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SIX-VERTEX MODEL AS A GRASSMANN INTEGRAL,

ONE-POINT FUNCTION, AND THE ARCTIC ELLIPSE

Abstract. We formulate the six-vertex model with domain wall
boundary conditions in terms of an integral over Grassmann vari-
ables. Relying on this formulation, we propose a method of calcula-
tion of correlation functions of the model for the case of the weights
satisfying the free-fermion condition. We consider here in details the
one-point correlation function describing the probability of a given
state on arbitrary edge of the lattice, or, – polarization. We show
that in the thermodynamic limit, performed such that the lattice is
scaled to the square of unit side length, this function exhibits the
“arctic ellipse” phenomenon, in agreement with previous studies on
random domino tilings of Aztec diamonds: it approaches its limit-
ing values outside of an ellipse inscribed into this square, and takes
continuously intermediate values inside the ellipse. We derive also
scaling properties of the one-point function in the vicinity of an ar-
bitrary point of the arctic ellipse and in the vicinities of the points
where the ellipse touches the boundary.

§1. Introduction

The present interest in the study of 2D lattice models of classical sta-
tistical mechanics is in particularly aimed at unveiling their thermody-
namic properties when fixed (rather than periodic) boundary conditions
are imposed. An important example here is the six-vertex model with do-
main wall boundary conditions [1–3], which was originally introduced in
the context of the problem of calculation of correlation functions of 1D
quantum solvable models (for a review, see [4]). Thereafter it was discov-
ered that the model is also closely related with some interesting objects
in enumerative combinatorics (see, e.g., [5] and references therein). Most
interestingly, the model is known to exhibit spatial separation of phases
in the thermodynamic limit, which is the effect due to both of the ice-rule
and the peculiar choice of the boundary conditions [6].

Key words and phrases: Vertex models, lattice fermions, Grassmann variables, do-
main wall boundary conditions, coherent states, correlation functions, arctic ellipse
phenomenon, Airy kernel.
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Phase separation phenomena are very well known to be an attribute of
random tilings of planar finite regions. A famous example, closely related
to the present study, is provided by domino tilings of the region called
“Aztec diamond” where configurations exhibit “arctic circle” phenomenon:
in statistically dominating configurations dominoes are frozen (i.e., or-
dered) outside of a circle inscribed into the Aztec diamond, and temperate
(i.e., disordered) inside it [7,8]. For dominoes certainly weighted according
to their orientations, or, “biased”, the circle deforms into an ellipse [9]. Sim-
ilar phenomena are also known for rhombus tilings of a hexagon [10, 11],
and more generally, for dimer models with a boundary [12, 13].

As the domino tilings of Aztec diamonds can be mapped to the six-
vertex model with domain wall boundary conditions at its free-fermion
point [14], phase separation phenomena can be expected at the six-vertex
model side too, and not only at the free-fermion point. This is also reasoned
by obtained influence of boundary conditions on the value of free energy per
site in the six-vertex model with generic weights [15, 16]; some analytical
aspects were also discussed in [17, 18]. The presence of the phase sepa-
ration phenomena in six-vertex model with domain boundary conditions
for the whole disordered and anti-ferroelectric regimes were demonstrated
numerically in [19, 20].

Motivated by the problem of the phase separation phenomena in the
six-vertex model with domain wall boundary conditions, a series of papers
was devoted to calculation of its correlation functions in the last decade.
Among correlation functions computed up to date are boundary one [21,
22] and two-point functions [23, 24], and certain bulk, though non-local,
correlation function, called emptiness formation probability [25]. This last
correlation function permitted to obtain an analytical expression for the
arctic curve (i.e., frozen boundary of the limit shape, in the language of
random surfaces) in the model [26–28].

To obtain more sophisticated information, such as density of local states
or averaged height-function (i.e., the whole limit shape, rather than just
its boundary) it is necessary to have an access to local bulk correlation
functions. A simplest such correlation function is the one-point function
describing the edge-state probability, or, – polarization. Although some
steps were made towards solution of this problem in full settings recently
[29, 30], it still remains open.

In view of this, it seems interesting to consider first the same problem for
a simple but nevertheless interesting special case, in which the six-vertex
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model weights are restricted to satisfy the free-fermion condition. Indeed,
because of lack of bijection between configurations of domino tilings and
six-vertex model (see, e.g., [14,31]), it is useful to gain access to quantities
of interest directly in the framework of the later. At the same time, one can
expect that scaling properties of correlations are somehow universal, and
the results obtained previously for domino tilings are indeed reproduced
in the thermodynamic limit.

The present paper is therefore devoted to treating the free-fermion case
in the six-vertex model with domain wall boundary conditions. We focus
our attention here on the one-point correlation function which describes
the edge-state probability. We obtain various representations for this func-
tion and recover, in the thermodynamic limit, the arctic ellipse phenom-
enon (separation of order and disorder), known from previous studies on
domino tilings. We also discuss finite size effects in the vicinities of the
phase separation curve and points where the disordered region touches the
boundary.

The presentation of the paper is made as much as possible to be self-
contained. Our treatment of the free-fermion case of the six-vertex model
is based on a direct reformulation of the model in terms of fermions–
fermionization, rather than on the standard for this model framework of
the quantum inverse scattering method. The fermionization is applicable
for generic weights and arbitrary boundary conditions. As a result, the
partition function is written in terms of an integral over Grassmann vari-
ables, resembling a fermionic 2D lattice field theory with a four-fermion
interaction term. At the free-fermion point this term vanishes. The con-
struction, with the explicit use of the domain wall boundary conditions, is
explained in Sect. 2.

Using this formulation, we consider next in Sect. 3 calculations for the
free-fermion model. We develop here an approach based on evaluation of
powers of involved matrices in an explicit form, without any diagonaliza-
tion procedure. This makes it possible to compute correlation functions in
the coordinate representation directly. We obtain various formulas for the
one-point function, including a representation in terms of a double contour
integral, suitable for an analysis in the thermodynamic limit.

We perform the saddle-point analysis of this integral in Sect. 4. In the
scaling limit where the initial lattice is mapped to the unit square, the
one-point function demonstrates the “arctic ellipse” phenomenon, namely,
it acquires its limiting values in the exterior of an ellipse inscribed into the



SIX-VERTEX MODEL AS A GRASSMANN INTEGRAL 171

square and takes intermediate values in the interior of it. We also show
that for large but finite lattices the one-point function at the vicinity of
the arctic ellipse coincides with the density of eigenvalues of the Gaussian
unitary ensemble at the edge of the spectrum, as it should. We also inves-
tigate similarly the one-point function in vicinity of the points where the
ellipse touches the boundary.

This paper contains results obtained by the authors in the period 2003–
2013 and it was almost in its final form, when the first author died suddenly
in February 2014. Since then, this text was shared among colleagues as
a draft manuscript. Inspired by many requests, the second author have
finally decided to publish it, and henceforth it is presented here in its
original form, with minimal modifications. In particular, this explains lack
of citations in the list of references dated after 2013.

§2. Fermionization of the model

Under the term fermionization we assume here that the partition func-
tion is represented as an integral over Grassmann variables. We start
with giving basic definitions related to the model. Using the formalism of
diagonal-to-diagonal transfer matrices, we express first the partition func-
tion as some quantum expectation value in the Hilbert space of a finite
number of fermionic degrees of freedom. We show that this expectation
value can be written in terms of a fermionic transfer matrix. We invoke
the notion of the Grassmann coherent states to switch from the operator
formulation of the partition function to that in terms of an integral over
Grassmann variables, thus performing the fermionization.

2.1. Basic definitions. We consider the six-vertex model on a finite
square lattice formed by intersection of N vertical and N horizontal lines
(N×N lattice). We recall that configurations of the model can be depicted
by placing arrows pointed along edges of the lattice, with the condition that
at each lattice vertex must income and outgo exactly two arrows. The do-
main wall boundary conditions mean that all arrows on external edges of
our N × N lattice are fixed such that on the horizontal edges all arrows
are outgoing while on the vertical ones they are incoming, see Fig. 1.

To each of six typical arrow configurations around a vertex is assigned
a Boltzmann weight. We use standard assumption that these weights are
invariant under simultaneous reversal of all four arrows, and denote the
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Figure 1. Definition of the model: the six allowed vertex
configurations with their Boltzmann weights, and N ×N
lattice with the domain wall boundary conditions, N = 6.

three different weights as a, b, and c. In this section we assume that they
are arbitrary.

For description of the states on the edges it is often more convenient to
use binary variables (i.e., taking values 0, 1) rather than arrows. Let such
a variable takes value 0 if the arrow is pointing upward or right, and value
1 if the arrow is pointing downward of left. Consider a single vertex and let
µ, ν, ν′ and µ′ denote variables assigned to the left, bottom, top, and right
edges of the vertex, respectively. Let w(µ, ν, ν′, µ′) denotes the Boltzmann
weight corresponding to this vertex, then

w(0, 0, 0, 0) = w(1, 1, 1, 1) = a,

w(0, 1, 1, 0) = w(1, 0, 0, 1) = b,

w(0, 1, 0, 1) = w(1, 0, 1, 0) = c,

and w(µ, ν, ν′, µ′) = 0, if µ+ ν 6= ν′ + µ′.
The partition function of the six-vertex model with domain wall bound-

ary conditions then can be defined as

Z =
∑

{µ},{ν}

N∏

i,j=1

w(µi,j , νi,j , νi,j+1, µi+1,j)

∣
∣
∣
∣µ1,∗=ν∗,N+1=1
µN+1,∗=ν∗,1=0

. (2.1)

Here sum is taken over values of the variables assigned to the internal edges
of the N ×N lattice, and the star means that the subscript must run over
all possible values.

In discussion of the one-point correlation function which describes the
probability of a given state on an edge, it will be convenient for us to
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use labeling of the lattice vertices by the Cartesian coordinates (m,n),
where m,n = 1, . . . , N , with the origin (1, 1) corresponding to the bottom
left vertex. The one-point function at arbitrary edge of the lattice can be
defined as

GA(m,n) = 〈χA(m,n)〉 , A =↑,←, ↓,→,

where the averaging is performed with respect to the Gibbs measure in-
duced by (2.1) and χA(m,n) is the characteristic function of the arrow A
outgoing from the vertex (m,n),

χA(m,n) =

{

1 if the arrow A outgoes from the vertex (m,n)

0 otherwise.

For instance,

G→(m,n) =
1

Z

∑

{µ},{ν}

δ(µm+1,n, 0)

×
N∏

i,j=1

w(µi,j , νi,j , νi,j+1, µi+1,j)

∣
∣
∣
∣µ1,∗=ν∗,N+1=1
µN+1,∗=ν∗,1=0

, (2.2)

where δ(µ, µ′) is the Kronecker symbol,

δ(µ, µ′) =

{

1 if µ = µ′

0 if µ 6= µ′.

Evidently, we have the relations

G→(m,n) +G←(m+ 1, n) = 1, G↑(m,n) +G↓(m,n+ 1) = 1.

Using the symmetries both of the lattice with domain wall boundary con-
ditions and the vertex weights under reflections with respect to diagonals
(see Fig. 1), we also have the relations

G→(m,n) = G↓(n,m+ 1) = G↑(N − n+ 1, N −m).

These relations mean that it is sufficient to consider the edge-state proba-
bility only for, e.g., horizontal edges. Below we consider function (2.2) and
use notation G(m,n) = G→(m,n). Furthermore, from the four relations
above for this function we have the following self-consistency relation:

G(m,n) = 1−G(N −m,N − n+ 1). (2.3)
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This relation can also be obtained by rotating the lattice through 180◦

(since such rotation is just a composition of two reflections). Obviously, re-
lation (2.3) can be seen as a kinematic restriction, since it arises merely due
to global symmetries of the system; in the periodic boundary conditions
case it would be replaced by the condition of a translational invariance of
the edge-state probability.

In the remaining parts of this section we discuss reformulation of the
partition function in terms of integral over Grassmann variables, postpon-
ing further discussion of the one-point function to Sect. 3.3.

2.2. Operator formulation. We start with considering the model in
the framework of the diagonal-to-diagonal transfer matrix formalism, also
known as the light-cone lattice approach. As it was noticed in [32], in this
formalism one can easily apply the Jordan-Wigner transformation to spin-
1/2 operators to obtain an equivalent description in terms of canonical
fermion operators.

To employ the diagonal-to-diagonal transfer matrix formalism, it is use-
ful to look at the N×N lattice as being obtained by attaching of 2N zigzag
lines of proper lengths, and to enumerate these lines consecutively as shown
in Fig. 2. To each of these lines we assign a vector space C2. Consider the
vector space H = (C2)⊗2N where the jth copy of C2 corresponds to the
jth zigzag line. Then to the vertices of the N × N lattice we can assign
operators Xj , j = 1, . . . , 2N − 1, acting in H, such that each operator Xj

acts non-trivially only in the jth and (j + 1)th copies of C2.
Let v0, v1 form a basis in C

2,

v0 =

(
1
0

)

, v1 =

(
0
1

)

.

For the basis vectors of the spaceH, which will play the role of the quantum
space of states, we will employ the “bra-ket” notation

|Ψµ1,µ2,...,µ2N
〉 = vµ1

⊗ vµ2
⊗ · · · ⊗ vµ2N

, µ1, . . . , µ2N = 0, 1.

We thus can define the operators Xj, j = 1, . . . , 2N − 1, by the formula

〈Ψµ1,...,µ2N
|Xj |Ψµ′

1
,...,µ′

2N
〉 = w(µj , µj+1, µ

′
j, µ
′
j+1)

2N∏

l=1
l 6=j,j+1

δ(µl, µ
′
l).

Here w(µ, ν, ν′, µ′) is the Boltzmann weight defined above.
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1 2 . . . N
N+1

...

2N−1
2N

Figure 2. The 2N zigzag lines forming the N ×N lattice:
each zigzag line is formed by the set of edges crossed by
the same dashed line.

In terms of the spin-1/2 operators,

σα
j = I⊗(j−1) ⊗ σα ⊗ I⊗(2N−j), α = x, y, z, (2.4)

where

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

,

and I denotes 2× 2 unity matrix, the X-operators read

Xj =
a+ c

2
+

b

2
(σx

j σ
x
j+1 + σy

j σ
y
j+1) +

a− c

2
σz
j σ

z
j+1. (2.5)

The partition function of the six-vertex model with domain wall bound-
ary conditions can be written in the form

Z = 〈Λ|Ξ|Λ〉, (2.6)

where the vector |Λ〉 accounts the boundary conditions of the top and right
boundaries,

|Λ〉 = |Ψ1, . . . , 1
︸ ︷︷ ︸

N

,0, . . . , 0
︸ ︷︷ ︸

N

〉,

and, similarly, the vector 〈Λ| accounts those of the left and bottom bound-
aries. The operator Ξ describes the transfer over the whole lattice, from
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the top right corner to the bottom left one, and reads:

Ξ = XN(XN−1XN+1) · · · (X1X3 · · ·X2N−3X2N−1) · · ·
× (XN−1XN+1)XN . (2.7)

In this formula, each group of operators is a diagonal-to-diagonal transfer
matrix, which corresponds to a set of vertices along the NW-SE diagonal
direction (see Fig. 2). Namely, the rightmost operator, XN , corresponds to
the top right vertex of the lattice, the operator XN−1XN+1 corresponds to
the second (from the top right corner) diagonal row of vertices, and so on,
down to the bottom left vertex, to which the operator XN corresponds.

It is useful to note that since XjXk = XkXj for |j − k| > 2, the X-
operators in the expression for Ξ can also be grouped along the vertical
or horizontal lines of the lattice. For example, grouping along the vertical
lines, we can write

Ξ=(XN · · ·X2X1)· · ·(X2N−2· · ·XNXN−1)(X2N−1· · ·XN+1XN ). (2.8)

In this expression, the order of the groups of X-operators coincides with
the order of the vertical lines to which they correspond. The order of the
X-operators within each group, from right to left, corresponds to running
over the vertices of a vertical line, from top to bottom.

Now we can apply the Jordan-Wigner transformation and express all
operators in terms of canonical fermion operators, which we denote by fj
and f∗j , j = 1, . . . , 2N . They satisfy the anti-commutation relations

fjf
∗
k + f∗kfj = δjk, fjfk + fkfj = 0, f∗j f

∗
k + f∗kf

∗
j = 0.

Using the notation σ±j = (1/2)(σx
j ± iσy

j ), we define them as

fj = σz
1 · · ·σz

j−1σ
+
j , f∗j = σz

1 · · ·σz
j−1σ

−
j . (2.9)

The operators f∗j and fj can be seen as the creation and annihilation
operators, respectively, of the jth fermion, with respect to the vacuum
vector |Ω〉 = |Ψ0,...,0〉. For the basis vectors of the space H we have

|Ψµ1,µ2,...,µ2N
〉 = (f∗1 )

µ1(f∗2 )
µ2 · · · (f∗2N )µ2N |Ω〉, (2.10)

and, correspondingly, the bra-vectors read

〈Ψµ1,µ2,...,µ2N
| = 〈Ω|(f2N )µ2N · · · (f2)µ2 (f1)

µ1 . (2.11)

As a result, the partition function is expressed in terms of the algebra
of canonical fermions, by (2.6) and (2.7) (or (2.8)), where

〈Λ| = 〈Ω|fNfN−1 · · · f1, |Λ〉 = f∗1 f
∗
2 · · · f∗N |Ω〉, (2.12)
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and the X-operators are given by the expression

Xj = a− (a− c)
(
f∗j fj + f∗j+1fj+1 − 2f∗j fjf

∗
j+1fj+1

)

+ b(f∗j fj+1 + f∗j fj+1), (2.13)

which follows from (2.4), (2.5), and (2.9).

2.3. Fermionic transfer matrix. Our aim now will be rewrite the par-
tition function in the form, typical for the row-to-row transfer matrix for-
malism. In particular, we express it as a matrix element of the Nth power
of certain operator, which can be written as a supertrace of a product of
local operators.

We first introduce the permutation operators of fermions, which can be
defined by the relations

PjkfjPjk = fk, Pjkf
∗
j Pjk = f∗k , Pjk|Ω〉 = |Ω〉,

together with the standard relations of the permutation group, i.e.,

PjkPlkPjk = Plj , (Pjk)
2 = 1.

These operators have the following explicit form:

Pjk = 1− f∗j fj − f∗kfk + f∗j fk + f∗kfj . (2.14)

Given permutation operators, we can consider the cyclic shift operator of
2N fermions,

C = P12P23 · · ·P2N−1,2N ,

which has the property C2N = 1.
Let us now consider the partition function, given by (2.6), focusing first

attention on the operator Ξ, written in the form (2.8). Using

Xj+1 = CXjC
−1,

we can write each group of factors in (2.8) as follows:

XN+j−1 · · ·Xj+1Xj = Cj
(
XN · · ·X2X1

)
C−j .

This yields

Ξ = TNC−N ,

where we have introduced the operator

T = XN · · ·X2X1C. (2.15)

Now, introducing the vector

|Λ′〉 := CN |Λ〉 = f∗N+1f
∗
N+2 · · · f∗2N |Ω〉,
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where the vector |Λ〉 is given in (2.12), we can rewrite the partition function
in the form

Z = 〈Λ|TN |Λ′〉. (2.16)

To proceed further, we introduce one more set of local operators, Rjk,
where j, k = 1, . . . , 2N and j 6= k. We first introduce the operators Rjk

with k = j + 1, by

Rj,j+1 := XjPj,j+1.

Acting with the permutation operators we can extend the above definition
on all other values of indices,

Rjk = Pk,j+1Rj,j+1Pk,j+1 (k 6= j, j + 1).

Due to (2.13) and (2.14), the operators Rjk thus defined has the following
explicit form

Rjk = a+ c(f∗j fk + f∗kfj) + (b − a)(f∗j fj + f∗kfk)− 2b f∗j fjf
∗
kfk. (2.17)

In this expression one can easily recognize the so-called fermionic R-matrix
[33, 34]. Note that we have in fact obtained here (2.17) simply from the
expression for the X-operators, first using the Jordan-Wigner transforma-
tion, and next acting with the fermion permutation operators (cf. also [32]).

Let us now come back to the operator (2.15). Using the definition of
the R-operators given above, we can rewrite the operator T in the form

T = (RN,N+1RN−1,N+1 · · ·R1,N+1)

× (PN+1,N+2PN+2,N+3 · · ·P2N−1,2N ). (2.18)

Noting that the second group of factors here, involving only the permuta-
tion operators, is just the cyclic shift operator over the last N fermions (out
of total 2N), we can use the fact that its Nth power is equal to one, and
therefore we can simplify all such factors when considering the operator
TN , that yields

TN = (RN,N+1RN−1,N+1 · · ·R1,N+1) (RN,N+2RN−1,N+2 · · ·R1,N+2) · · ·
× (RN,2NRN−1,2N · · ·R1,2N ) . (2.19)

This representation, when substituted in (2.16), provides the fermionic
version of the usual row-to-row transfer matrix formulation of the partition
function, cf. [1–3]. In (2.19), each operator Rj,N+k corresponds to the
vertex lying at intersection of the jth horizontal line, counted from the
top, and the kth vertical line, counted from the left.
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In what follows we rely on the representation (2.16) with the operator
T given in the form typical for a transfer matrix, i.e., as a (super)trace
of some product of operators. Indeed, (2.18) can be obtained as a result
of evaluation of the supertrace with respect to an auxiliary, or, “zeroth”,
fermion degree of freedom,

T = str0 (P2N,0P2N−1,0 · · ·PN+1,0RN,0RN−1,0 · · ·R1,0) . (2.20)

The supertrace can be defined as

str0(. . . ) = 〈Ω0| . . . |Ω0〉 − 〈Ω0|f0 . . . f∗0 |Ω0〉,
where |Ω0〉 denotes the vacuum state of the auxiliary fermion. Equivalence
of (2.18) and (2.20) can be seen by moving the operator P2N,0 in (2.20)
over all the operators to the right and using the fact that str0 P2N,0 = 1.

2.4. Grassmann integral representation. To represent (2.16) as an
integral over Grassmann variables, we will exploit the technique of the
Grassmann coherent states. For a detailed exposition on the Grassmann
variables and integration over them see [35, 36]; the Grassmann coherent
states are exposed, e.g., in [37,38] (see also references therein), where also
all the sufficient information on the Grassmann integrals can be found.

First of all. we recall that Grassmann variables are classical variables
(not operators), which anti-commute between themselves. The standard
requirement in their definition is that they also anti-commute with the
fermion creation and annihilation operators. Given 2N fermion degrees
of freedom in our operators, we associate Grassmann variables η1, . . . , η2N
with the ket-state |η〉 := |η1, . . . , η2N 〉, and Grassmann variables
η∗1 , . . . , η

∗
2N with the bra-state 〈η∗| := 〈η∗1 , . . . , η∗2N |.

The defining property of Grassmann coherent states is that they are
eigenstates of the fermion annihilation and creation operators,

fj |η〉 = ηj |η〉, 〈η∗|f∗j = 〈η∗|η∗j . (2.21)

We define the Grassmann coherent states as follows:

|η〉 = exp







2N∑

j=1

f∗j ηj






|Ω〉, 〈η∗| = 〈Ω| exp







2N∑

j=1

η∗j fj






. (2.22)

Their scalar product is

〈η∗|η〉 = exp







2N∑

j=1

η∗j ηj






. (2.23)
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Note that we assume that ηj and η∗j , j = 1, . . . , 2N , are independent vari-

ables (i.e., no complex involution is introduced in the Grassmann algebra).
We also use, in comparison with [37, 38], a different normalization of the
states; our choice is more suitable for our purposes below.

A important role in calculations is played by the unity decomposition

1 =

∫ 2N∏

j=1

(dη∗j dηj) exp






−

2N∑

j=1

η∗j ηj






|η〉〈η∗|. (2.24)

We use the usual rules for the integrals over Grassmann variables: an
integral over a Grassmann variable is defined as a derivative (from the left)
and multiple integrals are defined as repeated ones. In writing integrals we
follow the convention that the order of differentials coincides with the order
of differentiations. We often use below a formula for a 2M -tuple (where
M varies, depending on a situation) Gaussian Grassmann integral

∫ M∏

j=1

(dη∗j dηj) exp






−

M∑

j,k=1

η∗jAjk ηk +

M∑

j=1

ξ∗j ηj +

M∑

j=1

η∗j ξj







=

(

det
16j,k6M

Ajk

)

exp







M∑

j,k=1

ξ∗j (A−1)jk ξk






, (2.25)

where ξ1, . . . , ξM , ξ∗1 , . . . , ξ
∗
M are Grassmann variables; the matrix A is as-

sumed to be a nondegenerate.
Since (2.24) is important for what follows, it is useful to outline a proof.

We first note that (2.24) essentially implies that the right-hand side acts
identically on all the basis vectors (2.10) and (2.11). Next we note that the
Grassmann coherent states (2.22) are in fact generating functions of all
basis vectors; hence it is suffice to show that a Grassmann coherent state
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is reproduced. Finally, acting, for example, on the ket-state |ξ〉, we have

∫ 2N∏

j=1

(dη∗j dηj) exp






−

2N∑

j=1

η∗j ηj






|η〉〈η∗|ξ〉

=

∫ 2N∏

j=1

(dη∗j dηj) exp






−

2N∑

j=1

η∗j ηj +
2N∑

j=1

η∗j ξj






|η〉

=

∫ 2N∏

j=1

(dη∗j dηj) exp






−

2N∑

j=1

η∗j ηj +
2N∑

j=1

η∗j ξj +
2N∑

j=1

f∗j ηj






|Ω〉

= exp







2N∑

j=1

f∗j ξj






|Ω〉 = |ξ〉,

where on the first step we used (2.23), and on the third one we used (2.25),
with M = 2N , A = I, and ξ∗j = f∗j . Calculations in the case of the bra-
state are similar.

Let us now consider the expression for the partition function, (2.16).
Inserting the unity decomposition between the vectors and the operator
TN , we have the expression

Z =

∫ 2N∏

j=1

(dη∗jdηjdξ
∗
j dξj) exp






−

2N∑

j=1

η∗j ξj −
2N∑

j=1

ξ∗j ηj







× 〈Λ|ξ〉〈η∗|TN |η〉〈ξ∗|Λ′〉. (2.26)

From (2.12) and (2.22), we have:

〈Λ|η〉 = ξN · · · ξ2ξ1, 〈η∗|Λ′〉 = ξ∗N+1ξ
∗
N+2 · · · ξ∗2N .

Writing the product of these two expressions as
N∏

j=1

ξjξ
∗
N+j and also taking

into account that
2N∏

j=1

dξ∗j dξj =
N∏

j=1

dξj+Ndξ∗j dξ
∗
j+Ndξj , we first evaluate in

(2.26) the integrals over the variables ξj and ξ∗j+N , j = 1, . . . , N , and next
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over the variables ξ∗j and ξj+N , j = 1, . . . , N , thus obtaining

Z =

∫ 2N∏

j=1

(dη∗jdηjdξ
∗
j dξj)

N∏

j=1

(ξjξ
∗
N+j)

× exp






−

2N∑

j=1

ξ∗j ηj −
2N∑

j=1

η∗j ξj






〈η∗|TN |η〉

=

∫ 2N∏

j=1

(dη∗jdηj)
N∏

j=1

(dξj+Ndξ∗j )

× exp






−

N∑

j=1

ξ∗j ηj −
N∑

j=1

η∗j+N ξj+N






〈η∗|TN |η〉

=

∫ 2N∏

j=1

(dη∗jdηj)

N∏

j=1

(ηjη
∗
N+j) 〈η∗|TN |η〉. (2.27)

Hence, we need only to write 〈η∗|TN |η〉 as a Grassmann integral.
To derive the Grassmann integral formula for this matrix element, we

can insert the unity decompositions between all the factors T in TN ,
thus reducing the task to finding such a formula for 〈η∗|T |η〉. In com-
puting of this matrix element, a crucial role plays the fact the opera-
tor T is represented as a supertrace, see (2.20). For a convenience, let
us introduce functions which explicitly describe functional dependence of
the operators Pj,k and Rj,k on the fermion operators, as given by (2.14)
and (2.17), respectively, by defining them as P (f∗j , fj; f

∗
k , fk) = Pjk and

R(f∗j , fj ; f
∗
k , fk) = Rjk. Then, by using (2.21), the matrix element 〈η∗|T |η〉

can be written in the form

〈η∗|T |η〉 = exp







2N∑

j=1

η∗j ηj







× str0
{
P (η∗2N , η2N ; f∗0 , f0) · · ·P (η∗N+1, ηN+1; f

∗
0 , f0)

×R(η∗N , ηN ; f∗0 , f0) · · ·R(η∗1 , η1; f
∗
0 , f0)

}
. (2.28)

Recalling that str0(. . . ) = 〈Ω0| . . . |Ω0〉−〈Ω0|f0 . . . f∗0 |Ω0〉, where |Ω0〉 is the
vacuum of the auxiliary fermion, it is fairly easy to see that the supertrace
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can be written as the following integral over a pair of Grassmann variables:

str0(. . . ) =

∫

dφ∗dφ e−φ
∗φ 〈Ω0|eφ

∗f0(. . . )ef
∗
0 φ|Ω0〉.

Since in (2.28) the Grassmann variables can be seen as external variables,
we can now use the unity decomposition in its one-mode version, for the
auxiliary fermion. In this way one arrives at the following representation

〈η∗|T |η〉 = exp







2N∑

j=1

η∗j ηj







×
∫ 2N∏

j=1

(dφ∗jdφj+1) exp






−

2N∑

j=1

φ∗jφj+1 +

2N∑

j=1

φ∗jφj







×
2N∏

j=1+N

P (η∗j , ηj ;φ
∗
j , φj)

N∏

j=1

R(η∗j , ηj ;φ
∗
j , φj),

where φ2N+1 := φ1. The P - and R-functions can be represented as expo-
nentials,

P (η∗, η;φ∗, φ) = 1− η∗η − φ∗φ+ φ∗η + η∗φ

= exp {−η∗η − φ∗φ+ φ∗η + η∗φ} ,
R(η∗, η;φ∗, φ) = a+ c(η∗φ+ φ∗η) + (b− a)(η∗η + φ∗φ)− 2b η∗η φ∗φ

= a exp {−η∗η − φ∗φ+ V (η∗, η;φ∗, φ)} ,

where the function V (η∗, η;φ∗, φ) is given by

V (η∗, η;φ∗, φ) =
b

a
(η∗η + φ∗φ) +

c

a
(η∗φ+ φ∗η)

− a2 + b2 − c2

a2
η∗η φ∗φ. (2.29)
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Taking into account that
2N∏

j=1

dφ∗jdφj+1 = −
2N∏

j=1

dφ∗jdφj , we thus arrive at

following Grassmann integral formula:

〈η∗|T |η〉 = −aN
∫ 2N∏

j=1

(dφ∗jdφj) exp

{

−
2N∑

j=1

φ∗jφj+1+
N∑

j=1

V (η∗j , ηj ;φ
∗
j , φj)

+

2N∑

j=N+1

φ∗jηj +

2N∑

j=N+1

η∗jφj

}

. (2.30)

Note that this integral is Gaussian, and hence it can be evaluated. How-
ever, it is useful to keep it temporary in the present form; we will use the
evaluated form in next section.

The further derivation is straightforward. Using (2.24) and substituting
(2.30), we arrive at the following representation for the partition function
in terms of a 2D lattice Grassmann integral:

Z = (−1)NaN
2

∫ N∏

i=1

2N∏

j=1

(dη∗ijdηijdφ
∗
ijdφij)

N∏

j=1

(η1,jη
∗
N,N+j)

× exp

{

−
N∑

i=1

2N∑

j=1

φ∗ijφi,j+1 −
N−1∑

i=1

2N∑

j=1

η∗ijηi+1,j

+

N∑

i,j=1

V (η∗ij , ηij ;φ
∗
ij , φij)

+

N∑

i=1

2N∑

j=N+1

φ∗ijηij +

N∑

i=1

2N∑

j=N+1

η∗ijφij

}

. (2.31)

Here φi,2N+1 := φi,1, i = 1, . . . , N . The expression in (2.31) can be simpli-
fied by evaluating the integrals over the variables with the second subscript
taking values j = N + 1, . . . , 2N . Such evaluation can be done recursively
using that, e.g.,

∫
exp{−η∗φ}dφ = η∗, and that single Grassmann variable

standing in the integrand can be treated as the delta-function, η∗ = δ(η∗).
As a result, we readily obtain

Z = aN
2

∫ N∏

i,j=1

(dη∗ijdηijdφ
∗
ijdφij)

N∏

k=1

(η1,kφ
∗
N−k+1,N ) exp{SSV}, (2.32)
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where we have denoted

SSV = −
N∑

i=1

N−1∑

j=1

φ∗ijφi,j+1 −
N−1∑

i=1

N∑

j=1

η∗ijηi+1,j

+

N∑

i,j=1

V (η∗ij , ηij ;φ
∗
ij , φij). (2.33)

Formula (2.32) essentially solves the problem of fermionization of the six-
vertex model. In (2.33) each term has a simple relation with the elements
of the N × N lattice. The first and the second term in (2.33) are related
to the vertical and the horizontal edges (links) of the lattice, respectively,
while the third one is related to the vertices; the index i labels the vertical
lines (enumerating them from right to left) and the index j the horizontal
ones (from top to bottom). Note that (2.32) can also be regarded as the
Grassmann integral form of writing for (2.16), with the operator TN given
by (2.19).

We conclude our discussion of the fermionization, by noting that (2.32)
can also be written as an integral of some exponential, i.e., in the form,
canonical for a partition function,

Z = aN
2

∫ N∏

i,j=1

(dη∗ijdηijdφ
∗
ijdφij)

N∏

k=1

(dξ∗kdξk) exp{SSV + SDW}, (2.34)

where

SDW =

N∑

k=1

ξ∗kη1,k −
N∑

k=1

φ∗N−k+1,Nξk.

In (2.34), the term SDW is responsible for accounting domain wall bound-
ary conditions, by imposing constraints on the variables of the six-vertex
model action SSV. The auxiliary variables ξ∗k and ξk, entering here only
SDW, can be seen as the corresponding Lagrange multipliers.

§3. The free-fermion model

In this section we calculate explicitly the partition and one-point func-
tions of the model at its free-fermion point. Recall that the free-fermion
condition means that the weights of the six-vertex model satisfy the rela-
tion

a2 + b2 = c2. (3.1)
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This condition leaves a one-parameter freedom in the choice of the weights.
At certain stage of calculations in this section, we switch to the following
parameterization

a

c
=
√
1− α,

b

c
=
√
α. (3.2)

Here α is some parameter, 0 < α < 1.

3.1. Evaluation of the integrals. Within the Grassmann integral for-
malism developed in the previous section, the free-fermion condition guar-
antees vanishing of the quartic terms in the action SSV, see (2.29) and
(2.33). Hence, the six-vertex model in this case is mapped to a free-fermion
theory on a finite 2D lattice. Basing on the Grassmann integral (2.34),
the generating functional for correlation functions can be constructed and,
since all integrations are Gaussian, formally evaluated. However, this route,
standard for a free-fermion theory, encounters some complications due to
the presence of the constraints, induced by the domain wall boundary con-
ditions. Since our goal here is just limited to the derivation of the one-point
function, we have found that the calculations along this approach are too
cumbersome; we will present them elsewhere.

Instead, we use here a different method of treating the Grassmann inte-
gral representations of the previous Section, which exploits certain prop-
erty of the operator T , valid only for the free-fermion model. In fact, the
whole approach appears to be rather general and it can be applied for com-
puting some multi-point correlation functions as well. One of the features of
this approach is that to compute the correlation functions one has to invert
some matrix just of size N×N (rather than of size (2N2+N)×(2N2+N),
in the case of the integral (2.34)). Moreover, this task turns out to be triv-
ial, due to factorization of this matrix as the product of a lower-triangular,
diagonal, and upper-triangular matrices.

Our starting point is that in the free-fermion model, as it can be easily
seen from (2.30) and (2.25), the operator T possesses the property that its
matrix element between the two Grassmann coherent states is Gaussian:

〈η∗|T |η〉 = aN exp{η∗T η}. (3.3)

Here T denotes a 2N × 2N matrix and we have introduced the shorthand
notation η∗T η :=

∑

j,l

η∗j Tjlηl; for a later convenience, we also adopt here

the convention that 2N × 2N matrices are denoted by calligraphic letters
(except the identity matrix, for which the standard notation I will be
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used). We obtain the matrix T below; in our present discussion its explicit
form is irrelevant.

The crucial property of the operators whose matrix elements between
the Grassmann coherent states are Gaussian, like in (3.3), is that the ma-
trix elements of their products are also Gaussian. Namely, let operators
T1, . . . , Tm be such that 〈η∗|Tk|η〉 = ̺k exp{η∗Tkη}, k = 1, . . . ,m, where
Tk are some matrices and ̺k are some normalization constants (numbers).
Then,

〈η∗|T1 · · ·Tm|η〉 =
m∏

k=1

̺k · exp{η∗T1 · · · Tmη}. (3.4)

Indeed, let us consider the case m = 2. Inserting the unity decomposition
(2.24), we obtain

〈η∗|T1T2|η〉 =
∫ 2N∏

j=1

(dφ∗jdφj) exp {−φ∗Iφ} 〈η∗|T1|φ〉〈φ∗|T2|η〉

= ̺1̺2

∫ 2N∏

j=1

(dφ∗jdφj) exp {−φ∗Iφ+ η∗T1φ+ φ∗T2η}

= ̺1̺2 exp {η∗T1T2η} . (3.5)

At the last step we used (2.25) with A = I, ξj = (T2η)j , and ξ∗j = (η∗T1)j .
Since in (2.25) the external variables ξj and ξ∗j are arbitrary, the matrices
T1 and T2 here may also be arbitrary. Applying induction in the number
of operators, or repeatedly using (3.5), we arrive to (3.4).

Due to (3.4), from (3.3) we thus have:

〈η∗|Tm|η〉 = amN exp{η∗T mη}, m ∈ N. (3.6)

For example, the partition function can be computed in terms of the Nth
power of the matrix T , simply using (2.27). Indeed, let us define N × N
matrices Am, Bm, Cm, and Dm to be 2×2 block entries of 2N×2N matrix
being the mth power (m = 1, 2, . . . ) of the matrix T :

T m =

(
Am Bm

Cm Dm

)

. (3.7)
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Then, setting m = N in (3.6) and substituting it in (2.27), we obtain

Z = aN
2

∫ 2N∏

j=1

(dη∗j dηj)
N∏

j=1

(ηjη
∗
N+j) exp{η∗T Nη}

= aN
2

∫ N∏

j=1

(dηN+jdη
∗
j ) exp







N∑

j,l=1

η∗j (BN )jlηN+l







= aN
2

detBN . (3.8)

Below we show that the matrix BN is given as a product of a lower-
triangular, diagonal, and upper-triangular matrices; hence, its determinant
(and the inverse matrix) can be easily evaluated.

The above formulas can be directly generalized on the case of correlation
functions. Consider, for example, the correlation functions, which describe
probabilities of the same state (e.g., right arrow) on given horizontal edges;
the simplest example of such correlation function is provided by the one-
point function (2.2). In the operator formulation of the previous section,
all these correlation functions can defined by suitably inserting the local
fermion vacuum state projectors, i.e., the operators fkf

∗
k , between the pow-

ers of the operator T . Their matrix elements in the Grassmann coherent
states are

〈η∗|fkf∗k |η〉 = 〈η∗|(1 − f∗kfk)|η〉
= (1− η∗kηk)〈η∗|η〉
= exp{η∗Jkη}, (3.9)

where the matrix Jk differs from the identity matrix just in single entry,
with 0 instead of 1 at the kth position on the diagonal,

(Jk)ij = δij − δikδjk. (3.10)

The Gaussian form of (3.9) implies that using (3.4) one can reduce calcu-
lation of the correlation functions to evaluation of the integrals, similar to
(3.8).

In this way, the correlation functions can be expressed as as some N×N
determinants. In particular, in the one-point function case such determi-
nant involves the matrix BN plus some matrix of rank one. Since the matrix
BN has a peculiar factorized structure and admits explicit inversion, this
determinant can be easily evaluated. Below in this section we provide the
details of this calculation.
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3.2. Calculation of the matrices. Here we compute matrices Am, Bm,
Cm, and Dm for m = 1, . . . , N explicitly. We show also that the matrix BN

is equal to a product of a lower-triangular, diagonal, and upper-triangular
matrices.

Let us compute the matrix T . Imposing the condition (3.1) and per-
forming the change of the integration variables φj+1 7→ φj , one can write
(2.30) as follows:

〈η∗|T |η〉 = aN exp{η∗Yη}

×
∫ 2N∏

j=1

(dφ∗jdφj) exp{−φ∗(I − CY)φ+ φ∗CXη + η∗Xφ}. (3.11)

Here C is the 2N × 2N cyclic shift matrix

C =
(

1

2N−1

)

,

and X , Y are the diagonal matrices

X =

(
γIN

IN

)

, Y =

(
βIN

)

,

where the following notations are used

β =
b

a
, γ =

c

a
.

The subscript of I indicates the size of the identity matrix. Evaluation of
the integral in (3.11) by (2.25) gives us formula (3.3), where

T = Y + X (I − CY)−1CX .

The matrix CY is lower-triangular, and, moreover, nilpotent, (CY)N+1 = 0,
hence (I −CY)−1 can be easily evaluated. In this way one can compute all
entries of the matrix T .

For the matrices A1, B1, C1, and D1, defined as blocks of the matrix
T , see (3.7), the following holds. The matrix A1 is lower-triangular, with
the entries

(A1)ij =







0 i < j,

β i = j,

γ2βi−j−1 i > j.
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The matrix B1 has nonzero entries only in the last column, while the
matrix C1 has those only in the first row:

(B1)ij = γβi−1δj,N , (C1)ij = γβN−jδ1,i.

The matrix D1 is

D1 =

(
βN

IN−1

)

.

A peculiar structure of these matrices allows us recursively compute
matrices Am, Bm, Cm, and Dm for m = 2, . . . , N . Let us introduce column
vectors ~v and ~u, such that ~v denotes the last column of the matrix B1, and
~uT coincides with the first row of the matrix C1,

vi = γβi−1, ui = γβN−i = vN−i+1.

Consider case m = 2. Using A2 = A2
1+B1C1, and observing that B1C1 = 0,

we find that A2 = A2
1. Using B2 = A1B1 +B1D1, we find that the matrix

B2 has last two columns nonzero, the (N − 1)th column is given by ~v, and
the Nth one by A1~v. Using C2 = C1A1 +D1C1, we find that the matrix
C2 has two first rows nonzero, the first is given by ~uTA1, and the second
one by ~uT . Using D2 = D2

1 + C1B1, we obtain

D2 =





βN Nγ2βN−1

βN

IN−2



 .

Similarly, one can consider the cases m = 3, m = 4, etc. From these
considerations it turns out that a general result can be easily guessed,
and, in fact, proved by induction.

Namely, for m = 1, . . . , N , the N ×N matrices Am, Bm, Cm, and Dm,
defined by (3.7), are given by the following formulas. The matrix Am is
just mth power of the matrix A1,

Am = Am
1 . (3.12)

The matrix Bm has its last m columns nonzero,

(Bm)ij =

{

0 j = 1, . . . , N −m,
(
Aj−N+m−1

1 ~v
)

i
j = N −m+ 1, . . . , N.

The matrix Cm has its first m rows nonzero,

(Cm)ij =

{(
~uTAm−i

1

)

j
i = 1, . . . ,m

0 i = m+ 1, . . . , N.
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The matrix Dm itself has the following block structure

Dm =

(
Sm

IN−m

)

,

where the nontrivial block, Sm, of size m×m, is an upper-triangular matrix
with the entries of the transpose of AN ,

(Sm)ij = (AN )ji, i, j = 1, . . . ,m.

Below we discuss some other representations and properties of these ma-
trices.

First of all, we mention that these matrices can be conveniently written
in terms of lower- and upper-triangular matrices E− and E+, respectively,
which have entries

(E±)ij = δi,j∓1.

These matrices are nilpotent, EN
± = 0. Using this property, we can use for

the matrix Am formula (3.12) where the matrix A1 is given by

A1 = βI + γ2E−

N−2∑

k=0

βkEk
− =

βI + E−
I − βE−

. (3.13)

Other matrices can be written as follows

Bm = BNEN−m
+ ,

Cm = EN−m
+ CN ,

Dm = Em
− +AT

NEN−m
+ ,

(3.14)

where the matrices BN and CN can be defined as matrices with entries
(BN )ij =

(
Aj−1

1 ~v
)

i
and (CN )ij =

(
~uTAN−i

1

)

j
, respectively. Note, that if

we introduce the matrix of transposition of N elements, Ωij = δi,N−j+1,
then, due to the relations ~u = Ω~v and AT

N = ΩANΩ, we can connect
matrices BN and CN by the relation CN = ΩBT

NΩ; similar relation also
holds for Bm and Cm.

Let us now consider more attentively the matrix BN . Using (3.13) in

(BN )ij =
(
Aj−1

1 ~v
)

i
, we obtain, by direct calculation of its entries and

making use of standard relations for hypergeometric series, the expression

(BN )ij = γβi+j−2

min(i−1,j−1)
∑

p=0

(
i− 1

p

)(
j − 1

p

)(
γ2

β2

)p

, (3.15)
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where the standard notation for the binomial coefficient is used (recall

that
(
z
k

)
= z(z−1)···(z−k+1)

k! if k is a positive integer,
(
z
k

)
= 1, if k = 0,

and
(
z
k

)
= 0 if k is a negative integer). This formula implies that BN

can be represented as a product of lower-triangular, diagonal, and upper-
triangular matrices. Indeed, let us introduce N ×N matrices J−, J 0, and
J+, with entries

(J−)ij = j δi,j+1, (J 0)ij =

(

j − 1

2

)

δij , (J+)ij = i δi,j−1.

For an arbitrary parameter z, we have

(
ezJ−

)

ij
=

(
i− 1

j − 1

)

zi−j,
(
ezJ+

)

ij
=

(
j − 1

i− 1

)

zj−i. (3.16)

Thus formula (3.15) can be written in as the following matrix product:

BN = eβJ− γ2J 0 eβJ+ . (3.17)

Since formula (3.17) is crucial for subsequent calculations, it is useful to
mention here that it can also be obtained without a direct calculation of
entries of the matrix BN (i.e., without (3.15)), but just using the following
commutation relations

J 0J± = J±(J 0 ∓ I).

Matrices E± admit the following representations

E+ =
(
1
2 I + J 0

)−1
J+, E− = J−

(
1
2 I + J 0

)−1
.

We also have

ezJ±J 0e
−zJ± = J 0 ± zJ±,

and therefore

ezJ±E±e
−zJ± =

E±
I ± zE±

. (3.18)

From the last formula follows, after comparing it with (3.13), that the
matrix A1 can also be written in the form

A1 = eβJ−
(
βI + γ2E−

)
e−βJ− . (3.19)

Coming back to matrix BN , we see that since (BN )ij = (Aj−1
1 ~v)i, formula

(3.19) suggests us to consider the matrix exp{−βJ−}BN . Using (3.16),
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and taking into account that vector ~v can be written as ~v = exp{βJ−}~w,
where wi = γδ1,i, for entries of this matrix we have the expression

(
e−βJ−BN

)

ij
= γ

[

(βI + γ2E−
)j−1

]

i,1
=

(
j − 1

i− 1

)

βj−1γ2i−1.

Again using (3.16), one can find that the last expression exactly coincides
with

(
γ2J 0eβJ+

)

ij
, that proves (3.17).

As a simple application of (3.17), we obtain

detBN = γN2

,

and hence from (3.8) we recover the well-known result (see, e.g., [14]) for
the partition function:

Z = aN
2

γN2

= cN
2

.

3.3. The one-point function. Applying the formalism of fermionic op-
erators of Sect. 2.2 to the one-point function G(m,n) = G→(m,n), defined
in (2.2), we can write it as the following matrix element

G(m,n) = Z−1〈Λ|TmfN−n+1f
∗
N−n+1T

N−m|Λ′〉.
The analogue of the Grassmann integral formula (2.27) for this matrix
element reads

G(m,n) = Z−1
∫ 2N∏

j=1

(dη∗j dηj)

N∏

j=1

(ηjη
∗
N+j)

× 〈η∗|TmfN−n+1f
∗
N−n+1T

N−m|η〉. (3.20)

Using (3.4) and (3.9), we have

〈η∗|TmfN−n+1f
∗
N−n+1T

N−m|η〉 = aN
2

exp
{
η∗T mJN−n+1T N−mη

}
.

Recalling that n can take values 1, . . . , N , we consider here the matrix Jk
only for k = 1, . . . , N . This matrix, see (3.10), has the block structure

Jk =

(
IN −Πk

IN

)

, k = 1, . . . , N,

where Πk denotes the N × N diagonal matrix with single nonzero entry,
equal to one, standing at the kth position:

(Πk)ij = δikδjk.
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Hence, for k = 1, . . . , N , the matrix T mJkT N−m has the form

T mJkT N−m = T N −
(
AmΠkAN−m AmΠkBN−m

CmΠkAN−m CmΠkBN−m

)

.

Evaluation of the Grassmann integral in (3.20) yields

G(m,n) = aN
2

Z−1 det (BN −AmΠN−n+1BN−m) .

Since Πk is a rank one matrix, we have

G(m,n) = 1− tr
(
B−1N AmΠN−n+1BN−m

)

= 1−
(
BN−mB−1N Am

)

N−n+1,N−n+1

=
(
BmB−1N AN−m

)

nn
.

Here, at the last step we have exploited relation (2.3).
To progress further, let us make use of explicit forms of the matrices

involved. Using (3.12) and (3.14), we get

G(m,n) =
(
BNEN−m

+ B−1N AN−m
1

)

nn
.

Substituting (3.17) and (3.19) into this expression, using relation (3.18)
and the relation

zJ 0 E± z−J 0 = z∓1E±,

and also switching to the parameter α = β2/γ2 entering the parameteri-
zation of the free-fermion model weights (3.2), we can write

G(m,n) =
(

eβJ−γ2J 0eβJ+EN−m
+ e−βJ+γ−2J 0(βI + γ2E−)

N−me−βJ−

)

nn

=

(

eβJ−

(
E+

γ2I + βE+

)N−m
(
βI + γ2E−

)N−m
e−βJ−

)

nn

=

(

eαJ−

(
E+

I + E+

)N−m

(I + E−)
N−m

e−αJ−

)

nn

. (3.21)

The last formula shows that the one-point function is some polynomial in
the variable α.

To derive an explicit expression for this polynomial, let us consider the
matrices in the last expression. Using

((
E+

I + E+

)p)

ij

= (−1)i−j+p

(
j − i− 1

j − i− p

)

, (3.22)
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and
(
(I + E−)

p
)

ij
=

(
p

i− j

)

, (3.23)

where p = 0, 1, . . . , N − 1, we find that the entries of the matrix being the
product of these two matrices are
((

E+

I + E+

)p

(I + E−)
p

)

ij

=

i−k+p
∑

k=1

(
k − i− 1

k − i− p

)(
p

k − j

)

=

N−p−i
∑

q=0

(−1)q
(
p+ q − 1

q

)(
p

p+ q + i− j

)

= (−1)N−p−i
(
j − i− 1

N − i− p

)(
N − i

j − i

)

. (3.24)

In (3.24) the summation is done due to the formula
r∑

q=0

(−1)q
(

p

p+ q − s

)(
p+ q − 1

p− 1

)

= (−1)r
(
s− 1

r

)(
p+ r

s

)

, (3.25)

in which we set r = N − p− i and s = j − i. Formula (3.25), in turn, can
be seen as a special case of the Pfaff-Saalschütz summation formula for a
terminating 3F2-series,

3F2

( −r, a, b
c, a+ b− c− r + 1

∣
∣
∣
∣
1

)

=
(c− a)r(c− b)r
(c)r(c− a− b)r

,

upon setting a = p, b = −s, and taking the limit c→ −r.
Finally, using the expression for entries of the matrix exp{αJ−}, see

(3.16), and collecting all terms of the same powers in α, we obtain

G(m,n) = (−1)m+n
N−1∑

s=0

m−1∑

r=0

(
s− 1

r

)(
N −m+ r

s

)(
n− 1

m− r − 1

)

×
(
m− r + s− 1

n− 1

)

(−α)s. (3.26)

Note that, in this expression the summation over r can be extended to the
value N − 1, so that the coordinates m,n enter only the coefficients of the
polynomial.

Representation for the one-point function (3.26) is interesting since it
is possibly the simplest expression that can be derived. It can be used, for
example, for numerical plots of the one-point function, see Fig. 3. We also
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Figure 3. Plot of the one-point function G(m,n), N = 50,
α = 1/2.

mention that (3.26) had been used by the authors of [19] in their testing
of numerical simulations against exact results ( [19], Ref. [13] therein).

Similar calculations of the one-point function can also performed, e.g.,
for the five-vertex model at its free-fermion point with the boundary condi-
tions at which the model’s configurations are in one-to-one correspondence
with boxed plane partitions [39, 40].

3.4. Double integral formula. In addition to (3.26), the one-point func-
tion can be written as a double contour integral. Such a representation
appears useful since it can used to study the one-point function in ther-
modynamic limit (i.e., in the limit of large lattice). We discuss this limit
in the next section.

To derive such a representation we first rewrite the one-point function as
a sum of the product of two Jacobi polynomials. Recall that for arbitrary

real values of the parameters µ and ν the Jacobi polynomials P
(µ, ν)
ℓ (x)

can be defined as follows:

P
(µ, ν)
ℓ (x) =

ℓ∑

k=0

(
µ+ ℓ

ℓ− k

)(
µ+ ν + ℓ+ k

k

)(
x− 1

2

)k

.
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Using (3.16) and (3.22), we can write

(

eαJ−

(
E+

I + E+

)p)

ij

=

j−p
∑

k=1

(−1)k−j+p

(
i− 1

k − 1

)(
j − k − 1

j − k − p

)

αi−k

= αi−j+p

j−p−1
∑

k=0

(
i− 1

j − p− k − 1

)(
k + p− 1

k

)

(−α)k

= αi−j+p P
(i−j+p, p−i)
j−p−1 (1− 2α) .

Similarly, using (3.23), we have

(
(I + E−)

pe−αJ−
)

ij
=

i∑

k=j

(
p

i− k

)(
k − 1

j − 1

)

(−α)k−j

=

i−j
∑

k=0

(
p

i− j − k

)(
k + j − 1

k

)

(−α)k

= P
(p−i+j, p−i)
i−j (1− 2α) .

Hence, from (3.21) we obtain the following representation:

G(m,n) =

min(m−1,N−n)
∑

j=0

αn−m+j P
(n−m+j, N−m−n)
m−1−j (1− 2α)

× P
(n−m+j, −N+m+n−1)
N−n−j (1− 2α) . (3.27)

Note that, since α ∈ [0, 1], the argument of the Jacobi polynomials takes
values in the interval [−1, 1].

Now, using the Rodrigues formula for Jacobi polynomials, and applying
the Cauchy theorem, we can write them in terms of Schläfli integral:

P
(µ, ν)
ℓ (x) =

(−1)ℓ
2ℓ+1πi

(1− x)−µ(1 + x)−ν
∮

Cx

(1− t)µ+ℓ(1 + t)ν+ℓ

(t− x)ℓ+1
dt.

(3.28)
Here Cx denotes a simple, closed, counterclockwise-oriented contour en-
closing the point t = x, and lying in its small vicinity.

Using (3.28) and making change of the variable

t 7→ z = − t− 1 + 2α

α(t+ 1)
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for the first polynomial in (3.27) we obtain

P
(n−m+j, N−m+n)
m−j−1 (1− 2α) =

1

2πi

∮

C0

(z + 1)n−1

(αz + 1)N−mzm−j
dz.

A similar formula for the second polynomial can be obtained by replacing
here N,m, n 7→ N ′,m′, n′, where N ′ = N + 1, m′ = N − n + 1, n′ =
N −m+ 1.

Substituting the obtained integral representations for the Jacobi poly-
nomials in (3.27) yields the following expression for the one-point function:

G(m,n) =
αm−n

(2πi)2

∮

C0

dz1

∮

C0

(z1 + 1)n−1(z2 + 1)N−m

(αz1 + 1)N−mzm1 (αz2 + 1)nzN−n+1
2

× 1− (αz1z2)
min(m,N−n+1)

1− αz1z2
dz2. (3.29)

Obviously, in this formula the term (αz1z2)
min(m,N−n+1) does not con-

tribute into the integral, since it cancels a pole at the origin, in either
z1 or z2. Hence this term can be dropped. The final expression, after the
change of the integration variables z1 7→ 1/z1 and z2 7→ z2/α, reads

G(m,n) =
1

(2πi)2

∮

C∞

dz1

∮

C0

Φ(z1)

Φ(z2)(z1 + 1)z2(z1 − z2)
dz2. (3.30)

Here

Φ(z) =
(z + 1)nzN−n

(z + α)N−m
,

and C∞ denotes the contour surrounding the point z = ∞, but it is
clockwise-oriented (i.e., in (3.30) the both contours are oriented counter-
clockwise around the origin). We also mention that the order of integrals
in (3.30) can be changed, as it can be done in (3.29).

§4. One-point function in the thermodynamic limit

In this section we study the one-point function G(m,n) in the thermody-
namic limit, N →∞, which we will regard as a continuous, or scaling, limit
such that the N ×N lattice is mapped onto the unit square [0, 1]× [0, 1].
Let us set

x :=
m

N
, y :=

n

N
, x, y ∈ [0, 1]. (4.1)
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Taking into account that the one-point function G(m,n) depends on N as
a parameter, G(m,n) = G(m,n;N), we define the thermodynamic limit
one-point function g(x, y) as the result of the limit

g(x, y) = lim
N→∞

G([xN ], [yN ];N).

Our aim below is to compute g(x, y) and to discuss approximate expres-
sions for the one-point function G(m,n), which are valid for large but finite
values of N .

4.1. The arctic ellipse. We shall consider the limit N →∞ for the one-
point function by applying the saddle point method to (3.30). It is useful
to rewrite this formula in the form

G(m,n) =
1

(2πi)2

∮

C∞

dz1

∮

C0

exp{NS(z1, z2)}
(z1 + 1)z2(z1 − z2)

dz2, (4.2)

where S(z1, z2) = F (z1)− F (z2) and

F (z) = y ln(z + 1) + (1− y) ln z − (1− x) ln(z + α). (4.3)

To apply the saddle-point method we start with determining zeros of the
first derivative the function F (z) governing the large N behavior of the
exponent of the integrand. From (4.3) we find

F ′(z) =
xz2 + (x− y + α)z + (1− y)α

z(z + 1)(z + α)
= x

(z − w+)(z − w−)

z(z + 1)(z + α)
, (4.4)

where the roots w± are functions of the coordinates, w± = w±(x, y), and
also of the parameter α,

w± =
y − x− α±

√

D(x, y)

2x
. (4.5)

The discriminant D(x, y) can be written as

D(x, y) = α(1 − α)

[
(x+ y − 1)2

1− α
+

(x− y)2

α
− 1

]

. (4.6)

Thus. there are four saddle-points (z1, z2) = (wi, wj), i, j = +,−, for
the double integral saddle-point problem in our case. The saddle-point
analysis will significantly depends on whether w± are real or complex,
that is D(x, y) > 0 or D(x, y) < 0 in (4.5).
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Figure 4. The ellipse D(x, y) = 0 and five regions of the
unit square.

Clearly, the condition D(x, y) = 0 corresponds to the points (x, y) ∈
[0, 1]× [0, 1] which form an ellipse inscribed into the square. The param-
eter α describes a ratio of the radii of the ellipse; in particular, α = 1/2
corresponds to the circle.

The ellipse divides the unit square on five regions, see Fig. 4. Namely,
there is a region in the interior of the ellipse, E , where D(x, y) < 0, and
four regions in the exterior of it, DI, DII, DIII, and DIV, where D(x, y) > 0.
Below we prove that if the point (x, y) lies in one of the regions DI, DII,
DIII, DIV, then the function g(x, y) is equal to a constant, equal to 0 or
1 everywhere in the region, and if (x, y) ∈ E then the function g(x, y) is
a continuous function, taking intermediate values between 0 and 1. Since
the values of g(x, y) equal to 0 or 1 can be interpreted as freezing of local
states, the ellipse D(x, y) = 0, by analogy with the terminology used in
domino tilings, can be called arctic ellipse.

To compute function g(x, y), we have to know regions of values for the
roots w± as functions of the coordinates x, y. Clearly, if (x, y) ∈ E then
w+ and w− are complex conjugate; in this case we define w+ (respectively,
w−) such that w+ lies in the upper half-plane (lower half-plane). If (x, y) ∈
DI ∪ DII ∪ DIII ∪ DIV then w± are real, and w+ > w−. Furthermore, to
each of these corner regions corresponds an interval of the real axis where
both w+ and w− take values,

(x, y) ∈ Di ↔ w± ∈ li, i = I, . . . , IV. (4.7)
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The intervals li (i = I, . . . , IV) are

lI := (−∞,−1), lII := (−1,−α), lIII := (−α, 0), lIV := (0,∞).
(4.8)

Obviously, the case of coincidence of the roots, w+ = w−, corresponds
to the points of the ellipse D(x, y) = 0 itself, and, besides, the values
w± = −1,−α, 0,∞ correspond to the touching points of the ellipse with
the bottom, right, top, and left sides of the square, respectively.

4.2. The function g(x, y). The specifics of integral (4.2) consists in the
presence of the factor (z1 − z2)

−1 in the integrand. In large N analysis of
the integral there may arise contributions due to deformation of the initial
contours of integration over the variables z1 and z2 to the corresponding
saddle-point ones. Indeed, if one regards (4.2) as a single integral, e.g.,
over the variable z1, then the integrand is given by some function having
a branch cut in the complex plane of the integration variable, which coin-
cides with the integration contour of the variable z2. Deformation of the
initial contours to the saddle-point ones therefore implies that in this sin-
gle integral one has to deform both the contour and the branch cut of the
integrand. As a result, in applying the saddle-point method to this integral
one has to take into account contributions which are due to intersection of
the integration contour with the branch cut of the integrand.

Let us denote by Γ1 and Γ2 the saddle-point contours of the integration
variables z1 and z2, respectively. Restrictions on these contours and their
particular choice are given below. The integral in (4.2), after deformation
of the contours can be written as

G(m,n) =
1

(2πi)2

∮

Γ1

dz1

∮

Γ2

exp{NS(z1, z2)}
(z1 + 1)z2(z1 − z2)

dz2

+
1

2πi

∫

Γ12

1

(z + 1)z
dz, (4.9)

where we have used the fact that S(z, z) = 0. Here the contour Γ12 is a
variety of all intersection points of the integration contours occurred in
deforming of the initial contours to the contours Γ1 and Γ2. In the afore-
mentioned single integral interpretation, the contour Γ12 can be defined as
a portion of the contour Γ2 which have been intersected by the contour of
the variable z1 in the course of its deformation to the contour Γ1.

The second term in (4.9) determines the function g(x, y). Indeed, it can
be shown that the first term in (4.9), as usual for the saddle-point method,
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vanishes as N →∞, while the second term is totally independent of N . In
general, it can be nonzero. An explicit expression for the function g(x, y) is
therefore determined by the contour Γ12. This contour, in turn, is uniquely
determined by the saddle-point contours Γ1 and Γ2.

Remind that, according to the general concepts of the saddle-point
method (see, e.g., [41]), the saddle-point contours must satisfy the so-called
minimax principle. Namely, the contours Γ1 and Γ2 in our case must be
chosen as those providing a minimum on the variety of all possible contours
equivalent to the initial ones, for the maximum of the function ReS(z1, z2)
on the set of points of the contours where z1 and z2 take their values. In
practice this means that Γ1 and Γ2 must be chosen such that they pass
through the saddle-point (or several saddle-points) in which the quantity
ReS(z1, z2) approach its minimum in the set of all saddle-points.

Let us consider first the case (x, y) ∈ E . In this case ReS(z1, z2) = 0
for (z1, z2) = (wi, wk) (i, k = ±), that is, the minimum of the function
ReS(z1, z2) on the set of all saddle-points is approached on all these points.
Hence both contours Γ1 and Γ2 must pass through the points w+ and w−,
and moreover, since ∂2

z1S(z1, z2)|z1=z2 = −∂2
z2S(z1, z2)|z1=z2 , they must be

perpendicular to each other at these points. Obviously, deformation of the
initial contours to such contours generate a nontrivial contour Γ12, which
can be chosen as a portion of the contour Γ2 with the endpoints w− and
w+, see Fig. 5.

Taking into account that, according to the standard saddle-point results,
the first term in (4.9) is estimated as O(1/N) (where the integral in vicinity
of the points z1 = z2 = w± has to be understood in the sense of its principal
value), we thus obtain that the function g(x, y) is given by the second term,

g(x, y) =
1

2πi

∫

Γ12

1

(z + 1)z
dz =

1

2πi

[
ln z−ln(z+1)

]
∣
∣
∣
∣

w+

w−

=
ϕ(x, y)

π
. (4.10)

Here ϕ(x, y) is the angle between the lines connecting the point w+ (or
the point w−) with the endpoints of the interval [−1, 0], see Fig. 5. An
elementary calculation yields

g(x, y) =
1

π
arccot

(

−α(x+ y − 1) + (1− α)(x − y)
√

−D(x, y)

)

, (x, y) ∈ E ,

(4.11)
where the arc-cotangent function takes values in the interval [0, π].
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Figure 5. The saddle-point contours Γ1 and Γ2 for the
case of (x, y) ∈ E . The contour Γ12, the portion of the
contour Γ2, is shown in bold. Also shown the angle ϕ =
ϕ(x, y) which determines the function g(x, y), see (4.10).

Let us now consider the case of (x, y) ∈ Di (i = I, . . . , IV). Recall that
in this case w± are real, w− < w+, and they take values described by
(4.7) and (4.8). The minimum of the function ReS(z1, z2) on the set of
saddle-points is approached at single point: (z1, z2) = (w−, w+) for DI and
DIII, and (z1, z2) = (w+, w−) for DII and DIV. At the points z1 = w∓ and
z2 = w± the contours Γ1 and Γ2 must be chosen perpendicular to the real
axis.

In deforming the initial contours to the saddle-point ones in the present
case we have to satisfy certain restrictions on these contours. Namely,
both Γ1 and Γ2 have to be simple closed contours, the contour Γ1 must
surround the point z1 = −α, while the contour Γ2 must surround the point
z2 = 0, but not the point z2 = −1. Equivalently, the contour Γ2 may be
chosen surrounding the point z2 = −1, but not the point z2 = 0, in which
case it has to be clockwise oriented. A simple analysis shows that all the
conditions imposed on the saddle-point contours can be satisfied and the
contour Γ12 is uniquely defined. Namely, for the regions DI and DIV this
contour is null, while for the regions DII and DIII the contour Γ12 coincides
with Γ2, see Fig. 6.

Since the first term in (4.9) can be estimated as O
(
e−N |S(w+,w−)|

)
, the

function g(x, y) is again given by the second term, as expected, for which
Γ12 = ∅, if (x, y) ∈ DI ∪DIV, and Γ12 = C0, if (x, y) ∈ DII ∪ DIII. Hence

g(x, y) =

{

0 if (x, y) ∈ DI ∪ DIV,

1 if (x, y) ∈ DII ∪ DIII.
(4.12)
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DI:

b b b

0−α−1w+w−
b b

Γ1 Γ2

DII:

b b b

0−α−1 w+w−
b b

Γ2 Γ1

DIII:

b b b

0−α−1 w+w−
bb

Γ2Γ1

DIV:

b b b

0−α−1 w+w−
b b

Γ1Γ2

Figure 6. The saddle-point contours Γ1 and Γ2 for (x, y) ∈
Di (i = I, . . . , IV). The contour Γ12 is shown in bold:
it coincides with Γ2 for (x, y) ∈ DII ∪ DIII and null for
(x, y) ∈ DI ∪ DIV.

It is interesting to note, that the result obtained above for the function
g(x, y) in terms of the angle ϕ, see (4.10), turns out also valid for the points
(x, y) ∈ Di (i = I, . . . , IV); indeed, ϕ = π, if w± take values at the interval
(−1, 0), and ϕ = 0 otherwise, i.e., if w± ∈ (−∞,−1) ∪ (0,∞), see (4.7)
and (4.8).

4.3. Vicinity of the ellipse. Having established the thermodynamic
limit expression for the one-point function, let us now consider fluctua-
tions of local states near the arctic ellipse over the limiting value for a
finite system. Our aim is to derive an approximate expression for the one-
point function G(m,n) valid for large, but finite N , and coordinates (m,n)
taking values is some small (in comparison with N) vicinity of the phase
separation curve, i.e., near the arctic ellipse. We show that for the size of
this vicinity of order N1/3 (that corresponds N−2/3 in terms of coordinates
(x, y)) our one-point function coincides with that of the Gaussian unitary
ensemble at the edge of the spectrum.
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We shall consider here the case of vicinity of the portion of the ellipse
separating regions DIV and E (see Fig. 4); calculations for other portions
are essentially similar.

We first introduce a parametrization for coordinates which is suitable in
vicinity of the ellipse. The points of the indicated portion of the ellipse we
denote as (x0, y0), i.e., we have D(x0, y0) = 0, where the function D(x, y)
is given by (4.6). We have relations

x0 + y0 − 1 =
√
1− α cosφ, y0 − x0 =

√
α sinφ,

where φ is some parameter. It will be convenient here to parameterize the
parameter α as

α = sin2 λ, λ ∈ [0, π/2]. (4.13)

Then for all points (x0, y0) we have the following parameterization

x0 = cos2
(
φ+ λ

2

)

, y0 = cos2
(
φ− λ

2

)

, φ ∈ [λ, π − λ].

The points (x, y), lying on a normal to the ellipse which intersects it at
the point (x0, y0), can be parameterized as

x = x0 +
sin(φ− λ)√

1− cos 2φ cos 2λ
t, y = y0 −

sin(φ+ λ)√
1− cos 2φ cos 2λ

t, (4.14)

where t is introduced such that |t| has the meaning of the distance between
the points (x, y) and (x0, y0); note that t > 0, if (x, y) ∈ E , and t < 0, if
(x, y) ∈ DIV. Below we will be interested in a double scaling limit, N →∞
and t→ 0, in which N and t approach their limits in some consistent way.

Before addressing this problem, we first consider behavior of the func-
tion g(x, y) in vicinity of the arctic ellipse, that corresponds to N → ∞
with t small but fixed. Substituting (4.13) and (4.14) into (4.6), for the
discriminant D(x, y), as t is small, we obtain

D(x, y) = − sin 2λ
(
1− cos 2φ cos 2λ

)1/2
t+O(t2). (4.15)

Consider the case t > 0, i.e., (x, y) ∈ E . Taking into account that α(x +
y − 1) + (1 − α)(x − y) = − sinλ cosλ sin(φ − λ) + O(t), for the function
g(x, y), from (4.11), we obtain

g(x, y) ∼ 2
(
1− cos 2φ cos 2λ

)1/4

π
√
sin 2λ sin(φ− λ)

√
t (t > 0). (4.16)

In the case t < 0, i.e., (x, y) ∈ DIV, for this function we have g(x, y) = 0
for all values of t, see (4.12). Hence the function g(x, y) has a square root
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singularity at the arctic ellipse. It is to be mentioned, however, that this is
valid for all points of the considered portion of the ellipse, except the point
φ = λ (at which the coefficient in (4.16) has a pole), corresponding to the
point (x, y) = (1− α, 1), at which the function g(x, y) has a different kind
of singularity (see discussion in Sect. 4.4).

Now we turn to our main problem here, namely, we compute an approxi-
mate expression for the one-point function G(m,n) valid at large but finite
N , and coordinates m = Nx and n = Ny with x and y given by (4.14), at
small t. One can expect that the square root singularity of the one-point
function appears somehow smoothed, as t scaled accordingly with N , as
both approach their limiting values, N →∞ and t→ 0. The results below
are valid in vicinity of all points our portion of the ellipse, except vicinity
of the points which are too close to the boundary, that is, far enough from
the points φ = λ and φ = π − λ.

For small t, application of the saddle-point method to the integral (4.2)
is based on an observation that w± → w0 as t → 0, where w0 is real
and w0 ∈ (0,∞), since we are considering vicinity of the arctic ellipse
separating the regions E and DIV, see (4.7). From (4.5) we have w0 =
(y0 − x0 − α)/2x0, or, in terms of the parameters φ and λ,

w0 =
sinλ sin

(
φ−λ
2

)

cos
(
φ+λ
2

) . (4.17)

More precisely, for w±, due to (4.15), we have

w± = w0 ± i
(sin 2λ)1/2(1− cos 2λ cos 2φ)1/4

2 cos2
(
φ+λ
2

)

√
t+O(t).

The second equality in (4.4) yields

F ′(w0) =
2(1− cos 2λ cos 2φ)1/2 cot 1

2 (φ+ λ)

sin 2λ sin(φ− λ)
t+ O(t2).

Evaluating higher derivatives of the function F (z) at the point z = w0, we
obtain

F ′′(w0) = O(t2), F ′′′(w0) =
16 cos4

(
φ+λ
2

)

sin2 2λ sin(φ − λ)
cot

(
φ+ λ

2

)

+O(t),

and also we find that all quantities F (r)(w0) for r > 4 are nonsingular
as t → 0. Thus, since F ′′(w0) = 0, F ′′′(w0) 6= 0 as t → 0, and since
the function F (z) is expandable in a Taylor series at z = w0, we are in
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b b b

0−α−1 w0

b

Γ1 Γ2

Figure 7. The saddle-point contours Γ1 and Γ2 for the
case of vicinity (for t of order N−2/3) of the portion of
the arctic ellipse separating regions E and DIV.

a standard situation of the single variable saddle-point method, for each
variable z1 and z2, where two saddle-points join into a single point and
the leading term of asymptotics, for t = O(N−2/3) as N →∞, is given by
Airy function (see, e.g., [41,42]). In our case, the saddle-point contours Γ1

and Γ2 are shown in Fig. 7. Note that Γ1 and Γ2 can be chosen such that
they do not intersect each other in the vicinity of the point w0, as shown
in the picture.

An approximate representation for the one-point function is based on
the use of the expression

NF (z) ≈ NF (w0) + σs+ s3/3,

where s and σ are finite, and neglected terms tend to zero as N → ∞.
Here, s is a new integration variable

s = ΩN1/3(z − w0), Ω =

[

8 cos4
(
φ+λ
2

)

sin2 2λ sin(φ− λ)
cot
(φ+ λ

2

)
]1/3

, (4.18)

and σ is a new parameter related to the distance to the arctic ellipse,

σ =
22/3

(
1− cos 2φ cos 2λ

)1/2

(sin 2λ)1/3
[
sin(φ− λ) sin(φ + λ)

]2/3
N2/3 t.

Making change of the integration variables z1 7→ s1 and z2 7→ s2 in virtue
(4.18), we obtain the following expression for the one-point function for
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large N and finite σ:

G(m,n) ≈ 1

(2πi)2(w0 + 1)w0 ΩN1/3

×
∫

L−

ds2

∫

L+

exp
{
σs1 +

1
3s

3
1 − σs2 − 1

3s
3
2

}

s1 − s2
ds1.

Here, the contour L+ comes from the infinity with arg s1 = π/3 at the
vicinity of the origin with Re s1 > 0 and goes to infinity with arg s1 =
−π/3, while the contour L− comes from infinity with arg s2 = −2π/3
at the vicinity of the origin with Re s2 < 0 and goes to infinity with
arg s2 = 2π/3. Since for all points of these contours Re (s1 − s2) > 0, we
can use the formula

exp{σ(s1 − s2)}
s1 − s2

=

σ∫

−∞

exp{v(s1 − s2)} dv.

Changing the order of integrals (due to their absolute convergence), and
using explicit expressions for w0 and Ω, see (4.17) and (4.18), we finally
obtain

G(m,n) ≈
[

2 sin(φ+ λ)

N sin 2λ sin2(φ− λ)

]1/3
σ∫

−∞

[Ai(−v)]2dv, (4.19)

where Ai(v) is Airy function (see, e.g., [42]). The integral in (4.19) can be
evaluated (see, e.g., [43]):

σ∫

−∞

[Ai(−v)]2dv = [Ai′(−σ)]2 + σ[Ai(−σ)]2. (4.20)

Expression (4.19) describes an expected smoothening of the one-point func-
tion. Indeed, since [Ai′(−σ)]2 + σ[Ai(−σ)]2 ∝ σ1/2/π as σ → ∞, the ex-
pression in (4.16) follows from (4.19) as N → ∞, at t small and kept
fixed.

The function standing in the right hand side of (4.20) is a particular
case, at u = v = −σ, of the Airy kernel

K(u, v) =
Ai(u)Ai′(v)−Ai′(u)Ai(v)

u− v
.
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This kernel is known as describing correlation functions of the Gaussian
unitary ensemble at the edge of the spectrum [44] (for a review, see, e.g.,
[45]). In particular, K(−σ,−σ) is the one-point function, or the density
of random matrix eigenvalues. Thus, the expression in (4.19) tell us, that
in the vicinity of the arctic ellipse the one-point function of the six-vertex
model at its free-fermion point coincides, modulo a factor, with the one-
point function of the Gaussian unitary matrix ensemble at the edge of
the spectrum. This result agrees with previous results on domino tilings,
see [31, 46].

4.4. Vicinity of the touching points. Let us now derive an approx-
imate expression for the one-point function G(m,n) in vicinities of the
points where the disordered region touches the boundary. As in the case of
the vicinity of the arctic ellipse considered above, a characteristic distance
in the number of lattice site here will be of order N1/3, or, in terms of the
scaled coordinates (x, y), of order N−2/3. It is to be mentioned that near
the touching point a different scaling is also possible, namely, with O(1)
distance away from the boundary and O(N1/2) distance along it [47, 48].
We limit ourselves here only to treating the O(N1/3) case of scaling near
the touching points, since it naturally complements our discussion of the
vicinity of the ellipse above.

To keep contact with our previous discussion, we will consider vicinity
of those contact points, which belong to the region DIV, i.e., the points
(x, y) = (1 − α, 1) and (x, y) = (0, α). The results for other two points,
(x, y) = (α, 0) and (x, y) = (1, 1 − α) can be derived essentially similarly,
and they can also be recovered from those for the first two, respectively,
in virtue of the relation (2.3).

We start with considering the function g(x, y). From the discussion
above it is clear that it has a singular behavior at the touching points.
Let us consider first the case of the point (x, y) = (1 − α, 1). We pa-
rameterize the coordinates in a small vicinity of this point as (x, y) =
(1−α−ρ cosµ, 1−ρ sinµ) where µ ∈ [0, π] and ρ is positive. As ρ is small,

D(x, y) = −4α(1− α)ρ sinµ+O(ρ2). (4.21)

Substituting this into (4.11), we get

g(x, y) =
1

π
arccot

(

cosµ− (1− 2α) sinµ

2
√

α(1− α) sinµ

√
ρ+O(ρ3/2)

)
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and, since arccot ε = π/2− ε+O(ε3), as ε→ 0, expanding in power series
in ρ yields

g(x, y) =







0 µ = 0,
1

2
+

(1− 2α) sinµ− cosµ

2π
√

(1− α)α sinµ

√
ρ+O(ρ3/2) 0 < µ < π,

1 µ = π.

(4.22)

Thus, at this point the function g(x, y) has a step-wise behavior; this ex-
plains the singularity of the coefficient in (4.16) at φ = λ.

In a small vicinity of the point (x, y) = (0, α), we parameterize the
coordinates as (x, y) = (ρ sinµ, α− ρ cosµ); for ρ small the discriminant is
again given by (4.21), but the function g(x, y) now reads

g(x, y) =
1

π
arccot

(√

α(1− α)

ρ sinµ
+O(ρ1/2)

)

=
1

π

√

ρ sinµ

α(1− α)
+O(ρ3/2), (4.23)

and, in fact, g(x, y) = 0 exactly for µ = 0, π, as we know from (4.12). Thus
we recover (4.16) at φ = π − λ, as expected, with t := ρ sinµ.

Consider now the problem of deriving an approximate expression for
G(n,m) for the point (m,n) close to one of the touching points as N is
large but finite. This task is very similar to that in the case of the vicinity
of the arctic ellipse solved above, but it differs both in how the saddle-point
approximation actually works and in a specific choice of variables suitable
for calculations in the double scaling limit in question.

In comparison with the case of vicinity of the arctic ellipse, in the case
of vicinity of a touching point there exists a large integer which can be used
instead of N . Namely, such integer, which we denote M , can be interpreted
as the number of lattice sites from the point (m,n) to the boundary; below
we give a precise definition of M . At the same time, there exists a small
positive parameter, denote it ε, such that Mε is finite, which somehow is
related to the distance of the point (m,n) from the touching point in terms
of the scaled coordinates; we shall below see that ε is in fact proportional
to the square root of this distance.

To be specific, we consider here in detail calculations for the case of the
touching point (x, y) = (1 − α, 1). As above, we parameterize coordinates
in a small vicinity of this point as (x, y) = (1 − α − ρ cosµ, 1 − ρ sinµ)
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and assume that µ 6= 0, π since only the case of (x, y) ∈ E is actually
interesting; more precisely, in our calculations below it is assumed that
| cotµ| is bounded. When ρ is small, the numbers w± (solutions of the
equation F ′(z) = 0, see (4.5)) are complex conjugate (since (x, y) ∈ E) and
moreover close to each other and to the point z = 0 (see the discussion
after (4.8)). Namely, using (4.21), we have

w± = ±iε+O(ρ), (4.24)

where

ε =

√
α

1− α
ρ sinµ. (4.25)

The meaning of (4.24) becomes clear if we come back to (3.30) and recall
that the function Φ(z) contains the factor zN−n. Then (4.24) implies that
we deal with the situation when the saddle-points are close to each other
and to a zero, for z1, or to a pole, for z2, of a large order, the value of which
is not fixed, but grows together with the large parameter of the integral
(i.e., together with N). Denoting this order by M := N − n, we thus have
the following relation between M , N , and ε:

M = Nρ sinµ =
1− α

α
Nε2. (4.26)

The saddle-point approximation to the double integral in this case is
constructed by zooming in a small vicinity of the point z = 0 in the both
integrals. Indeed, the function F (z) possesses a singular Taylor expansion
at points z = w± since its derivatives at these points are estimated, as
ε → 0, by F (k)(w±) ∼ ε−k+2 (k = 2, 3, . . . ). These estimates govern the
scaling into the vicinity of the point z = 0 to be of the form z = εs, where
s must be kept finite. For the function F (z), we have then the following
representation

NF (εs) = f0 +M

(
s2

2
+ log s

)

−Mε

(
1 + α

3α
s3 +

α+ cotµ

α
s

)

+

∞∑

k=2

Mεkfk+2(s), (4.27)

where fk(s) are some polynomials of degree k in s, and f0 denotes all s-
independent terms (so, e.g., fk(0) = 0). As M is large, the saddle-point
approximation admits Mε, being the coefficient of the third term in (4.27),
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to be a finite quantity. Due to (4.26), in such case Nε3 is finite too, that
fixes the whole scale at which our approximation is applicable:

M ∼ N1/3, ε ∼ N−1/3. (4.28)

The saddle-point contours Γ1 and Γ2 are to be chosen lying in small
vicinities of the points z1 = 0 and z2 = 0 such that Γ1, as passing through
the points −iε and +iε, crosses the real axis perpendicularly, while Γ2

goes parallel to the real axis below (from left to right), passing through
the point −iε, and above (from right to left), passing through the point
+iε. After zooming into the vicinity of the origin in the both integrals, and
ignoring possible exponentially small corrections, we obtain the following
approximate representation for the one-point function:

G(m,n)≈ 1

(2πi)2





−i+∞∫

−i−∞

+

i−∞∫

i+∞



 ds2

+i∞∫

−i∞

exp{NS(εs1, εs2)}
(1 + εs1)s2(s1 − s2)

ds1

+
1

π
arccot ε. (4.29)

Now the standard saddle-point method can be applied to this expression,
with NS(εs1, εs2) = NF (εs1)−NF (εs2) where F (εs) is given by (4.27),
to obtain an 1/M expansion; we just point out that at the saddle-points
(s1, s2) = (±i,±i) the singularities have to be understood in the sense
of the principal values. As a result, for the the one-point function in the
vicinity of the touching point (x, y) = (1 − α, 1) we obtain

G(m,n) =
1

2
+ ε

1− 2α− cotµ

2πα

+
(−1)M
4πM

sin

(

2Mε
1− 2α− 3 cotµ

3α

)

+O(M−2) (4.30)

and we remind that M , ε, and cotµ are related to m, n, and N by

M = N − n, ε =

√

(1− α)M

αN
, cotµ =

(1− α)N −m

M
.

In (4.30), the first two terms coincides with the thermodynamic limit ex-
pansion (4.22). Third term is of the same magnitude as the second term,
see (4.28), and for large but finite values of N this term describes a finite-
size correction. Due to (4.26), as N →∞, at ε small and fixed, it vanishes.
The meaning of each term in the approximate expression in (4.30) is also
get clarified when the one-point function is plotted near the touching point
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Figure 8. Plot (for N = 1000 and α = 1/2) of exact
formula (3.26) for the one-point function G(m,n) near
the touching point at the top boundary. An approximate
expression is given by (4.30).

at the top boundary for sufficiently large N , an example for N = 1000 and
α = 1/2 is shown in Fig. 8.

We finish here by outlining the case of the touching point (x, y) = (0, α).
As in deriving (4.23), we parameterize the coordinates in a small vicinity of
this point as (x, y) = (ρ sinµ, α−ρ cosµ). The parameter ε is again defined
by (4.25), but now M = m and so (4.26) holds. The only difference with
the previous calculation is that in this case the integral similar to (4.29)
acquires an extra overall factor ε and the leading saddle-point contribution
describes a next to the leading order correction. The result reads:

G(m,n) =
ε

πα

{

1− (−1)M
4M

cos

(

2Mε
1− 2α− 3 cotµ

3α

)

+O(M−2)

}

. (4.31)
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Figure 9. Plot (for N = 1000 and α = 1/2) of exact
expression (3.26) for the one-point function G(m,n) near
the touching point at the left boundary. An approximate
expression is given by (4.31).

Here, M , ε, and cotµ are related to m, n, and N by

M = m, ε =

√

(1 − α)M

αN
, cotµ =

αN − n

M
.

Fig. 9 shows plot of the one-point function (at N = 1000 and α = 1/2)
near the touching point at the left boundary, where approximate expression
(4.31) is applicable.

§5. Conclusion

The purpose of this paper is to outline a fermionic approach to the arctic
ellipse phenomenon in the six-vertex model. Namely, using the formulation
of the model in terms of fermions (Sect. 2) we show that the one-point func-
tion at the free-fermion point can be straightforwardly computed (Sect. 3)
that, in turn, allows us to derive the arctic ellipse phenomenon (Sect. 4).
There are open problems, which can be addressed in relation with each of
these steps.
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First, in Sect. 2 we have derived a representation for the partition func-
tion in terms of Grassmann integral, resembling a 2D lattice fermion the-
ory. One can wonder about which field theory it corresponds. Answering
this question may appear relevant in obtaining results beyond the free-
fermion point.

Second, in Sect. 3 we have evaluated the integrals essentially consider-
ing matrix elements of the fermionic transfer matrix, T , between Grass-
mann coherent states. Can this procedure be generalized on the case of
the generic weights (i.e., generic ∆)?

Last, in Sect. 4 we have studied the one-point function in the thermody-
namic limit and derived approximate expression in the N1/3 vicinity of the
arctic ellipse. In the general situation, for the points of the ellipse far away
from the boundary, we have found that the one-point function is described
by the Airy-kernel, while near the points where the arctic ellipse touches
the boundary we have obtained instead some relatively simple expressions.
It would be very interesting to understand these results from the point of
view of the random matrices theory. Indeed, it is well-known that in the
random matrix models the Airy-kernel describes the double scaling limit
near the edge of the eigenvalue density. At the same time, the case of the
points where the arctic ellipse touches the boundary corresponds to a very
peculiar situation in the random matrix model, namely, where the edge
of the spectrum exactly coincides with a hard-wall, and, moreover, the
matrix model is considered with a discrete spectrum (since the one-point
function, an analog of the eigenvalue density, is constrained). A similar
situation arises for the six-vertex considered on a domain with a cut-off
corner, such that the size of this corner is macroscopically large and hits
the arctic ellipse [49].
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