Записки научных семинаров ПОМИ

Том 497, 2020 г.

D. V. Karpov

ON SEMI-RECONSTRUCTION OF GRAPHS OF CONNECTIVITY 2

Abstract

Recall that the deck of a graph G is the collection of subgraphs $G-v$ for all vertices v of the graph G. We prove that at most two graphs of connectivity 2 and minimal degree at least 3 can have the same deck. Let $\mathcal{D}(G)$ be a deck of a 2-connected graph G. We describe an algorithm which construct by the deck $\mathcal{D}(G)$ of a 2-connected graph G with minimal degree at least 3 two graphs G_{1}, G_{2} such that $G \in\left\{G_{1}, G_{2}\right\}$.

§1. Introduction

1.1. Definitions and notation. We consider graphs without loops and multiple edges and use the standard notation. For a graph G, we denote the set of its vertices by $V(G)$ and the set of its edges by $E(G)$. We use the notation $v(G)$ for the number of vertices of G.

For a vertex $x \in V(G)$, we denote by $d_{G}(x)$ its degree in the graph G. The minimal vertex degree of G is denoted by $\delta(G)$.

Let $\mathrm{N}_{G}(w)$ denote the neighborhood of a vertex $w \in V(G)$ (i.e. the set of all vertices of the graph G, adjacent to w).

We say that a vertex $u \in V(G)$ is adjacent to a set $W \subset V(G)$ if $u \notin W$ and u is adjacent to a vertex of W.

For a subset W of $V(G)$, we denote by $G(W)$ the induced subgraph of G on the set W.

A $x y$-path is a simple path between the vertices x and y. We say that k different $x y$-paths are independent if any two of them have no common inner vertex.

Definition 1. Let $R \subset V(G) \cup E(G)$.

1) We denote by $G-R$ the graph obtained from G upon deleting all vertices and edges of the set R and all edges incident to vertices of R. The set R is a cutset if the graph $G-R$ is disconnected.

If R is a cutset, $R \subset V(G)$ and $|R|=k$ then R is called a k-cutset.

[^0]2) The connectivity $\kappa(G)$ of a graph G is the minimal size of its vertex cutset. A graph G is k-connected if $v(G)>k$ and $\kappa(G) \geqslant k$ (i.e. G has no vertex cutset of size less than k).
3) Let $X, Y \subset V(G)$. We say that R separates X from Y if $X \not \subset R$, $Y \not \subset R$ and there is no path from $X \backslash R$ to $Y \backslash R$ in $G-R$.
4) For $X \subset V(G)$, we say that R splits X if $X \not \subset R$ and the set $X \backslash R$ is disconnected in graph $G-R$.

For $x, y \in V(G)$, we denote by $G+x y$ the graph obtained from G by adding the edge $x y$. (If $x y \in E(G)$ then $G+x y=G$.)
Definition 2. Let G and H be two graphs with the same number of vertices. A graph isomorphism $\varphi: G \rightarrow H$ is a bijection $\varphi: V(G) \rightarrow V(H)$ such that

$$
x y \in E(G) \quad \Longleftrightarrow \quad \varphi(x) \varphi(y) \in E(H)
$$

for all $x, y \in V(G)$. In this case, we say that the graphs G and H are isomorphic and denote this by $G \simeq H$.
Definition 3. Let G be a graph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Then the deck $\mathcal{D}(G)$ is the collection of graphs $G-v_{1}, \ldots, G-v_{n}$.
Remark 1. 1) Note that some graphs in $\mathcal{D}(G)$ may coincide.
2) In this paper, dealing with collections (not sets) of objects, we will use notations like the following: $\mathcal{D}(G)=\{G-v: v \in V(G)\}$.
1.2. The history and the main results. The Graph Reconstruction Conjecture formulated by Kelly [1] and Ulam [2] is well known.
Conjecture. If both graphs G and H have at least 3 vertices and $\mathcal{D}(G)=$ $\mathcal{D}(H)$ then $G \simeq H$.

Note that several graph parameters can be reconstructed from $\mathcal{D}(G)$ for graphs on at least 3 vertices: the number of vertices and the number of edges, the collection of vertex degrees of G, the connectivity $\kappa(G)$.

The Reconstruction Conjecture is rather simple for disconnected graphs. In 1957, Kelly [1] proved this conjecture for trees. In 1969, Bondy [4] proved the Reconstruction Conjecture for graphs of connectivity 1 without pendant vertices. Finally, in 1988, Yongzhi [5] proved the Conjecture for all graphs which are not 2 -connected. No results for 2 -connected graphs are known now.

This paper can be considered as a beginning of studying reconstruction of graphs of connectivity 2 . We will prove that at most two graphs of connectivity 2 and minimal degree at least 3 can have the same deck.

In general, the proof of our result follows Bondy's way [4]. However, instead of the classic tree of blocks and cutpoints we need a similar tree $\mathrm{BT}(G)$ which shows the structure of decomposition of a 2 -connected graph G by its 2-cutsets. For the first time, such a tree was presented in 1966 by Tutte [3]. We will define the tree $\operatorname{BT}(G)$ in detail in Section 2.2 and list its properties that we need. This tree is an important characteristics of graphs of connectivity 2 and also can be reconstructed from $\mathcal{D}(G)$.

The following theorem is the main result of our paper.
Theorem 1. Let G be a graph with $\kappa(G)=2$ and $\delta(G) \geqslant 3$. Then, having $\mathcal{D}(G)$, we can find a pair of graphs G_{1}, G_{2} such that $\mathrm{BT}\left(G_{1}\right)=\mathrm{BT}\left(G_{2}\right)$ and $G \in\left\{G_{1}, G_{2}\right\}$.

Let's discuss the obstacle in reconstruction of graphs of connectivity 2.
Definition 4. Let $G^{\prime}, G^{\prime \prime}$ be two graphs such that $V\left(G^{\prime}\right) \cap V\left(G^{\prime \prime}\right)=T$ and let $\psi: T \rightarrow T$ be a bijection. To glue the graphs G^{\prime} and $G^{\prime \prime}$ by the set T is to identify each vertex $a \in T$ of the graph G_{1} with the vertex $\psi(a) \in T$ of the graph G_{2}.

Let induced subgraphs H^{\prime} and $H^{\prime \prime}$ of G be such that $V\left(H^{\prime}\right) \cup V\left(H^{\prime \prime}\right)=$ $V(G)$ and $V\left(H^{\prime}\right) \cap V\left(H^{\prime \prime}\right)=T$. Assume that we know the graphs H^{\prime} and $H^{\prime \prime}$ and the set T is marked in both these graphs. If $|T|=1$ then we can easily glue the graph G from H^{\prime} and $H^{\prime \prime}$. In the case $|T|=2$, there are two ways of gluing together H^{\prime} and $H^{\prime \prime}$ by the set T (see figure 1). Unfortunately, the problem of how two distinguish two such graphs G_{1} and G_{2} by their decks is not trivial.

Figure 1. Two ways of gluing by a 2 -vertex cutset.

At the end of this paper, we will formulate a theorem which describes the non-uniqueness which probably can appear in the reconstruction of graphs of connectivity 2 . The formulation of this Theorem is not very elegant, but we hope that it will help to prove that, really, every graph of connectivity 2 can be uniquely reconstructed from its deck.

§2. Necessary tools

We need to describe the structure of decomposition of a 2 -connected graph by its 2 -cutsets. We define the decomposition tree of a 2 -connected graph as in [9]. In general, this structure is similar to Tutte's one [3]. Let's start with the decomposition of a graph by a set of cutsets [7].
2.1. The decomposition of a graph by a set of cutsets. In this section, $k \geqslant 2$ and G is a k-connected graph. Denote by $\Re_{k}(G)$ the set of all k-cutsets of G.

Definition 5. Let $\mathfrak{S} \subset \mathfrak{R}_{k}(G)$.

1) A set $A \subset V(G)$ is a part of decomposition of G by \mathfrak{S} if no cutset of \mathfrak{S} splits A and A is a maximal up to inclusion set with this property. By $\operatorname{Part}(G ; \mathfrak{S})$, we denote the set of all parts of decomposition of G by \mathfrak{S}.
2) Let $A \in \operatorname{Part}(G ; \mathfrak{S})$. A vertex of A is inner if it does not belong to any cutset of \mathfrak{S}. The set of all inner vertices of the part A is called the interior of A, which is denoted by $\operatorname{Int}(A)$.

The boundary of A is the set $\operatorname{Bound}(A)=A \backslash \operatorname{Int}(A)$.
3) For a set $S \in \mathfrak{R}_{k}(G)$, we will write simply $\operatorname{Part}(G ; S)$ instead of $\operatorname{Part}(G ;\{S\})$.

It is clear that if two parts of $\operatorname{Part}(G ; \mathfrak{S})$ have nonempty intersection then their intersection is a subset of a certain cutset of \mathfrak{S}.

Lemma 1 ([8, Theorem 2 and Corollary 2]). Let G be a k-connected graph and $\mathfrak{S}, \mathfrak{T} \subset \mathfrak{R}_{k}(G)$.

1) Let $A \in \operatorname{Part}(G ; \mathfrak{S})$. Then $\operatorname{Bound}(A)$ consists of all vertices of the part A which are adjacent to $V(G) \backslash A$. If $\operatorname{Int}(A) \neq \varnothing$ then $\operatorname{Bound}(A)$ separates $\operatorname{Int}(A)$ from $V(G) \backslash A$.
2) Assume that $A \in \operatorname{Part}(G ; \mathfrak{S})$ and $A \in \operatorname{Part}(G ; \mathfrak{T})$. Then the boundary of A as a part of $\operatorname{Part}(G ; \mathfrak{S})$ coincides with the boundary of A as a part of $\operatorname{Part}(G ; \mathfrak{T})$.

Thus, the notions of the boundary and the interior of a part of decomposition do not depend on the set of cutsets \mathfrak{S}. Hence, the notation Bound (A) and $\operatorname{Int}(A)$ without referring to the set of cutsets is correct.

A part of $\operatorname{Part}(G ; \mathfrak{S})$ can be represented as an intersection of parts of decomposition of G by cutsets of \mathfrak{S}.
Lemma $2\left(\left[8\right.\right.$, Theorem 1]). Let $\mathfrak{S}=\left\{S_{1}, \ldots S_{n}\right\} \subset \mathfrak{R}_{k}(G)$. Then $\operatorname{Part}(G ; \mathfrak{S})$ consists of maximal up to inclusion sets of type $\bigcap_{i=1}^{n} A_{i}$ where $A_{i} \in \operatorname{Part}\left(G ; S_{i}\right)$.
Lemma 3 ([8, Corollary 1]). Let $\mathfrak{S}, \mathfrak{T} \subset \mathfrak{R}_{k}(G)$ and let a part $A \in \operatorname{Part}(\mathfrak{S})$ be such that no cutset of \mathfrak{T} splits A. Then $A \in \operatorname{Part}(\mathfrak{S} \cup \mathfrak{T})$.
Definition 6. Let G be a k-connected graph, $T \in \mathfrak{R}_{k}(G)$ and let U be a union of several (maybe, one, but not all) parts of $\operatorname{Part}(G ; T)$. Then U is a T-fragment and $G(U)$ is a T-subgraph of G.

The interior $\operatorname{Int}(U)$ is the union of the interiors of all parts of $\operatorname{Part}(G ; T)$ which union is U.

If $T=\{a, b\}$ then, for a T-subgraph H, we will use the notation $H^{+}=$ $H+a b$.

Remark 2. Let G be a k-connected graph and let U be a T-fragment for $T \in \mathfrak{R}_{k}(G)$. Then the set T is uniquely determined by U : by Lemma $1, T$ consists of all vertices of U which are adjacent to $V(G) \backslash U$.

Definition 7. Two cutsets $S, T \in \mathfrak{R}_{k}(G)$ are independent if S does not split T and T does not split S. Otherwise, these sets are dependent.

In [6], it is proved that, for a k-connected graph G and cutsets $S, T \in$ $\mathfrak{R}_{k}(G)$, only two variants are possible: either S and T are independent, or each of them splits the other.

Lemma 4 ([8, Lemma 1]). Assume that $S, T \in \mathfrak{R}_{k}(G), A \in \operatorname{Part}(G ; S)$ and $B \in \operatorname{Part}(G ; T)$ are such that $A \supset T$ and $B \supset S$. Then S and T are independent and A contains the union of all parts of $\operatorname{Part}(G ; T)$, except for B.
2.2. The decomposition of a 2-connected graph and its properties. In this section, G is a 2 -connected graph. We will list some definitions and results proved before and, after that, we will prove several new lemmas.
Definition 8. 1) A cutset $S \in \mathfrak{R}_{2}(G)$ is single if S is independent with all other cutsets of $\Re_{2}(G)$. Denote by $\mathfrak{O}(G)$ the set of all single cutsets of G.
2) We will write simply $\operatorname{Part}(G)$ instead of $\operatorname{Part}(G ; \mathfrak{O}(G))$ and will call these parts simply parts of G.
Lemma 5 ([9, Lemma 6]). Let $S=\{a, b\} \in \mathfrak{R}_{2}(G)$ be a non-single cutset. Then $|\operatorname{Part}(S)|=2$ and, for every part $A \in \operatorname{Part}(S)$, the graph $G(A)$ has a cutpoint which separates a from b.
Lemma 6. Let $S=\{a, b\} \in \mathfrak{R}_{2}(G)$. Then $S \in \mathfrak{O}(G)$ if and only if there exist three independent ab-paths in G. In particular, $d_{G}(a) \geqslant 3$ and $d_{G}(b) \geqslant 3$.

Proof. Clearly, the existence of three independent $a b$-paths in G is equivalent to the fact that no cutset of $\mathfrak{R}_{2}(G)$ separates a from b i.e. is dependent with S.

Definition 9. The decomposition tree $\mathrm{BT}(G)$ of a 2-connected graph G is a bipartite graph with bipartition $(\mathfrak{O}(G), \operatorname{Part}(G))$, where a single cutset S and a part A are adjacent if and only if $S \subset A$.

The following lemma is a particular case of Theorem 1 of [9].
Lemma 7. For a 2 -connected graph G, the following statements hold.

1) $\mathrm{BT}(G)$ is a tree. Every leaf of $\mathrm{BT}(G)$ corresponds to a part of $\operatorname{Part}(G)$.
2) For any $S \in \mathfrak{O}(G), d_{\mathrm{BT}(G)}(S)=|\operatorname{Part}(G ; S)|$. Moreover, for any part $A \in \operatorname{Part}(G ; S)$, there exists exactly one part $B \in \operatorname{Part}(G)$ such that $B \subset A$ and B is adjacent to S in $\mathrm{BT}(G)$.
3) Let $B, B^{\prime} \in \operatorname{Part}(G)$. Then a cutset $S \in \mathfrak{O}(G)$ separates B from B^{\prime} in G if and only if S separates B from B^{\prime} in $\operatorname{BT}(G)$.
Definition 10. A part $A \in \operatorname{Part}(G)$ is pendant if it corresponds to a leaf of the tree $\mathrm{BT}(G)$.
Remark 3. 1) If $A \in \operatorname{Part}(G)$ is a pendant part then $\operatorname{Bound}(A) \in \mathfrak{O}(G)$. 2) Interiors of two distinct parts of $\operatorname{Part}(G)$ are disjoint.

Definition 11. 1) For a 2 -connected graph G, we denote by G^{\prime} the graph obtained from G upon adding all edges of type $a b$ where $\{a, b\} \in \mathfrak{O}(G)$.
2) Let $A \in \operatorname{Part}(G)$. If $G^{\prime}(A)$ is a 3 -connected graph then A is called a 3 -block. If the graph $G^{\prime}(A)$ is a cycle then A is called a cycle and $|A|$ is the length of A.
Lemma 8 ([10, Lemma 2]). For a 2-connected graph G, the following statements hold.

1) Every part of $\operatorname{Part}(G)$ is either a cycle or a 3-block.
2) If $A \in \operatorname{Part}(G)$ is a cycle then all vertices of $\operatorname{Int}(A)$ have degree 2 in the graph G. If $\delta(G) \geqslant 3$ then all pendant parts of $\operatorname{Part}(G)$ are 3 -blocks.
3) Let $A \in \operatorname{Part}(G)$ be a cycle of length at least 4. Then any pair of its non-neighboring vertices form a non-single cutset of the graph G. All non-single cutsets of G are of such type.

Lemma 9 ([11, Lemma 3]). If $B \in \operatorname{Part}(G)$ is a 3 -block and $w \in \operatorname{Int}(B)$ then the graph $G-w$ is 2-connected.

Lemma 10 ([12, Lemma 5]). Let $S=\{a, b\} \in \mathfrak{R}_{2}(G)$ and $D \in \operatorname{Part}(G ; S)$. Then one of the two following statements holds.
$1^{\circ} . G(D)$ is an ab-path.
2°. There exists a pendant part $A \in \operatorname{Part}(G)$ such that $\operatorname{Int}(A) \subset \operatorname{Int}(D)$.
Corollary 1. Let $S \in \mathfrak{O}(G)$ and $D \in \operatorname{Part}(G ; S)$. Then there exists a pendant part $A \in \operatorname{Part}(G)$ such that $\operatorname{Int}(A) \subset \operatorname{Int}(D)$.

Proof. If statement 1° of Lemma 10 holds then D is a pendant part of $\operatorname{Part}(G)$. If statement 2° of Lemma 10 holds then we are done.

Lemma 11. A set $B \subset V(G)$ is a pendant 3-block of G if and only if there exists a set $T \subset B$ such that $T \in \mathfrak{R}_{2}(G), B$ is a T-fragment and the graph $G(B)^{+}$is 3-connected.
Proof. \Rightarrow. A consequence of definitions of a 3-block and a pendant part. \Leftarrow. By Lemma $5, T \in \mathfrak{O}(G)$. Since $G(B)^{+}$is 3 -connected, $B \in \operatorname{Part}(G ; T)$ and no cutset $S \in \mathfrak{O}(G)$ splits B. By Lemma 3 , then $B \in \operatorname{Part}(G)$. Thus, B is a 3 -block. By Lemma 1 , $\operatorname{Bound}(B)=T$. Hence, B is a pendant 3-block.

We need to study how pendant 3-blocks of a 2-connected graph with minimal degree 3 are changed after deleting an inner vertex of one of them.

Lemma 12. Assume that $\delta(G) \geqslant 3, B$ is a pendant 3 -block of $G, T=$ Bound (B) and $x \in \operatorname{Int}(B)$. Then the following statements hold.

1) $T \in \mathfrak{R}_{2}(G-x)$ and $\operatorname{Part}(G ; T) \backslash\{B\} \subset \operatorname{Part}(G-x ; T)$. The set $B \backslash\{x\}$ is a T-fragment of $G-x$.
2) Pendant 3-blocks of $G-x$ are all pendant 3-blocks of G which are different from B and, probably, some subsets of $B \backslash\{x\}$.

Proof. 1) Let $B^{\prime} \in \operatorname{Part}(G ; T)$ and $B^{\prime} \neq B$. Then T separates B^{\prime} from $V\left(G-x-B^{\prime}\right)$ in $G-x$ and the graph $(G-x)\left(\operatorname{Int}\left(B^{\prime}\right)\right)=G\left(\operatorname{Int}\left(B^{\prime}\right)\right)$ is
connected. Therefore, $B^{\prime} \in \operatorname{Part}(G-x ; T)$. Hence, clearly, $B \backslash\{x\}$ is a T-fragment of $G-x$.
2) Let D be a pendant 3 -block of G different from B. Then the graph $(G-x)(D)^{+}=G(D)^{+}$is 3 -connected by Lemma 11, and, by the same lemma, D is a pendant 3 -block of $G-x$.

Assume that $A \in \operatorname{Part}(G-x)$ is a pendant 3-block of $G-x$ but is not a pendant 3 -block of G. Let $S=\operatorname{Bound}(A)$. By Lemma 11, the graph $(G-x)(A)^{+}$is 3 -connected. If S separates A from $V(G) \backslash A$ in G then, by Lemma 11, A is a pendant 3 -block of G, a contradiction. Hence, S does not separate A from $V(G) \backslash A$ in G. Therefore, x is adjacent to a vertex $y \in \operatorname{Int}(A)$.

Let's prove that there exists a part $B^{\prime} \in \operatorname{Part}(G-x ; T)$ such that $A \subset B^{\prime}$. If $S=T$ this is clear. Let $S \neq T$. Then the cutsets $S, T \in$ $\mathfrak{R}_{2}(G-x)$ are independent. If $A \supset T$ then, by Lemma 4, there exists a part $A^{\prime} \in \operatorname{Part}(G-x ; T)$ such that $A \supset A^{\prime}$. Clearly, T separates A^{\prime} from $A \backslash A^{\prime}$ in $(G-x)(A)^{+}$. Hence, $(G-x)(A)^{+}$is not 3 -connected, a contradiction. Thus, $A \not \supset T$ and, by Lemma 4, there exists a part $B^{\prime} \in \operatorname{Part}(G-x ; T)$ such that $A \subset B^{\prime}$.

The vertex $y \in \operatorname{Int}(A)$ cannot belong to $T \in \mathfrak{R}_{2}(G-x)$. Hence, $y \in$ $\operatorname{Int}\left(B^{\prime}\right)$. Since $x \in \operatorname{Int}(B)$ and y is adjacent to x, we have $y \in \operatorname{Int}(B)$. Now, by item 1 , we obtain $B^{\prime} \subset B \backslash\{x\}$.

Lemma 13. Let $T \in \mathfrak{R}_{2}(G), D \in \operatorname{Part}(G ; T)$ and $H=G(D)^{+}$. Then the following statements hold.

1) Let $x, y \in D$ and $T \neq\{x, y\}$. Then k independent $x y$-paths exist in G if and only if k independent xy-paths exist in H. In particular, H is 2 -connected.
2) Let $x, y \in D$ and $S \subset D$. Then S separates x from y in G if and only if S separates x from y in H.
3) The set $\mathfrak{R}_{2}(H)$ consists of all cutsets of $\mathfrak{R}_{2}(G)$ lying in D and different from T. The set $\mathfrak{O}(H)$ consists of all cutsets of $\mathfrak{O}(G)$ lying in D and different from T.
4) Let $S \in \Re_{2}(H)$. Then $\operatorname{Part}(H ; S)$ consists of all sets of type $A \cap D$ where $A \in \operatorname{Part}(G ; S)$.
5) $\operatorname{Part}(H)$ consists of all maximal up to inclusion sets of type $A \cap D$ where $A \in \operatorname{Part}(G)$.

Proof. Let $T=\{a, b\}, D^{\prime} \in \operatorname{Part}(G ; T), D^{\prime} \neq D$.

1) At most one $x y$-path in G can be not contained in D : such path must
contain both vertices of the set $T=\{a, b\}$. In H, we substitute the $a b$-part of this path by the edge $a b$. Conversely, at most one $x y$-path in H contains the edge $a b$ which can be replaced by an $a b$-path in G through the part D^{\prime}. Thus, since G is 2-connected, H is also 2-connected.
2) Let's prove that a $x y$-path P_{G} exists in $G-S$ if and only if a $x y$-path P_{H} exists in $H-S$. Indeed, the part of P_{G} outside D can be substituted by the edge $a b$. Conversely, if P_{H} contains the edge $a b$ then this edge can be replaced by an ab-path through D^{\prime}.
3) Let $S \in \mathfrak{R}_{2}(G), S \subset D$. Then S is independent with T and, by Lemma 4, there exists a part $A \in \operatorname{Part}(G ; S)$ such that $A \subsetneq D$. By item $2, S$ separates $\operatorname{Int}(A)$ from $T \backslash S$ in H and, therefore, $S \in \mathfrak{R}_{2}(H)$. Conversely, if $S \in$ $\mathfrak{R}_{2}(H)$ then it is clear that $S \neq T$ and, by item $2, S \in \mathfrak{R}_{2}(G)$.

Let $S=\{x, y\}$. By Lemma $6, S \in \mathfrak{O}(G)$ if and only if $S \in \mathfrak{R}_{2}(G)$ and there exist 3 independent $x y$-paths in G. Similarly, $S \in \mathfrak{O}(H)$ if and only if $S \in \mathfrak{R}_{2}(H)$ and there exist 3 independent $x y$-paths in H. By item 1 and proved above, these two statements are equivalent.
4) A straightforward consequence of items 2 and 3 .
5) By Lemma 2, $\operatorname{Part}(G)$ consists of maximal up to inclusion sets of type $\cap_{S \in \mathfrak{O}(G)} A_{S}$ where $A_{S} \in \operatorname{Part}(G ; S)$. Single cutsets of G which do not lie in D are independent with T and, by Lemma 4 , do not split $D . T$ also does not split D. By item 3, single cutsets of G which lie in D and are different from T form the set $\mathfrak{O}(H)$. Therefore, by item 4, Part (H) consists of maximal up to inclusion sets of type $\cap_{S \in \mathfrak{O}(G)}\left(A_{S} \cap D\right)$ where $A_{S} \in \operatorname{Part}(G ; S)$. These sets are exactly maximal up to inclusion sets of type $A \cap D$ where $A \in \operatorname{Part}(G)$.

Definition 12. Consider a cycle $C \in \operatorname{Part}(G)$. Let its vertices follow c_{1}, \ldots, c_{k} in the cyclic order (we suppose that $c_{k+m}=c_{m}$).

1) If $S_{i}=\left\{c_{i}, c_{i+1}\right\} \in \mathfrak{O}(G)$ then there exists unique part $C_{i}^{\prime} \in \operatorname{Part}\left(G ; S_{i}\right)$ which contains C. Then the weight $w\left(c_{i} c_{i+1}\right)$ is equal to $v\left(G-C_{i}^{\prime}\right)$ (i.e. to the sum of sizes of interiors of all parts of $\operatorname{Part}\left(G ; S_{i}\right)$ different from $\left.C_{i}^{\prime}\right)$. If $S_{i} \notin \mathfrak{O}(G)$ then we set $w\left(c_{i} c_{i+1}\right)=0$.
2) An arc $c_{p} C c_{q}$ is the path $c_{p} c_{p+1} \ldots c_{q}$ along the cycle C. The weight of this arc is $w\left(c_{p} C c_{q}\right)=q-p+1+\sum_{i=p}^{q-1} w\left(c_{i} c_{i+1}\right)$ (i.e. the number of vertices of the arc plus the sum of weights of its edges).

Remark 4. If $w\left(c_{i} c_{i+1}\right)=0$ then it is clear that $\left\{c_{i}, c_{i+1}\right\} \notin \mathfrak{R}_{2}(G)$ (two neighboring vertices of a cycle of $\operatorname{Part}(G)$ cannot form a non-single cutset of $\mathfrak{R}_{2}(G)$ by Lemma 5).

Lemma 14. Let $C \in \operatorname{Part}(G)$ be a cycle. Let vertices $u, v \in C$ be nonneighboring in the cyclic order and $T=\{u, v\}$. Then one can set the notation $\operatorname{Part}(G ; T)=\left\{D, D^{\prime}\right\}$ such that D contains all vertices of the arc $u C v$ and D^{\prime} contains all vertices of the arc $v C u$. Moreover, $|D|=w(u C v)$ and $\left|D^{\prime}\right|=w(v C u)$.
Proof. By Lemma 8, T is a non-single cutset of G. By Lemma 5, $|\operatorname{Part}(G ; T)|=2$. Clearly, T separates inner vertices of the arc $u C v$ from inner vertices of the arc $v C u$. Therefore, we can set the notation $\operatorname{Part}(G ; T)=$ $\left\{D, D^{\prime}\right\}$ such that D contains all inner vertices of the arc $u C v$ and D^{\prime} contains all inner vertices of the arc $v C u$.

Consider an edge $e=x y$ of the arc $u C v$ such that $S=\{x, y\} \in \mathfrak{O}(G)$. Let $C_{S} \in \operatorname{Part}(G ; S)$ be the part which contains C. Then $C_{S} \supset T$ and, by Lemma 4, the part D contains the union of all parts of $\operatorname{Part}(G ; S)$ different from C_{S}. The sum of sizes of interiors of all these parts is exactly $w(e)$. Thus, we have found $w(u C v)$ vertices in D. Since a similar reasoning is valid for the part D^{\prime} and the arc $v C u$, the part D cannot contain other vertices. Hence, $|D|=w(u C v)$ and, similarly, $\left|D^{\prime}\right|=w(v C u)$.

Definition 13. We will say that the part D from Lemma 14 corresponds to the $\operatorname{arc} L=u C v$ and denote this part by D_{L}. And, conversely, we will say that the arc L corresponds to the part D_{L}.

§3. Reconstruction of pendant 3-blocks

Let's recall that, since $\delta(G) \geqslant 3$, all pendant parts of G are 3-blocks. Let $B_{1}, \ldots, B_{k} \in \operatorname{Part}(G)$ be all pendant 3 -bocks of $G, T_{i}=\operatorname{Bound}\left(B_{i}\right)$ and $H_{i}=G\left(B_{i}\right)$.

By the definition of a 3-block, each graph H_{i}^{+}is 3-connected.
Denote by n_{1} the minimal number of vertices in a pendant 3 -block of G. Clearly, $n_{1} \geqslant 4$. First, we will show how to determine all graphs H_{i} (in each H_{i} the set T_{i} will be marked).
Definition 14. Let $\mathcal{D}^{2}(G)$ be the subcollection of $\mathcal{D}(G)$ consisting of all 2-connected graphs and $\mathcal{D}^{1}(G)$ be the subcollection of $\mathcal{D}(G)$ consisting of all graphs which are not 2-connected.

Remark 5. 1) The collection $\mathcal{D}(G)$ can be easily divided into $\mathcal{D}^{2}(G)$ and $\mathcal{D}^{1}(G)$.
2) Clearly, any graph $G-x \in \mathcal{D}^{1}(G)$ is connected. A vertex $y \in V(G-x)$ is a cutpoint of $G-x$ if and only if $\{x, y\} \in \mathfrak{R}_{2}(G)$.

First, we extract some information from the collection $\mathcal{D}^{1}(G)$.
Lemma 15. Having the collection $\mathcal{D}(G)$, one can determine n_{1} and the number of pendant 3 -blocks of size n_{1} in G.

Proof. Consider all graphs $G-x \in \mathcal{D}^{1}(G)$ and all connected components of all graphs $G-x-y$ where y is a cutpoint of $G-x$. Let \mathcal{C} be the collection of vertex sets of all such components. By Remark 5, these vertex sets are interiors of parts of decomposition of G by one set of $\mathfrak{R}_{2}(G)$. By Lemma 10, for $\delta(G) \geqslant 3$, a minimal part of decomposition of G by a set of $\mathfrak{R}_{2}(G)$ is a pendant 3 -block. Therefore, the minimal size of a component in \mathcal{C} is equal to $n_{1}-2$. Thus, we determine n_{1}.

Let $B \in \operatorname{Part}(G)$ be a pendant 3 -block of size n_{1} and $\operatorname{Bound}(B)=\{a, b\}$. Then $\operatorname{Int}(B)$ occurs in \mathcal{C} exactly two times: from the graph $G-a$ and from the graph $G-b$. Hence, the number of pendant 3 -blocks of size n_{1} is equal to the number of sets of size $n_{1}-2$ in \mathcal{C} divided by 2 .

Definition 15. 1) Pendant 3-blocks B_{i} and B_{j} are isomorphic if there exists a graph isomorphism $\varphi: H_{i} \rightarrow H_{j}$ such that $\varphi\left(T_{i}\right)=T_{j}$.
2) Let B_{ℓ} be a pendant 3-block of G.

We denote by $\mathcal{D}\left(B_{\ell}\right)$ the collection of all graphs $G-x$, where $x \in$ $\operatorname{Int}\left(B_{i}\right)$ and the pendant 3-block B_{i} is isomorphic to B_{ℓ}.

We denote by $\mathcal{D}^{\prime}\left(B_{\ell}\right)$ the collection of all graphs $G-x$, where $x \in$ $\operatorname{Int}\left(B_{i}\right)$ and $\left|B_{i}\right|=\left|B_{\ell}\right|$.

Lemma 16. Having the collection $\mathcal{D}(G)$, one can determine all graphs H_{1}, \ldots, H_{k} and, in each graph H_{i}, mark the set T_{i}.

Proof. By Lemma 15, we know the minimal size n_{1} of a pendant 3 -block of G and the number s of 3 -blocks of size n_{1} in G. Let B_{1}, \ldots, B_{s} be all pendant 3 -blocks of size n_{1} in G. By Lemma 12, any graph $G-x \in \mathcal{D}^{2}(G)$ has at least $s-1$ pendant 3 -blocks of size n_{1}. Moreover, $G-x$ has exactly $s-1$ pendant 3 -blocks of size n_{1} if and only if $x \in \operatorname{Int}\left(B_{i}\right)$ where $1 \leqslant i \leqslant s$. Thus, $\mathcal{D}^{\prime}\left(B_{1}\right)$ consists of all graphs of the collection $\mathcal{D}^{2}(G)$ which have $s-1$ pendant 3 -blocks of size n_{1}.

By Lemma 12 , in any graph $G-x \in \mathcal{D}^{\prime}\left(B_{1}\right)$, all pendant 3 -blocks of size greater than n_{1} are exactly all pendant 3 -blocks of G of size greater than n_{1}. Thus, we can determine all graphs H_{s+1}, \ldots, H_{k} and, in each of them, mark the corresponding set T_{i}. It remains to determine the graphs H_{1}, \ldots, H_{s} (induced on pendant 3 -blocks of size n_{1}). Consider two cases.

1. $s \geqslant 2$.

Clearly, $\left|\mathcal{D}^{\prime}\left(B_{1}\right)\right|=s\left(n_{1}-2\right)$. For $1 \leqslant i \leqslant s$ and all $n_{1}-2$ vertices $x \in \operatorname{Int}\left(B_{i}\right)$, the graph $G-x$ has exactly $s-1$ pendant 3 -blocks of size n_{1} (all such 3-blocks of G except for B_{i}). Consider all subgraphs of each $G-x \in \mathcal{D}^{\prime}\left(B_{1}\right)$ induced on their pendant 3 -blocks of size n_{1}. In this collection of subgraphs, each H_{1}, \ldots, H_{s} occurs exactly $(s-1)\left(n_{1}-2\right)$ times. Thus, we can determine all graphs H_{1}, \ldots, H_{s}. In each H_{i}, it is easy to mark the set T_{i}.
2. $s=1$. We have to determine the only pendant 3 -block B_{1} of size n_{1}. In this case, G has another pendant 3-block, say, B_{2}. Let $\left|B_{2}\right|=n_{2}$ and B_{2}, \ldots, B_{t+1} be all pendant 3 -blocks of G with n_{2} vertices. We already know all graphs $H_{2}, \ldots, H_{\ell+1}$. Then the collection $\mathcal{D}^{\prime}\left(B_{2}\right)$ consists of all graphs $G-x \in \mathcal{D}^{2}(G)$ which have all pendant 3 -blocks of G of size greater than n_{2} and exactly $t-1$ pendant 3 -blocks with n_{2} vertices. Clearly, $\left|\mathcal{D}^{\prime}\left(B_{2}\right)\right|=t\left(n_{2}-2\right)$.

In each graph $G-x \in \mathcal{D}^{\prime}\left(B_{2}\right)$, consider all pendant 3-blocks of size n_{1} and put to the collection \mathcal{B} all subgraphs of G induced on them (we mark all boundaries of corresponding 3 -blocks in these graphs). What subgraphs occur in \mathcal{B} ? First, the subgraph H_{1} occurs in \mathcal{B} exactly $t\left(n_{2}-2\right)$ times (once for each graph of the collection $\mathcal{D}^{\prime}\left(B_{2}\right)$). Other subgraphs in \mathcal{B} (we call them surplus subgraphs) are subgraphs of graphs $H_{i}-x$ (where $x \in \operatorname{Int}\left(B_{i}\right)$ and $2 \leqslant i \leqslant t+1$). All surplus subgraphs can be easily found. For this purpose, we are to consider all graphs $H_{i}^{+}-x$ where $x \in \operatorname{Int}\left(B_{i}\right)$ and $2 \leqslant i \leqslant t+1$ and, in each graph $H_{i}^{+}-x$, find all pendant 3 -blocks of size n_{1}, which interiors do not intersect T_{i}. Subgraphs induced on the blocks found above are exactly all surplus subgraphs and each of them occurs in \mathcal{B} once. After deleting all of them from \mathcal{B}, we find here only several subgraphs H_{1} with T_{1} marked.

Lemma 17. Having the collection $\mathcal{D}(G)$, one can determine collections $\mathcal{D}\left(B_{\ell}\right)$ for all $\ell \in\{1, \ldots, k\}$.

Proof. Let $\left|B_{\ell}\right|=n^{\prime}$. By Lemma 16, we know the number t of pendant 3blocks of G which are isomorphic to B_{ℓ}. Then $\mathcal{D}\left(B_{\ell}\right)$ consists of all graphs $G-x \in \mathcal{D}^{2}(G)$ which have all pendant 3 -blocks of G of size greater than n^{\prime} and exactly $t-1$ pendant 3 -blocks isomorphic to B_{ℓ}.

§4. Proofs of main theorems

4.1. Properties of graphs of the collection $\mathcal{D}\left(B_{1}\right)$. Let $\left\{B_{1}, \ldots\right.$, $\left.B_{s}\right\}$ be a maximal up to inclusion set of pairwise isomorphic pendant 3blocks of the minimal size n_{1} of the 2 -connected graph G. We know the collection $\mathcal{D}\left(B_{1}\right)$. With the help of this collection we will construct the desired graphs G_{1} and G_{2} (one of which coincides with G). Consider a graph $G-x \in \mathcal{D}\left(B_{1}\right)$. Assume that $x \in \operatorname{Int}\left(B_{1}\right)$. Recall that the graph $G-x$ is 2 -connected.

Remark 6. 1) By Lemma $12, B_{1} \backslash\{x\}$ is a T_{1}-fragment of $G-x$ and any part $A \in \operatorname{Part}\left(G-x ; T_{1}\right)$ not contained in $B_{1} \backslash\{x\}$ belongs to $\operatorname{Part}\left(G ; T_{1}\right)$. By Corollary 1, A contains a pendant part of $\operatorname{Part}(G)$. Hence, $|A| \geqslant n_{1}$.
2) Let U be a T_{1}-fragment of $G-x$ which contains all parts of $\operatorname{Part}\left(G-x ; T_{1}\right)$ except for one of them. By item $1,|U| \geqslant n_{1}-1$.
3) Let U be a T_{1}-fragment of $G-x$ such that $|U|=n_{1}-1$. Then U cannot contain a part of $\operatorname{Part}\left(G-x ; T_{1}\right)$ which is not a subset of $B_{1} \backslash\{x\}$. Hence, $U=B_{1} \backslash\{x\}$.

We will prove several claims describing properties of the graph $G-x$.
Claim 1. Assume that $T \in \mathfrak{O}(G-x)$, and a part $B \in \operatorname{Part}(G-x ; T)$ is such that $|B|<n_{1}$. Then $\operatorname{Int}(B) \cap T_{1}=\varnothing$.

Proof. Assume the converse. Since T_{1} is independent with T, we have $T_{1} \subset B$. Let $B^{\prime} \in \operatorname{Part}\left(G-x ; T_{1}\right)$ be the part which contains T and let A be the union of all parts of $\operatorname{Part}\left(G-x ; T_{1}\right)$ different from B^{\prime}. By Lemma $4, B \supsetneq A$. However, by Remark $6,|A| \geqslant n_{1}-1 \geqslant|B|$. We obtain a contradiction.

Claim 2. Let a pendant part $B \in \operatorname{Part}(G-x)$ be such that $|B|<n_{1}$. Then $B \subset\left(B_{1} \backslash\{x\}\right)$ and $\operatorname{Int}(B) \subset \operatorname{Int}\left(B_{1} \backslash\{x\}\right)$.

Proof. By item 2 of Lemma 12, either $B \subset\left(B_{1} \backslash\{x\}\right)$ or B is a pendant 3 -block of G. The latter is impossible due to $|B|<n_{1}$. By Lemma 1, $\operatorname{Int}(B) \subset \operatorname{Int}\left(B_{1} \backslash\{x\}\right)$.

Claim 3. Assume that $T \in \mathfrak{O}(G-x)$ and a T-fragment U of the graph $G-x$ is such that $|U|=n_{1}-1$. Then $T=T_{1}$ and $U=B_{1} \backslash\{x\}$.

Proof. If $T=T_{1}$ then, by Remark $6, U=B_{1} \backslash\{x\}$. Further, let $T \neq T_{1}$. Then these cutsets are independent. By Corollary 1, there exists a pendant
part $B \in \operatorname{Part}(G-x)$ such that $\operatorname{Int}(B) \subset \operatorname{Int}(U)$. Then $|B|<n_{1}$ and, by Claim 2, we obtain $\operatorname{Int}(B) \subset \operatorname{Int}\left(B_{1} \backslash\{x\}\right)$.

By Claim 1, $T_{1} \cap \operatorname{Int}(U)=\varnothing$. By Lemma 4, then $U \subsetneq B^{\prime}$ where $B^{\prime} \in$ $\operatorname{Part}\left(G-x ; T_{1}\right)$. In our case, $\operatorname{Int}(U) \cap \operatorname{Int}\left(B_{1} \backslash\{x\}\right) \neq \varnothing$. Since $B_{1} \backslash\{x\}$ is a T_{1}-fragment, $B^{\prime} \subset B_{1} \backslash\{x\}$. Then $|U|<\left|B_{1} \backslash\{x\}\right|=n_{1}-1$, a contradiction.

Now assume that there is no cutset $T \in \mathfrak{O}(G-x)$ and T-fragment U of the graph $G-x$ such that $|U|=n_{1}-1$. However, $T_{1} \in \mathfrak{R}_{2}(G-x)$ and the T_{1}-fragment $B_{1} \backslash\{x\}$ of the graph $G-x$ has exactly $n_{1}-1$ vertices. Therefore, $T_{1} \in \mathfrak{R}_{2}(G-x)$ is a non-single cutset. Let's study $\operatorname{Part}\left(G-x ; T_{1}\right)$ in this case.

Claim 4. Let $T_{1}=\{a, b\} \notin \mathfrak{O}(G-x)$. Then $\operatorname{Part}\left(G ; T_{1}\right)=\left\{B_{1}, D_{1}\right\}$ and $\operatorname{Part}\left(G-x ; T_{1}\right)=\left\{B_{1} \backslash\{x\}, D_{1}\right\}$ where $\left|D_{1}\right| \geqslant n_{1}$.

Proof. Since T_{1} is a non-single cutset of $G-x,\left|\operatorname{Part}\left(G-x ; T_{1}\right)\right|=2$ by Lemma 5. By Lemma 12, hence, $\left|\operatorname{Part}\left(G ; T_{1}\right)\right|=2$. Let $\operatorname{Part}\left(G ; T_{1}\right)=$ $\left\{B_{1}, D_{1}\right\}$. Then, clearly, $\operatorname{Part}\left(G-x ; T_{1}\right)=\left\{B_{1} \backslash\{x\}, D_{1}\right\}$. By Remark 6, $\left|D_{1}\right| \geqslant n_{1}$.

By Lemma 5 , there exists a part $A \in \operatorname{Part}(G-x)$ such that A is a cycle and T_{1} is its diagonal (i. e. T_{1} consists of two non-neighboring in the cyclic order vertices of A).

Definition 16. Let $C \in \operatorname{Part}(G-x)$ be a cycle and $u, v \in C$. The arc $u C v$ is proper if $w(u C v)=n_{1}-1$.

Remark 7. By the definitions, an $\operatorname{arc} u C v$ is proper if and only if the part of $\operatorname{Part}(G-x ;\{u, v\})$ which corresponds to the arc $u C v$ contains exactly $n_{1}-1$ vertices.

Clearly, the cycle A has a proper arc: it is the arc which corresponds to the part $B_{1} \backslash\{x\} \in \operatorname{Part}\left(G-x ; T_{1}\right)$. We will prove that other cycles of $\operatorname{Part}(G-x)$ has no proper arcs and study the structure of proper arcs of the cycle A.

Claim 5. Let $N=a A b$ be the proper arc corresponding to the part $D_{N}=$ $B_{1} \backslash\{x\}$. Then the following statements hold.

1) If $L=u C v$ is a proper arc and $L \neq N$ then $\{u, v\}$ is dependent with T_{1}.
2) If $C \in \operatorname{Part}(G-x)$ is a cycle and $C \neq A$ then C has no proper arc.
3) Assume that an edge uv of the cycle A does not lie on the arc N and $w(u v)>0$. Then uv cannot be contained in a proper arc.
4) Let vertices of A be cyclically enumerated such that $N=a_{1} A a_{k}$ where $k \geqslant 3$. Assume that L is another proper arc. Then $L=a_{2} A a_{k+1}$ or $L=a_{0} A a_{k-1}$. If $L=a_{2} A a_{k+1}$ then $w\left(a_{1} a_{2}\right)=w\left(a_{k} a_{k+1}\right)=0$. If $L=a_{0} A a_{k-1}$ then $w\left(a_{0} a_{1}\right)=w\left(a_{k-1} a_{k}\right)=0$.

Proof. 1) Let $T=\{u, v\} \in \mathfrak{R}_{2}(G-x)$ and $\left|D_{L}\right|=n_{1}-1$. Assume that T is independent with T_{1}. Note that cases $D_{N} \supset D_{L}$ and $D_{L} \supset D_{N}$ are impossible (in this cases, $\left|D_{N}\right| \neq\left|D_{L}\right|$).

By Lemma 4, the only case remaining is where $D_{N} \cap \operatorname{Int}\left(D_{L}\right)=\varnothing$. Let us prove that this is also impossible and obtain a contradiction. By Lemma 10, either $(G-x)\left(D_{L}\right)=G\left(D_{L}\right)$ is a simple $u v$-path or there exists a pendant part $B \in \operatorname{Part}(G-x)$ such that $\operatorname{Int}(B) \subset \operatorname{Int}\left(D_{L}\right)$. In the first case, all vertices of $\operatorname{Int}\left(D_{L}\right)$ have degree 2 in $G-x$. Hence, all vertices of $\operatorname{Int}\left(D_{L}\right)$ are adjacent in G with the vertex $x \in \operatorname{Int}\left(B_{1}\right)$ and, therefore, $\operatorname{Int}\left(D_{L}\right) \subset D_{N}$. In the second case, clearly, $|B|<n_{1}$ and, by Claim 2, $\operatorname{Int}(B) \subset \operatorname{Int}\left(D_{N}\right)$. In both cases we have a contradiction with $D_{N} \cap \operatorname{Int}\left(D_{L}\right)=\varnothing$.
2) Assume the converse, let $u C v$ be a proper arc and $T=\{u, v\}$. There exists a cutset $S \in \mathfrak{O}(G-x)$ which is adjacent to A in the tree BT $(G-x)$ and separates A from C. By Lemma $7, S$ separates A from C in $G-x$. Hence, there exist distinct parts $M_{A}, M_{C} \in \operatorname{Part}(G-x ; S)$ such that $T_{1} \subset$ $A \subset M_{A}$ and $T \subset C \subset M_{C}$. Then T_{1} does not split T. Thus, T and T_{1} are independent, a contradiction with item 1.
3) By the condition, $S=\{u, v\} \in \mathfrak{O}(G-x)$. Let $M \in \operatorname{Part}(G-x ; S)$ be a part which does not contain A. By Corollary 1, there exists a pendant part $M^{\prime} \in \operatorname{Part}(G-x)$ such that $\operatorname{Int}\left(M^{\prime}\right) \subset \operatorname{Int}(M)$. Since the edge $u v$ does not lie on the $\operatorname{arc} N$, we have $\operatorname{Int}(M) \cap D_{N}=\varnothing$ (see figure 2a). Then $\left|M^{\prime}\right| \geqslant n_{1}$ by Claim 2. Therefore, $w(u v) \geqslant\left|\operatorname{Int}\left(M^{\prime}\right)\right| \geqslant\left|M^{\prime}\right|-2 \geqslant n_{1}-2$. If $u v$ lies on a proper arc L then $w(u v) \leqslant w(L)-2=n_{1}-3$, a contradiction.
4) By item $2, L=a_{i} A a_{j}$. By item $1, T=\left\{a_{i}, a_{j}\right\}$ is dependent with $T_{1}=$ $\left\{a_{1}, a_{k}\right\}$ i.e. T corresponds to a diagonal of the cycle A which intersects $a_{1} a_{k}$ in an inner point. Hence, we have one of the two following cases:
(a) L does not contain the vertex a_{1} and the edge $a_{1} a_{2}$ but contains the vertex a_{k+1} and the edge $a_{k} a_{k+1}$;
(b) L does not contain the vertex a_{k} and the edge $a_{k-1} a_{k}$ but contains the vertex a_{0} and the edge $a_{0} a_{1}$.

Figure 2. Proper arcs of the cycle A.

Consider the case (a). By item 3, $w\left(a_{k} a_{k+1}\right)=0$ (see figure 2b). Assume that L also contains the edge $a_{k+1} a_{k+2}$. Then we also have $w\left(a_{k+1} a_{k+2}\right)=$ 0 , whence it follows $d_{G-x}\left(a_{k+1}\right)=2$. Therefore, $a_{k+1} \in D_{N}$, we have a contradiction.

Thus, $w\left(a_{k} a_{k+1}\right)=0$ and a_{k+1} is an end of L. Taking into account $w(N)=w(L)$ we obtain that $L=a_{2} A a_{k+1}$ and $w\left(a_{1} a_{2}\right)=0$. Since $1 \leqslant$ $|\operatorname{Int}(B \backslash\{x\})|=w\left(a_{1} A a_{k}\right)$, we have $k \geqslant 3$.

In the similar case (b), we obtain $L=a_{0} A a_{k-1}$ and $w\left(a_{0} a_{1}\right)=$ $w\left(a_{k-1} a_{k}\right)=0$.
Claim 6. Let $N=a A b$ be the proper arc corresponding to the part $B_{1} \backslash\{x\}$ and let $F=G-\operatorname{Int}\left(B_{1}\right)$. Assume that N cannot be distinguished among proper arcs of the cycle A. Then the following statements hold.

1) A has exactly two proper arcs. The vertices of A can be cyclically enumerated such that proper arcs are $a_{1} A a_{k}$ and $a_{2} A a_{k+1}$. The arc $a_{1} A a_{k+1}$ can be uniquely determined.
2) One of the degrees $d_{F}(a)$ and $d_{F}(b)$ is equal to 1 and the other is greater than 1. If $d_{F}(a)>1$ then $d_{H_{1}-x}(a)=1$.

Proof. 1) Let $A=a_{0} a_{1} \ldots a_{\ell}$. We may assume that both $\operatorname{arcs} L_{1}=a_{1} A a_{k}$ and $L_{2}=a_{2} A a_{k+1}$ are proper and $w\left(a_{1} a_{2}\right)=w\left(a_{k} a_{k+1}\right)=0$. (By item 4 of Claim 5 , the cycle A has two such proper arcs.)

Assume that $w\left(a_{0} a_{1}\right)=0$. Then $d_{G-x}\left(a_{1}\right)=2$ and, therefore, a_{1} is adjacent to x in G, whence it follows $a_{1} \in B_{1}$. Then the arc $a_{1} A a_{k}$ corresponds to the part $B_{1} \backslash\{x\}$ i.e. $N=a_{1} A a_{k}$, a contradiction. Hence, $w\left(a_{0} a_{1}\right)>0$ and, similarly, $w\left(a_{k+1} a_{k+2}\right)>0$.

We claim that N must coincide with one of the $\operatorname{arcs} L_{1}$ and L_{2}. Indeed, assume the converse. Then, applying item 4 of Claim 5 to N and L_{1}, we obtain $N=a_{0} A a_{k-1}$. At the same time, applying item 4 of Claim 5 to
N and L_{2}, we obtain $N=a_{3} A a_{k+2}$. Since the arc N is unique, we have $a_{0}=a_{3}$ i.e. $|A|=3$ and, by Claim $5, k=3$. Thus, $L_{1}=a_{1} A a_{0}$ is a proper arc. Hence, by proved above, $w\left(a_{1} a_{2}\right)=0$ and, at the same time, $w\left(a_{1} a_{2}\right)>0\left(\right.$ since $\left.a_{1} a_{2}=a_{k+1} a_{k+2}\right)$, a contradiction.

Now N coincides with L_{1} or L_{2}. Hence, the edges $a_{0} a_{1}$ and $a_{k+1} a_{k+2}$ do not belong to N. By item 3 of Claim $5, a_{0} a_{1}$ and $a_{k+1} a_{k+2}$ cannot belong to proper arcs. However, if A has one more proper arc $a_{i} A a_{j}$ then $S=\left\{a_{i}, a_{j}\right\}$ is dependent with T_{1} by Claim 5 i.e. S is dependent either with $\left\{a_{1}, a_{k}\right\}$ or with $\left\{a_{2}, a_{k+1}\right\}$. Therefore, the arc $a_{i} A a_{j}$ must contain one of the edges $a_{0} a_{1}$ and $a_{k+1} a_{k+2}$, a contradiction.
2) Assume that $a A b=a_{1} A a_{k}$ (the case $a A b=a_{2} A a_{k+1}$ is similar). Then $w\left(a_{1} a_{2}\right)=0$ implies that $a=a_{1}$ is adjacent to exactly one vertex of $B_{1} \backslash\{x\}$ - namely, to a_{2}. Since $w\left(a_{0} a_{1}\right)>0$, we have $\left\{a_{0}, a_{1}\right\} \in \mathfrak{O}(G-x)$. Hence, $d_{G-x}\left(a_{1}\right) \geqslant 3$, whence it follows $d_{F}\left(a_{1}\right) \geqslant 2$. On the other side, $w\left(a_{k} a_{k+1}\right)=0$ implies that $b=a_{k}$ is adjacent to exactly one vertex of D_{1} (to $\left.a_{k+1}\right)$. Thus, $d_{F}(a)>1, d_{H_{1}-x}(a)=1$ and $d_{F}(b)=1$.

Claim 7. Assume that, for all $y \in \operatorname{Int}\left(B_{1}\right)$, the set $B_{1} \backslash\{y\}$ cannot be distinguished in the graph $G-y$. Then $n_{1}=4$ and H_{1} is a complete graph on 4 vertices without the edge ab.

Proof. Let $F=G-\operatorname{Int}\left(B_{1}\right)$. Consider a vertex $z \in \operatorname{Int}\left(B_{1}\right)$. By Claim 3, T_{1} is a non-single 2 -cutset of the graph $G-z$. By Lemma 5 , we may assume that T_{1} is a diagonal of a cycle $A_{z} \in \operatorname{Part}(G-z)$. In our case, we cannot determine the proper arc of A_{z} corresponding to $B_{1} \backslash\{z\}$. Hence, by Claim 6 , the cycle A_{z} has exactly two proper arcs, one of the degrees $d_{F}(a)$ and $d_{F}(b)$ is equal to 1 and the other is greater than 1 . Without loss of generality, assume that $d_{F}(a) \geqslant 2$.

By Claim 6, for any vertex $y \in \operatorname{Int}\left(B_{1}\right)$, at least one of the following two statements hold: $d_{H_{1}-y}(a)=1$ and $d_{H_{1}-y}(b)=1$. Since H_{1}^{+}is 3-connected, we obtain $a b \notin H_{1}$ and $d_{H_{1}}(a)=d_{H_{1}}(b)=2$.

Assume that $n_{1} \geqslant 5$. Then $\left|\operatorname{Int}\left(B_{1}\right)\right| \geqslant 3$. Therefore, there exists a vertex $x \in \operatorname{Int}\left(B_{1}\right)$ not adjacent to a. Consider the graph $G-x \in \mathcal{D}\left(B_{1}\right)$. Clearly, $d_{H_{1}-x}(a)=2$. Since, at the same time, $d_{F}(a) \geqslant 2$, we have a contradiction with item 2 of Claim 6 .

Thus, $n_{1}=4$ and $\left|\operatorname{Int}\left(B_{1}\right)\right|=2$. Since $\delta(G) \geqslant 3$, two vertices of $\operatorname{Int}\left(B_{1}\right)$ must be adjacent to each other and to both vertices a and b. It was proved above that $a b \notin E(G)$. Hence, H_{1} is a complete graph on 4 vertices without the edge $a b$.
4.2. Proof of Theorem 1. Now we are able to finish the proof of our main theorem.

Proof of Theorem 1. We will consider two cases.

1. There exists a graph $G-x \in \mathcal{D}\left(B_{1}\right)$, such that $x \in \operatorname{Int}\left(B_{i}\right)$ and the set $B_{i} \backslash\{x\}$ can be distinguished in $G-x$.

Without loss of generality, we may assume that $x \in \operatorname{Int}\left(B_{1}\right)$. Let $T_{1}=$ $\{a, b\}$. Recall that $B_{1} \backslash\{x\}$ is a T_{1}-fragment of the graph $G-x$. The set T_{1} can be easily marked in a T_{1}-fragment. Hence, we know the graph $H^{\prime}=G-\operatorname{Int}\left(B_{1}\right)=G-x-\operatorname{Int}\left(B_{1} \backslash\{x\}\right)$ with vertices of the set T_{1} marked. By Lemma 16, we also know the graph $H_{1}=H\left(B_{1}\right)$ with vertices of T_{1} marked. Two ways of gluing together the graphs H^{\prime} and H_{1} by the set T_{1} give us two graphs G_{1} and G_{2} such that $G \in\left\{G_{1}, G_{2}\right\}$.

Let's prove that $\mathrm{BT}\left(G_{1}\right)=\mathrm{BT}\left(G_{2}\right)$. The graph H_{1}^{+}is 3 -connected. Hence, H_{1} has no cutpoint separating a from b. Then, by Lemma $5, T_{1} \in$ $\mathfrak{O}\left(G_{1}\right)$ and $T_{1} \in \mathfrak{O}\left(G_{2}\right)$. Since H_{1}^{+}is 3 -connected, B_{1} is a pendant 3block of both graphs G_{1} and G_{2} by Lemma 11. Since $G_{1}-\operatorname{Int}\left(B_{1}\right)=$ $H^{\prime}=G_{2}-\operatorname{Int}\left(B_{1}\right)$, by Lemma 13, all single cutsets and parts of G_{1} lying outside B_{1} are all single cutsets and parts of G_{2} lying outside B_{1}.
2. For all $G-x \in \mathcal{D}\left(B_{1}\right)$ where $x \in \operatorname{Int}\left(B_{i}\right)$ and $1 \leqslant i \leqslant s$, the set $B_{i} \backslash\{x\}$ cannot be distinguished in the graph $G-x$.

By Claim 7, then $n_{1}=4$ and, for every $i \in\{1, \ldots, s\}, H_{i}$ is a clique on 4 vertices without the edge between vertices of T_{i}.

Consider a graph $G-x \in \mathcal{D}\left(B_{1}\right)$, say $x \in \operatorname{Int}\left(B_{1}\right)$. Let $T_{1}=\{a, b\}$. By Claim 3, T_{1} is a non-single cutset of $G-x$. By Claim 5, we can find the unique cycle $A \in \operatorname{Part}(G-x)$ which has proper arcs. Then T_{1} is a diagonal of A which consists of ends of the proper arc of A corresponding to the part $B_{1} \backslash\{x\}$. In the case we are considering, $H_{1}-x$ is a simple path $a x^{\prime} b$ where $\operatorname{Int}(B)=\left\{x, x^{\prime}\right\}$. Hence, any proper arc of A is a path of length 2 . By item 2 of Claim 6 , the cycle A has exactly two proper arcs. Moreover, vertices of A can be cyclically enumerated such that proper arcs are $N=a_{1} a_{2} a_{3}$ and $L=a_{2} a_{3} a_{4}$ (see figure 3a) and the arc $a_{1} A a_{4}$ can be determined.

If the part $B_{1} \backslash\{x\}$ corresponds to the arc N then x is adjacent in G to a_{1}, a_{2} and a_{3} (see figure 3b). Denote this graph by G_{1}. If the part $B_{1} \backslash\{x\}$ corresponds to the arc L then x is adjacent in G to a_{2}, a_{3} and a_{4} (see figure 3c). Denote this graph by G_{2}. Then $G \in\left\{G_{1}, G_{2}\right\}$. Let $H=G\left(\left\{x, a_{1}, a_{2}, a_{3}, a_{4}\right\}\right)$ and $H^{*}=G-\left\{x, a_{2}, a_{3}\right\}$. Clearly, both G_{1} and G_{2} are results of gluing together H and H^{*} by the set $\left\{a_{1}, a_{4}\right\}$.

Figure 3. The graphs G_{1} and G_{2}.

Similarly to Case $1, T_{1} \in \mathfrak{O}\left(G_{1}\right), T_{1} \in \mathfrak{O}\left(G_{2}\right)$ and B_{1} is a pendant 3-block of both graphs G_{1} and G_{2}. Lemma 13 implies $\operatorname{BT}\left(G_{1}\right)=\mathrm{BT}\left(G_{2}\right)$ (this tree can be obtained from $\mathrm{BT}(G-x)$ by adding vertices T_{1}, B_{1} and edges $\left.A T_{1}, T_{1} B_{1}\right)$.
4.3. On possible non-uniqueness of the reconstruction. In what follows, we will formulate and prove a more detailed theorem on possible non-uniqueness in the reconstruction of graphs of connectivity 2 . We hope this theorem will help to prove the full version of Reconstruction Conjecture for graphs of connectivity 2.

Definition 17. Let G be a 2 -connected graph. We say that a graph G^{*} is obtained from G by inverting a subgraph H if there exists $T \in \mathfrak{R}_{2}(G)$ such that H is a T-subgraph of G and G^{*}, G are two graphs obtained from H and $G-\operatorname{Int}(H)$ upon gluing them together by the set T.

Remark 8. Let G^{*} is obtained from G by inverting a subgraph H. It is easy to see that then H is a T-subgraph of G^{*} and G is obtained from G^{*} by inverting H.

Theorem 2. Assume that G_{1} and G_{2} are non-isomorphic graphs on the vertex set V such that $\kappa\left(G_{1}\right)=\kappa\left(G_{2}\right)=2, \delta\left(G_{1}\right) \geqslant 3, \delta\left(G_{2}\right) \geqslant 3$ and $\mathcal{D}\left(G_{1}\right)=\mathcal{D}\left(G_{2}\right)$. Then there exists a set $A \subset V$ such that G_{2} is obtained from G_{1} by inverting $H=G_{1}(A)$. Moreover, one of the two following conditions holds.
(a) A is a minimal pendant 3-block of both graphs G_{1} and G_{2}.
(b) $|A|=5, A=B_{1} \cup\{u\}$ where $u \notin B_{1}$ and B_{1} is a minimal pendant 3-block of both graphs G_{1} and G_{2}. Moreover, $d_{H}(u)=1$ (u is adjacent in H to one vertex of $\operatorname{Bound}\left(B_{1}\right)$).

Proof. Assume that $G=G_{1}$ is a graph we know. Let's consider the collection $\mathcal{D}(G)$. Having $\mathcal{D}(G)$, we construct by the algorithm of Theorem 1 two graphs G_{1}^{*}, G_{2}^{*} such that $G \in\left\{G_{1}^{*}, G_{2}^{*}\right\}$.

At least one of the collections $\mathcal{D}\left(G_{1}^{*}\right)$ and $\mathcal{D}\left(G_{2}^{*}\right)$ coincides with the known collection $\mathcal{D}(G)$. If $G_{1}^{*} \simeq G_{2}^{*}$ or $\mathcal{D}\left(G_{1}^{*}\right) \neq \mathcal{D}\left(G_{2}^{*}\right)$ then we can uniquely reconstruct the graph $G=G_{1}$ from $\mathcal{D}\left(G_{1}\right)$. However, it is impossible in our case (since $\mathcal{D}\left(G_{1}\right)=\mathcal{D}\left(G_{2}\right)$ and $\left.G_{1} \nsucceq G_{2}\right)$. If there exists a graph G^{*} with $\mathcal{D}\left(G^{*}\right)=\mathcal{D}\left(G_{1}\right)$ which is isomorphic to neither G_{1}^{*} nor G_{2}^{*} then the statement $G \in\left\{G_{1}^{*}, G_{2}^{*}\right\}$ is wrong, a contradiction with Theorem 1 . Thus, the only case remaining is $\left\{G_{1}^{*}, G_{2}^{*}\right\}=\left\{G_{1}, G_{2}\right\}$.

By the construction of G_{1} and G_{2} (see the proof of Theorem 1), G_{2} is obtained from G_{1} by inverting a subgraph $H=G_{1}(A)=G_{2}(A)$. In Case 1 of the proof, A is a minimal pendant 3 -block i.e. statement (a) holds. In Case 2 of the proof, statement (b) holds.

REFERENCES

1. P. J. Kelly, A congruence theorem for trees. - Pacific J. Math. 7 (1957), 961-968.
2. S. M. Ulam, A Collection of Mathematical Problems. Wiley, New York, 1960.
3. W. T. Tutte, Connectivity in Graphs. Univ. Toronto Press, Toronto, 1966.
4. J. A. Bondy, On Ulam's conjecture for separable graphs. - Pacific J. Math., 31 (1969), 281-288.
5. Y. Yongzhi, The reconstruction conjecture is true if all 2-connected graphs are reconstructible. - J. Graph Theory, 12 (1988), 237-243.
6. D. V. Karpov, A. V. Pastor, k-connected graph. - J. Math. Sci., 113, No. 4 (2003), 584-597.
7. D. V. Karpov, Blocks in k-connected graphs. - J. Math. Sci., 126, No. 3 (2005), 1167-1181.
8. D. V. Karpov, Cutsets in a k-connected graph. - J. Math. Sci., 145, No. 3 (2007), 4953-4966.
9. D. V. Karpov, The Decomposition Tree of a Biconnected Graph. - J. Math. Sci., 204, No. 2 (2015), 232-243.
10. D. V. Karpov, Minimal biconnected graphs. - J. Math. Sci., 204, No. 2 (2015), 244-257.
11. D. V. Karpov, Decomposition of a 2-connected graph into three connected subgraphs. - J. Math. Sci., 236, No. 5 (2019), 490-502.
12. D. V. Karpov, Large contractible subgraphs of a 3-connected graph. Discussiones Mathematicae Graph Theory, to appear, doi: 10.7151/dmgt.2172.
St.Petersburg Department
Поступило 27 октября 2020 г.
of the Steklov Mathematical Institute;
St.Petersburg State University
E-mail: dvk0@yandex.ru

[^0]: Key words and phrases: graph reconstruction, 2-connected graphs.

