and D ∈ Part(G;S). Then there exists a
pendant part A ∈ Part(G) such that Int(A) ⊂ Int(D).

Proof. If statement 1◦ of Lemma 10 holds then D is a pendant part
of Part(G). If statement 2◦ of Lemma 10 holds then we are done. �

Lemma 11. A set B ⊂ V (G) is a pendant 3-block of G if and only if
there exists a set T ⊂ B such that T ∈ R2(G), B is a T -fragment and the
graph G(B)+ is 3-connected.

Proof. ⇒. A consequence of definitions of a 3-block and a pendant part.
⇐. By Lemma 5, T ∈ O(G). SinceG(B)+ is 3-connected,B ∈ Part(G;T )

and no cutset S ∈ O(G) splits B. By Lemma 3, then B ∈ Part(G). Thus,
B is a 3-block. By Lemma 1, Bound(B) = T . Hence, B is a pendant
3-block. �

We need to study how pendant 3-blocks of a 2-connected graph with
minimal degree 3 are changed after deleting an inner vertex of one of them.

Lemma 12. Assume that δ(G) > 3, B is a pendant 3-block of G, T =
Bound(B) and x ∈ Int(B). Then the following statements hold.

1) T ∈ R2(G − x) and Part(G;T ) \ {B} ⊂ Part(G − x;T ). The set
B \ {x} is a T -fragment of G− x.

2) Pendant 3-blocks of G − x are all pendant 3-blocks of G which are
different from B and, probably, some subsets of B \ {x}.

Proof. 1) Let B′ ∈ Part(G;T ) and B′ 6= B. Then T separates B′ from
V (G − x − B′) in G − x and the graph (G − x)(Int(B′)) = G(Int(B′)) is
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connected. Therefore, B′ ∈ Part(G − x;T ). Hence, clearly, B \ {x} is a
T -fragment of G− x.

2) Let D be a pendant 3-block of G different from B. Then the graph
(G − x)(D)+ = G(D)+ is 3-connected by Lemma 11, and, by the same
lemma, D is a pendant 3-block of G− x.

Assume that A ∈ Part(G − x) is a pendant 3-block of G − x but is
not a pendant 3-block of G. Let S = Bound(A). By Lemma 11, the graph
(G−x)(A)+ is 3-connected. If S separates A from V (G) \A in G then, by
Lemma 11, A is a pendant 3-block of G, a contradiction. Hence, S does
not separate A from V (G) \ A in G. Therefore, x is adjacent to a vertex
y ∈ Int(A).

Let’s prove that there exists a part B′ ∈ Part(G − x;T ) such that
A ⊂ B′. If S = T this is clear. Let S 6= T . Then the cutsets S, T ∈
R2(G−x) are independent. If A ⊃ T then, by Lemma 4, there exists a part
A′ ∈ Part(G−x;T ) such that A ⊃ A′. Clearly, T separates A′ from A \A′

in (G − x)(A)+. Hence, (G − x)(A)+ is not 3-connected, a contradiction.
Thus, A 6⊃ T and, by Lemma 4, there exists a part B′ ∈ Part(G − x;T )
such that A ⊂ B′.

The vertex y ∈ Int(A) cannot belong to T ∈ R2(G − x). Hence, y ∈
Int(B′). Since x ∈ Int(B) and y is adjacent to x, we have y ∈ Int(B). Now,
by item 1, we obtain B′ ⊂ B \ {x}. �

Lemma 13. Let T ∈ R2(G), D ∈ Part(G;T ) and H = G(D)+. Then the
following statements hold.

1) Let x, y ∈ D and T 6= {x, y}. Then k independent xy-paths exist
in G if and only if k independent xy-paths exist in H. In particular, H is
2-connected.

2) Let x, y ∈ D and S ⊂ D. Then S separates x from y in G if and only
if S separates x from y in H.

3) The set R2(H) consists of all cutsets of R2(G) lying in D and differ-
ent from T . The set O(H) consists of all cutsets of O(G) lying in D and
different from T .

4) Let S ∈ R2(H). Then Part(H ;S) consists of all sets of type A ∩ D
where A ∈ Part(G;S).

5) Part(H) consists of all maximal up to inclusion sets of type A ∩ D
where A ∈ Part(G).

Proof. Let T = {a, b}, D′ ∈ Part(G;T ), D′ 6= D.
1) At most one xy-path in G can be not contained in D: such path must
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contain both vertices of the set T = {a, b}. In H , we substitute the ab-part
of this path by the edge ab. Conversely, at most one xy-path in H contains
the edge ab which can be replaced by an ab-path in G through the part D′.
Thus, since G is 2-connected, H is also 2-connected.
2) Let’s prove that a xy-path PG exists in G − S if and only if a xy-path
PH exists in H − S. Indeed, the part of PG outside D can be substituted
by the edge ab. Conversely, if PH contains the edge ab then this edge can
be replaced by an ab-path through D′.
3) Let S ∈ R2(G), S ⊂ D. Then S is independent with T and, by Lemma 4,
there exists a part A ∈ Part(G;S) such that A ( D. By item 2, S separates
Int(A) from T \ S in H and, therefore, S ∈ R2(H). Conversely, if S ∈
R2(H) then it is clear that S 6= T and, by item 2, S ∈ R2(G).

Let S = {x, y}. By Lemma 6, S ∈ O(G) if and only if S ∈ R2(G) and
there exist 3 independent xy-paths in G. Similarly, S ∈ O(H) if and only
if S ∈ R2(H) and there exist 3 independent xy-paths in H . By item 1 and
proved above, these two statements are equivalent.
4) A straightforward consequence of items 2 and 3.
5) By Lemma 2, Part(G) consists of maximal up to inclusion sets of type
∩S∈O(G)AS where AS ∈ Part(G;S). Single cutsets of G which do not
lie in D are independent with T and, by Lemma 4, do not split D. T
also does not split D. By item 3, single cutsets of G which lie in D and
are different from T form the set O(H). Therefore, by item 4, Part(H)
consists of maximal up to inclusion sets of type ∩S∈O(G)(AS ∩ D) where
AS ∈ Part(G;S). These sets are exactly maximal up to inclusion sets of
type A ∩D where A ∈ Part(G). �

Definition 12. Consider a cycle C ∈ Part(G). Let its vertices follow
c1, . . . , ck in the cyclic order (we suppose that ck+m = cm).

1) If Si = {ci, ci+1} ∈ O(G) then there exists unique part C′

i ∈ Part(G;Si)
which contains C. Then the weight w(cici+1) is equal to v(G−C′

i) (i.e. to
the sum of sizes of interiors of all parts of Part(G;Si) different from C′

i).
If Si /∈ O(G) then we set w(cici+1) = 0.

2) An arc cpCcq is the path cpcp+1 . . . cq along the cycle C. The weight

of this arc is w(cpCcq) = q − p + 1 +
∑q−1

i=p w(cici+1) (i.e. the number of

vertices of the arc plus the sum of weights of its edges).

Remark 4. If w(cici+1) = 0 then it is clear that {ci, ci+1} /∈ R2(G) (two
neighboring vertices of a cycle of Part(G) cannot form a non-single cutset
of R2(G) by Lemma 5).
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Lemma 14. Let C ∈ Part(G) be a cycle. Let vertices u, v ∈ C be non-
neighboring in the cyclic order and T = {u, v}. Then one can set the
notation Part(G;T ) = {D,D′} such that D contains all vertices of the arc
uCv and D′ contains all vertices of the arc vCu. Moreover, |D| = w(uCv)
and |D′| = w(vCu).

Proof. By Lemma 8, T is a non-single cutset of G. By Lemma 5,
|Part(G;T )| = 2. Clearly, T separates inner vertices of the arc uCv from in-
ner vertices of the arc vCu. Therefore, we can set the notation Part(G;T ) =
{D,D′} such that D contains all inner vertices of the arc uCv and D′ con-
tains all inner vertices of the arc vCu.

Consider an edge e = xy of the arc uCv such that S = {x, y} ∈ O(G).
Let CS ∈ Part(G;S) be the part which contains C. Then CS ⊃ T and, by
Lemma 4, the part D contains the union of all parts of Part(G;S) different
from CS . The sum of sizes of interiors of all these parts is exactly w(e).
Thus, we have found w(uCv) vertices in D. Since a similar reasoning is
valid for the part D′ and the arc vCu, the part D cannot contain other
vertices. Hence, |D| = w(uCv) and, similarly, |D′| = w(vCu). �

Definition 13. We will say that the part D from Lemma 14 corresponds
to the arc L = uCv and denote this part by DL. And, conversely, we will
say that the arc L corresponds to the part DL.

§3. Reconstruction of pendant 3-blocks

Let’s recall that, since δ(G) > 3, all pendant parts of G are 3-blocks.
Let B1, . . . , Bk ∈ Part(G) be all pendant 3-bocks of G, Ti = Bound(Bi)
and Hi = G(Bi).

By the definition of a 3-block, each graph H+
i is 3-connected.

Denote by n1 the minimal number of vertices in a pendant 3-block of G.
Clearly, n1 > 4. First, we will show how to determine all graphs Hi (in
each Hi the set Ti will be marked).

Definition 14. Let D2(G) be the subcollection of D(G) consisting of all
2-connected graphs and D1(G) be the subcollection of D(G) consisting of
all graphs which are not 2-connected.

Remark 5. 1) The collection D(G) can be easily divided into D2(G)
and D1(G).

2) Clearly, any graphG−x ∈ D1(G) is connected. A vertex y ∈ V (G−x)
is a cutpoint of G− x if and only if {x, y} ∈ R2(G).
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First, we extract some information from the collection D1(G).

Lemma 15. Having the collection D(G), one can determine n1 and the
number of pendant 3-blocks of size n1 in G.

Proof. Consider all graphs G−x ∈ D1(G) and all connected components
of all graphsG−x−y where y is a cutpoint of G−x. Let C be the collection
of vertex sets of all such components. By Remark 5, these vertex sets are
interiors of parts of decomposition of G by one set of R2(G). By Lemma 10,
for δ(G) > 3, a minimal part of decomposition of G by a set of R2(G) is a
pendant 3-block. Therefore, the minimal size of a component in C is equal
to n1 − 2. Thus, we determine n1.

LetB ∈ Part(G) be a pendant 3-block of size n1 and Bound(B) = {a, b}.
Then Int(B) occurs in C exactly two times: from the graph G− a and from
the graph G− b. Hence, the number of pendant 3-blocks of size n1 is equal
to the number of sets of size n1 − 2 in C divided by 2. �

Definition 15. 1) Pendant 3-blocks Bi and Bj are isomorphic if there
exists a graph isomorphism ϕ : Hi → Hj such that ϕ(Ti) = Tj .

2) Let Bℓ be a pendant 3-block of G.
We denote by D(Bℓ) the collection of all graphs G− x, where x ∈

Int(Bi) and the pendant 3-block Bi is isomorphic to Bℓ.
We denote by D′(Bℓ) the collection of all graphs G− x, where x ∈

Int(Bi) and |Bi| = |Bℓ|.

Lemma 16. Having the collection D(G), one can determine all graphs
H1,. . . , Hk and, in each graph Hi, mark the set Ti.

Proof. By Lemma 15, we know the minimal size n1 of a pendant 3-block
of G and the number s of 3-blocks of size n1 in G. Let B1, . . . , Bs be all
pendant 3-blocks of size n1 in G. By Lemma 12, any graph G−x ∈ D2(G)
has at least s− 1 pendant 3-blocks of size n1. Moreover, G−x has exactly
s−1 pendant 3-blocks of size n1 if and only if x ∈ Int(Bi) where 1 6 i 6 s.
Thus, D′(B1) consists of all graphs of the collection D2(G) which have s−1
pendant 3-blocks of size n1.

By Lemma 12, in any graph G − x ∈ D′(B1), all pendant 3-blocks of
size greater than n1 are exactly all pendant 3-blocks of G of size greater
than n1. Thus, we can determine all graphs Hs+1, . . . , Hk and, in each of
them, mark the corresponding set Ti. It remains to determine the graphs
H1, . . . , Hs (induced on pendant 3-blocks of size n1). Consider two cases.
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1. s > 2.
Clearly, |D′(B1)| = s(n1 − 2). For 1 6 i 6 s and all n1 − 2 vertices
x ∈ Int(Bi), the graph G− x has exactly s− 1 pendant 3-blocks of size n1

(all such 3-blocks of G except for Bi). Consider all subgraphs of each
G − x ∈ D′(B1) induced on their pendant 3-blocks of size n1. In this
collection of subgraphs, each H1, . . . , Hs occurs exactly (s − 1)(n1 − 2)
times. Thus, we can determine all graphs H1, . . . , Hs. In each Hi, it is easy
to mark the set Ti.

2. s = 1. We have to determine the only pendant 3-blockB1 of size n1.
In this case, G has another pendant 3-block, say, B2. Let |B2| = n2 and
B2, . . . , Bt+1 be all pendant 3-blocks of G with n2 vertices. We already
know all graphs H2, . . . , Hℓ+1. Then the collection D′(B2) consists of
all graphs G − x ∈ D2(G) which have all pendant 3-blocks of G of size
greater than n2 and exactly t−1 pendant 3-blocks with n2 vertices. Clearly,
|D′(B2)| = t(n2 − 2).

In each graph G− x ∈ D′(B2), consider all pendant 3-blocks of size n1

and put to the collection B all subgraphs of G induced on them (we mark
all boundaries of corresponding 3-blocks in these graphs). What subgraphs
occur in B? First, the subgraphH1 occurs in B exactly t(n2−2) times (once
for each graph of the collection D′(B2)). Other subgraphs in B (we call
them surplus subgraphs) are subgraphs of graphs Hi−x (where x ∈ Int(Bi)
and 2 6 i 6 t + 1). All surplus subgraphs can be easily found. For this
purpose, we are to consider all graphs H+

i − x where x ∈ Int(Bi) and
2 6 i 6 t + 1 and, in each graph H+

i − x, find all pendant 3-blocks of
size n1, which interiors do not intersect Ti. Subgraphs induced on the
blocks found above are exactly all surplus subgraphs and each of them
occurs in B once. After deleting all of them from B, we find here only
several subgraphs H1 with T1 marked. �

Lemma 17. Having the collection D(G), one can determine collections
D(Bℓ) for all ℓ ∈ {1, . . . , k}.

Proof. Let |Bℓ| = n′. By Lemma 16, we know the number t of pendant 3-
blocks of G which are isomorphic to Bℓ. Then D(Bℓ) consists of all graphs
G−x ∈ D2(G) which have all pendant 3-blocks of G of size greater than n′

and exactly t− 1 pendant 3-blocks isomorphic to Bℓ. �
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§4. Proofs of main theorems

4.1. Properties of graphs of the collection D(B1). Let {B1, . . . ,
Bs} be a maximal up to inclusion set of pairwise isomorphic pendant 3-
blocks of the minimal size n1 of the 2-connected graph G. We know the
collection D(B1). With the help of this collection we will construct the
desired graphs G1 and G2 (one of which coincides with G). Consider a
graph G − x ∈ D(B1). Assume that x ∈ Int(B1). Recall that the graph
G− x is 2-connected.

Remark 6. 1) By Lemma 12, B1 \ {x} is a T1-fragment of G− x and any
part A ∈ Part(G−x;T1) not contained in B1 \{x} belongs to Part(G;T1).
By Corollary 1, A contains a pendant part of Part(G). Hence, |A| > n1.

2) Let U be a T1-fragment of G− x which contains all parts of
Part(G− x;T1) except for one of them. By item 1, |U | > n1 − 1.

3) Let U be a T1-fragment of G− x such that |U | = n1 − 1. Then U
cannot contain a part of Part(G− x;T1) which is not a subset of B1 \ {x}.
Hence, U = B1 \ {x}.

We will prove several claims describing properties of the graph G− x.

Claim 1. Assume that T ∈ O(G − x), and a part B ∈ Part(G − x;T ) is
such that |B| < n1. Then Int(B) ∩ T1 = ∅.

Proof. Assume the converse. Since T1 is independent with T , we have
T1 ⊂ B. Let B′ ∈ Part(G − x;T1) be the part which contains T and
let A be the union of all parts of Part(G − x;T1) different from B′. By
Lemma 4, B ) A. However, by Remark 6, |A| > n1 − 1 > |B|. We obtain
a contradiction. �

Claim 2. Let a pendant part B ∈ Part(G−x) be such that |B| < n1. Then
B ⊂ (B1 \ {x}) and Int(B) ⊂ Int(B1 \ {x}).

Proof. By item 2 of Lemma 12, either B ⊂ (B1 \ {x}) or B is a pendant
3-block of G. The latter is impossible due to |B| < n1. By Lemma 1,
Int(B) ⊂ Int(B1 \ {x}). �

Claim 3. Assume that T ∈ O(G − x) and a T -fragment U of the graph
G− x is such that |U | = n1 − 1. Then T = T1 and U = B1 \ {x}.

Proof. If T = T1 then, by Remark 6, U = B1 \ {x}. Further, let T 6= T1.
Then these cutsets are independent. By Corollary 1, there exists a pendant
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part B ∈ Part(G − x) such that Int(B) ⊂ Int(U). Then |B| < n1 and, by
Claim 2, we obtain Int(B) ⊂ Int(B1 \ {x}).

By Claim 1, T1 ∩ Int(U) = ∅. By Lemma 4, then U ( B′ where B′ ∈
Part(G − x;T1). In our case, Int(U) ∩ Int(B1 \ {x}) 6= ∅. Since B1 \ {x}
is a T1-fragment, B′ ⊂ B1 \ {x}. Then |U | < |B1 \ {x}| = n1 − 1, a
contradiction. �

Now assume that there is no cutset T ∈ O(G − x) and T -fragment U
of the graph G− x such that |U | = n1 − 1. However, T1 ∈ R2(G− x) and
the T1-fragment B1 \ {x} of the graph G − x has exactly n1 − 1 vertices.
Therefore, T1 ∈ R2(G−x) is a non-single cutset. Let’s study Part(G−x;T1)
in this case.

Claim 4. Let T1 = {a, b} /∈ O(G− x). Then Part(G;T1) = {B1, D1} and
Part(G− x;T1) = {B1 \ {x}, D1} where |D1| > n1.

Proof. Since T1 is a non-single cutset of G − x, |Part(G − x;T1)| = 2
by Lemma 5. By Lemma 12, hence, |Part(G;T1)| = 2. Let Part(G;T1) =
{B1, D1}. Then, clearly, Part(G− x;T1) = {B1 \ {x}, D1}. By Remark 6,
|D1| > n1. �

By Lemma 5, there exists a part A ∈ Part(G−x) such that A is a cycle
and T1 is its diagonal (i. e. T1 consists of two non-neighboring in the cyclic
order vertices of A).

Definition 16. Let C ∈ Part(G − x) be a cycle and u, v ∈ C. The arc
uCv is proper if w(uCv) = n1 − 1.

Remark 7. By the definitions, an arc uCv is proper if and only if the part
of Part(G − x; {u, v}) which corresponds to the arc uCv contains exactly
n1 − 1 vertices.

Clearly, the cycle A has a proper arc: it is the arc which corresponds
to the part B1 \ {x} ∈ Part(G− x;T1). We will prove that other cycles of
Part(G − x) has no proper arcs and study the structure of proper arcs of
the cycle A.

Claim 5. Let N = aAb be the proper arc corresponding to the part DN =
B1 \ {x}. Then the following statements hold.

1) If L = uCv is a proper arc and L 6= N then {u, v} is dependent
with T1.

2) If C ∈ Part(G− x) is a cycle and C 6= A then C has no proper arc.
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3) Assume that an edge uv of the cycle A does not lie on the arc N and
w(uv) > 0. Then uv cannot be contained in a proper arc.

4) Let vertices of A be cyclically enumerated such that N = a1Aak
where k > 3. Assume that L is another proper arc. Then L = a2Aak+1

or L = a0Aak−1. If L = a2Aak+1 then w(a1a2) = w(akak+1) = 0. If
L = a0Aak−1 then w(a0a1) = w(ak−1ak) = 0.

Proof. 1) Let T = {u, v} ∈ R2(G − x) and |DL| = n1 − 1. Assume that
T is independent with T1. Note that cases DN ⊃ DL and DL ⊃ DN are
impossible (in this cases, |DN | 6= |DL|).

By Lemma 4, the only case remaining is where DN ∩ Int(DL) = ∅.
Let us prove that this is also impossible and obtain a contradiction. By
Lemma 10, either (G − x)(DL) = G(DL) is a simple uv-path or there
exists a pendant part B ∈ Part(G − x) such that Int(B) ⊂ Int(DL). In
the first case, all vertices of Int(DL) have degree 2 in G− x. Hence, all
vertices of Int(DL) are adjacent in G with the vertex x ∈ Int(B1) and,
therefore, Int(DL) ⊂ DN . In the second case, clearly, |B| < n1 and, by
Claim 2, Int(B) ⊂ Int(DN ). In both cases we have a contradiction with
DN ∩ Int(DL) = ∅.

2) Assume the converse, let uCv be a proper arc and T = {u, v}. There
exists a cutset S ∈ O(G−x) which is adjacent to A in the tree BT(G−x)
and separates A from C. By Lemma 7, S separates A from C in G− x.
Hence, there exist distinct parts MA,MC ∈ Part(G−x;S) such that T1 ⊂
A ⊂MA and T ⊂ C ⊂MC . Then T1 does not split T . Thus, T and T1 are
independent, a contradiction with item 1.

3) By the condition, S = {u, v} ∈ O(G−x). Let M ∈ Part(G−x;S) be
a part which does not contain A. By Corollary 1, there exists a pendant
part M ′ ∈ Part(G − x) such that Int(M ′) ⊂ Int(M). Since the edge uv
does not lie on the arc N , we have Int(M)∩DN = ∅ (see figure 2a). Then
|M ′| > n1 by Claim 2. Therefore, w(uv) > |Int(M ′)| > |M ′| − 2 > n1 − 2.
If uv lies on a proper arc L then w(uv) 6 w(L)−2 = n1−3, a contradiction.

4) By item 2, L = aiAaj . By item 1, T = {ai, aj} is dependent with T1 =
{a1, ak} i.e. T corresponds to a diagonal of the cycle A which intersects
a1ak in an inner point. Hence, we have one of the two following cases:

(a) L does not contain the vertex a1 and the edge a1a2 but contains
the vertex ak+1 and the edge akak+1;

(b) L does not contain the vertex ak and the edge ak−1ak but contains
the vertex a0 and the edge a0a1.
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Figure 2. Proper arcs of the cycle A.

Consider the case (a). By item 3, w(akak+1) = 0 (see figure 2b). Assume
that L also contains the edge ak+1ak+2. Then we also have w(ak+1ak+2)=
0, whence it follows dG−x(ak+1) = 2. Therefore, ak+1 ∈ DN , we have a
contradiction.

Thus, w(akak+1) = 0 and ak+1 is an end of L. Taking into account
w(N) = w(L) we obtain that L = a2Aak+1 and w(a1a2) = 0. Since 1 6

|Int(B \ {x})| = w(a1Aak), we have k > 3.
In the similar case (b), we obtain L = a0Aak−1 and w(a0a1) =

w(ak−1ak) = 0. �

Claim 6. Let N = aAb be the proper arc corresponding to the part B1\{x}
and let F = G − Int(B1). Assume that N cannot be distinguished among
proper arcs of the cycle A. Then the following statements hold.

1) A has exactly two proper arcs. The vertices of A can be cyclically enu-
merated such that proper arcs are a1Aak and a2Aak+1. The arc a1Aak+1

can be uniquely determined.
2) One of the degrees dF (a) and dF (b) is equal to 1 and the other is

greater than 1. If dF (a) > 1 then dH1−x(a) = 1.

Proof. 1) Let A = a0a1 . . . aℓ. We may assume that both arcs L1 = a1Aak
and L2 = a2Aak+1 are proper and w(a1a2) = w(akak+1) = 0. (By item 4
of Claim 5, the cycle A has two such proper arcs.)

Assume that w(a0a1) = 0. Then dG−x(a1) = 2 and, therefore, a1 is
adjacent to x in G, whence it follows a1 ∈ B1. Then the arc a1Aak cor-
responds to the part B1 \ {x} i.e. N = a1Aak, a contradiction. Hence,
w(a0a1) > 0 and, similarly, w(ak+1ak+2) > 0.

We claim that N must coincide with one of the arcs L1 and L2. Indeed,
assume the converse. Then, applying item 4 of Claim 5 to N and L1, we
obtain N = a0Aak−1. At the same time, applying item 4 of Claim 5 to
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N and L2, we obtain N = a3Aak+2. Since the arc N is unique, we have
a0 = a3 i.e. |A| = 3 and, by Claim 5, k = 3. Thus, L1 = a1Aa0 is a
proper arc. Hence, by proved above, w(a1a2) = 0 and, at the same time,
w(a1a2) > 0 (since a1a2 = ak+1ak+2), a contradiction.

Now N coincides with L1 or L2. Hence, the edges a0a1 and ak+1ak+2

do not belong to N . By item 3 of Claim 5, a0a1 and ak+1ak+2 cannot
belong to proper arcs. However, if A has one more proper arc aiAaj then
S = {ai, aj} is dependent with T1 by Claim 5 i.e. S is dependent either
with {a1, ak} or with {a2, ak+1}. Therefore, the arc aiAaj must contain
one of the edges a0a1 and ak+1ak+2, a contradiction.

2) Assume that aAb = a1Aak (the case aAb = a2Aak+1 is similar).
Then w(a1a2) = 0 implies that a = a1 is adjacent to exactly one vertex of
B1 \{x} — namely, to a2. Since w(a0a1) > 0, we have {a0, a1} ∈ O(G−x).
Hence, dG−x(a1) > 3, whence it follows dF (a1) > 2. On the other side,
w(akak+1) = 0 implies that b = ak is adjacent to exactly one vertex of D1

(to ak+1). Thus, dF (a) > 1, dH1−x(a) = 1 and dF (b) = 1. �

Claim 7. Assume that, for all y ∈ Int(B1), the set B1 \ {y} cannot be
distinguished in the graph G− y. Then n1 = 4 and H1 is a complete graph
on 4 vertices without the edge ab.

Proof. Let F = G− Int(B1). Consider a vertex z ∈ Int(B1). By Claim 3,
T1 is a non-single 2-cutset of the graph G − z. By Lemma 5, we may
assume that T1 is a diagonal of a cycle Az ∈ Part(G− z). In our case, we
cannot determine the proper arc of Az corresponding to B1 \ {z}. Hence,
by Claim 6, the cycle Az has exactly two proper arcs, one of the degrees
dF (a) and dF (b) is equal to 1 and the other is greater than 1. Without loss
of generality, assume that dF (a) > 2.

By Claim 6, for any vertex y ∈ Int(B1), at least one of the following two
statements hold: dH1−y(a) = 1 and dH1−y(b) = 1. SinceH+

1 is 3-connected,
we obtain ab /∈ H1 and dH1

(a) = dH1
(b) = 2.

Assume that n1 > 5. Then |Int(B1)| > 3. Therefore, there exists a
vertex x ∈ Int(B1) not adjacent to a. Consider the graph G− x ∈ D(B1).
Clearly, dH1−x(a) = 2. Since, at the same time, dF (a) > 2, we have a
contradiction with item 2 of Claim 6.

Thus, n1 = 4 and |Int(B1)| = 2. Since δ(G) > 3, two vertices of Int(B1)
must be adjacent to each other and to both vertices a and b. It was proved
above that ab /∈ E(G). Hence, H1 is a complete graph on 4 vertices without
the edge ab. �
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4.2. Proof of Theorem 1. Now we are able to finish the proof of our
main theorem.

Proof of Theorem 1. We will consider two cases.
1. There exists a graph G − x ∈ D(B1), such that x ∈ Int(Bi) and the

set Bi \ {x} can be distinguished in G− x.
Without loss of generality, we may assume that x ∈ Int(B1). Let T1 =

{a, b}. Recall that B1 \ {x} is a T1-fragment of the graph G− x. The
set T1 can be easily marked in a T1-fragment. Hence, we know the graph
H ′ = G − Int(B1) = G − x − Int(B1 \ {x}) with vertices of the set T1
marked. By Lemma 16, we also know the graph H1 = H(B1) with vertices
of T1 marked. Two ways of gluing together the graphs H ′ and H1 by the
set T1 give us two graphs G1 and G2 such that G ∈ {G1, G2}.

Let’s prove that BT(G1) = BT(G2). The graph H+
1 is 3-connected.

Hence, H1 has no cutpoint separating a from b. Then, by Lemma 5, T1 ∈
O(G1) and T1 ∈ O(G2). Since H+

1 is 3-connected, B1 is a pendant 3-
block of both graphs G1 and G2 by Lemma 11. Since G1 − Int(B1) =
H ′ = G2 − Int(B1), by Lemma 13, all single cutsets and parts of G1 lying
outside B1 are all single cutsets and parts of G2 lying outside B1.

2. For all G − x ∈ D(B1) where x ∈ Int(Bi) and 1 6 i 6 s, the set
Bi \ {x} cannot be distinguished in the graph G− x.

By Claim 7, then n1 = 4 and, for every i ∈ {1, . . . , s}, Hi is a clique on
4 vertices without the edge between vertices of Ti.

Consider a graph G − x ∈ D(B1), say x ∈ Int(B1). Let T1 = {a, b}.
By Claim 3, T1 is a non-single cutset of G − x. By Claim 5, we can find
the unique cycle A ∈ Part(G − x) which has proper arcs. Then T1 is a
diagonal of A which consists of ends of the proper arc of A corresponding
to the part B1 \ {x}. In the case we are considering, H1 − x is a simple
path ax′b where Int(B) = {x, x′}. Hence, any proper arc of A is a path of
length 2. By item 2 of Claim 6, the cycle A has exactly two proper arcs.
Moreover, vertices of A can be cyclically enumerated such that proper arcs
are N = a1a2a3 and L = a2a3a4 (see figure 3a) and the arc a1Aa4 can be
determined.

If the part B1 \ {x} corresponds to the arc N then x is adjacent in G
to a1, a2 and a3 (see figure 3b). Denote this graph by G1. If the part
B1 \ {x} corresponds to the arc L then x is adjacent in G to a2, a3 and
a4 (see figure 3c). Denote this graph by G2. Then G ∈ {G1, G2}. Let
H = G({x, a1, a2, a3, a4}) and H∗ = G− {x, a2, a3}. Clearly, both G1 and
G2 are results of gluing together H and H∗ by the set {a1, a4}.
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Figure 3. The graphs G1 and G2.

Similarly to Case 1, T1 ∈ O(G1), T1 ∈ O(G2) and B1 is a pendant
3-block of both graphs G1 and G2. Lemma 13 implies BT(G1) = BT(G2)
(this tree can be obtained from BT(G− x) by adding vertices T1, B1 and
edges AT1, T1B1). �

4.3. On possible non-uniqueness of the reconstruction. In what
follows, we will formulate and prove a more detailed theorem on possi-
ble non-uniqueness in the reconstruction of graphs of connectivity 2. We
hope this theorem will help to prove the full version of Reconstruction
Conjecture for graphs of connectivity 2.

Definition 17. Let G be a 2-connected graph. We say that a graph G∗

is obtained from G by inverting a subgraph H if there exists T ∈ R2(G)
such that H is a T -subgraph of G and G∗, G are two graphs obtained from
H and G− Int(H) upon gluing them together by the set T .

Remark 8. Let G∗ is obtained from G by inverting a subgraph H . It is
easy to see that then H is a T -subgraph of G∗ and G is obtained from G∗

by inverting H .

Theorem 2. Assume that G1 and G2 are non-isomorphic graphs on the
vertex set V such that κ(G1) = κ(G2) = 2, δ(G1) > 3, δ(G2) > 3 and
D(G1) = D(G2). Then there exists a set A ⊂ V such that G2 is obtained
from G1 by inverting H = G1(A). Moreover, one of the two following
conditions holds.

(a) A is a minimal pendant 3-block of both graphs G1 and G2.
(b) |A| = 5, A = B1 ∪ {u} where u /∈ B1 and B1 is a minimal pendant

3-block of both graphs G1 and G2. Moreover, dH(u) = 1 (u is adjacent
in H to one vertex of Bound(B1)).
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Proof. Assume that G = G1 is a graph we know. Let’s consider the
collection D(G). Having D(G), we construct by the algorithm of Theorem 1
two graphs G∗

1, G
∗

2 such that G ∈ {G∗

1, G
∗

2}.
At least one of the collections D(G∗

1) and D(G∗

2) coincides with the
known collection D(G). If G∗

1 ≃ G∗

2 or D(G∗

1) 6= D(G∗

2) then we can
uniquely reconstruct the graph G = G1 from D(G1). However, it is impos-
sible in our case (since D(G1) = D(G2) and G1 6≃ G2). If there exists a
graph G∗ with D(G∗) = D(G1) which is isomorphic to neither G∗

1 nor G∗

2

then the statement G ∈ {G∗

1, G
∗

2} is wrong, a contradiction with Theo-
rem 1. Thus, the only case remaining is {G∗

1, G
∗

2} = {G1, G2}.
By the construction of G1 and G2 (see the proof of Theorem 1), G2 is

obtained from G1 by inverting a subgraph H = G1(A) = G2(A). In Case 1
of the proof, A is a minimal pendant 3-block i.e. statement (a) holds. In
Case 2 of the proof, statement (b) holds. �
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