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Abstract. Let R be an associative ring with 1, G = GL(n,R)
be the general linear group of degree n > 3 over R. In this paper
we calculate the relative centralisers of the relative elementary sub-
groups or the principal congruence subgroups, corresponding to an
ideal A� R modulo the relative elementary subgroups or the prin-
cipal congruence subgroups, corresponding to another ideal B � R.
Modulo congruence subgroups the results are essentially easy exer-
cises in linear algebra. But modulo the elementary subgroups they
turned out to be quite tricky, and we could get definitive answers
only over commutative rings, or, in some cases, only over Dedekind
rings/Dedekind rings of arithmetic type. Bibliography: 43 titles.

§1. Introduction

Let F , H 6 G be two subgroups of G. We consider the centraliser of F
modulo H

CG(F,H) =
{

g ∈ G | ∀f ∈ F, [f, g] ∈ H
}

.

If H �G is a normal subgroup, and πH : G −→ G/H is the corresponding
projection, then

CG(F,H) = π−1
H (CG/H(FH/H))

is the preimage of the corresponding absolute centraliser in the factor-
group G/H .

In the present paper, we are interested in the case of the general linear
group G = GL(n,R) of degree n > 3 over an associative ring R with 1.
In connection with our project on subgroups normalised by unrelative and
relative elementary subgroups E(n, J) and E(n,R, J) (see [29] for further
references), we had to compute the centralisers of relative subgroups mod-
ulo some other relative subgroups.

Key words and phrases: General linear groups, elementary subgroups, congruence
subgroups, standard commutator formula, unrelativised commutator formula, elemen-
tary generators.
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We could not find the corresponding results in the available literature.
In fact, in many cases such similar centralisers were extensively studied,
starting with Bass’ classical results on the structure of GL(n,R) in the
stable range [5]. However, Hyman Bass himself and his followers only con-
sidered the absolute case, where the subgroups F was either perfect itself,
or contained a perfect subgroup of the same level.

Zenon Borewicz, the first author, and their schools, have performed
diverse calculations in this spirit, in connection with structure theory, and
description of various classes of intermediate subgroups, see, for instance,
[1, 8, 30–35], etc. However, in most of these calculations the subgroup F
was perfect as well.

Here, we calculate some of these centralisers for the case where G =
GL(n,R), whereas both F and H are various relative subgroups of G,
corresponding to proper ideals, such as E(n, I), E(n,R, I), GL(n,R, I), or
the like. None of these groups is anywhere close to being perfect, so that
our calculations here are quite different in spirit from the calculations in
the above papers.

For the case of congruence subgroups the corresponding results are
mostly exercises in linear algebra, and hold over arbitrary associative rings.
But for elementary subgroups the answers crucially depend on difficult re-
sults of commutator calculus developed in our joint works with Roozbeh
Hazrat and Alexei Stepanov, and then recently by ourselves, and only hold
in modified forms, or under miscellaneous assumptions.

The paper is organised as follows. In §2 we recall some ideal arithmetic,
and in §3 we collect the definitions of various relative subgroups. After
that in §4 we prove our first main result, Theorem 1, which calculates
CGL(n,R)(E(n,A),GL(n,R,B)), over arbitrary associative rings. In §5 we
recall the requisite facts on generation of relative elementary subgroups
and their commutators. After that, in §6 we explore what can be done
in this spirit for CGL(n,R)(E(n,A), E(n,R,B)), over commutative rings,
and prove our second main result, Theorem 2. In particular, it gives the
definitive answer for Dedekind rings of arithmetic type, Theorem 3. Finally,
in §7 we state some further unsolved problems.

§2. Ideal quotient

Let, as above, R be an associative but not necessarily commutative ring
with 1. The results of this paper heavily depend on the operations on ideals
of R. For two-sided ideals A,B � R their sum A + B, their intersection
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A ∩ B, their products AB and BA, their symmetrised product A ◦ B =
AB + BA, and their commutator [A,B] are again two sided ideals, and
their properties are classically known. However, in the non-commutative
case we could not find an authoritative source on ideal quotient (B : A),
so in this section we collect the some basic facts used in the sequel.

For two left ideals A and B in R we consider their right ideal quotient

BA−1 = {x ∈ R | xA ⊆ B}.

Obviously, it is a two sided ideal of R. Indeed, for any x ∈ BA−1, y, z ∈ R
one has (xy)A = x(yA) 6 xA 6 B and (zx)A = z(xA) 6 zB 6 B.

Similarly, for two right ideals A and B their left ideal quotient

A−1B = {x ∈ R | Ax ⊆ B},

is a two sided ideal of R.

Warning. In many texts the right ideal quotient BA−1 of two left ideals A
and B is called left ideal quotient, and is denoted by (B : A)L or (B :L A),
see [25], for instance. The most amazing notational convention is adopted
in [9]. There, the right ideal quotient BA−1 is denoted by R(B : A) – and
is still called left ideal quotient. Our notation follows that of [20, 24].

Now, for two sided ideals A and B of R their ideal quotient is defined
as

(B : A) = BA−1 ∩ A−1B = {x ∈ R | xA,Ax ⊆ B},

Clearly, (B : A) is a two sided ideal such that (B : A) > B, and A 6 B
implies that (B : A) = R. In particular (A : A) = R and (A : R) = A.
For commutative rings (B : A) = BA−1 = A−1B coincides with the usual
ideal quotient in commutative algebra.

Let us list some obvious properties of the ideal quotient.

• Clearly,

(B : A) ◦A = A(B : A) + (B : A)A 6 A(A−1B) + (BA−1)A 6 B,

thus, (B : A) can be defined as the largest two sided ideal C�R such that
C ◦A 6 B. However, only very rarely this inclusion becomes an equality.

Warning. The ideal quotient is not a fractional ideal, and even when
A > B the ideal quotient (B : A) should not be interpreted as the fraction

of B by A. In fact, among commutative domains the equality A(B : A) = B
characterises Dedekind domains, in this case (B : A) is indeed BA−1 in
the group of fractional ideals of R. The same condition imposed on finitely
generated ideals characterises Prüfer domains.
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• (A : (B + C)) = (A : B) ∩ (A : C).

Clearly, this equality implies that (A : (A +B)) = (A : A) ∩ (A : B) =
(A : B). In other words, every ideal quotient (A : B) coincides with such
an ideal quotient that A 6 B.

• ((A ∩B) : C) = (A : C) ∩ (B : C).

• Intersection of any two of the ideals

((A : B) : C), (A : (B ◦ C)), ((A : C) : B)

is contained in the third one. In particular, when R is commutative, one
has

((A : B) : C) = (A : (BC)) = ((A : C) : B).

• ((A +B) : C) > (A : C) + (B : C).

• (A : (B ∩ C)) > (A : B) + (A : C).

Warning. Hardly ever these last inequalities become equalities. Again,
among commutative domains any of the equalities

((A+B) : C) = (A : C) + (B : C) or (A : (B ∩ C)) = (A : B) + (A : C)

characterises Dedekind domains. Any of these conditions imposed on fini-
tely generated ideals characterises Prüfer domains.

Now, let Z ⊆ R be a subset. Its centraliser

CentR(Z) = {x ∈ R | ∀z ∈ Z, xz − zx = 0}

is a unital subring of R containing the centre Cent(R) = CentR(R). In
the next section we also encounter the relative centraliser of a subset Z
modulo an ideal B:

CentR(Z,B) = {x ∈ R | ∀z ∈ Z, xz − zx ∈ B}.

Clearly,

CentR(Z,B) = ρ−1
B

(

CentR/B

(

ρB(Z)
))

,

is a unital subring of R containing both the absolute centraliser CentR(Z),
and the ideal B itself, CentR(Z) +B 6 CentR(Z,B).

Mostly, we consider relative centralisers of ideals. Let Z = A�R. Then
ρB(A) = (A + B)/B and for x ∈ (B : A) and a ∈ A one has xa, ax ∈ B,
so that in fact even

CentR(A) + (B : A) 6 CentR(A,B).
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§3. Relative subgroups

For two subgroups F,H 6 G, we denote by [F,H ] their mutual commu-
tator subgroup spanned by all commutators [f, h], where f ∈ F , h ∈ H .
Observe that our commutators are always left-normed, [x, y] = xyx−1y−1.
The double commutator [[x, y], z] will be denoted simply by [x, y, z]. As
usual, C(G) denotes the centre of a group G, whereas CGL(n,R)(H) de-
notes the centraliser of a subgroup H 6 G in G.

As usual, e denotes the identity matrix and eij is a standard matrix
unit. For ξ ∈ R and 1 6 i 6= j 6 n, we denote by tij(ξ) = e + ξeij , we
denote the corresponding [elementary] transvection. To any ideal I � R
one associates the elementary subgroup

E(n, I) =
〈

tij(ξ), ξ ∈ I, 1 6 i 6= j 6 n
〉

,

generated by all elementary transvections of level I, and the relative el-
ementary subgroup EI = E(n,R, I) of level I is defined as the normal
closure of E(n, I) in the absolute elementary subgroup E = E(n,R).

Further, consider the reduction homomorphism

ρI : GL(n,R) −→ GL(n,R/I)

modulo I.

• By definition, the principal congruence subgroup GL(n,R, I) is the
kernel of ρI . In other words, GL(n,R, I) consists of all matrices g congruent
to e modulo I.

GL(n,R, I) =
{

g = (gij) ∈ GL(n,R) | gij ≡ δij (mod I)
}

.

• In turn, the full congruence subgroup C(n,R, I) is the full preimage
of the center of GL(n,R/I) with respect to ρI . In other words, C(n,R, I)
consists of matrices, which become scalar modulo I, i.e. have the form λe,
where λ is central modulo I, λ ∈ Cent(R/I)∗.

We need also some of the less familiar congruence subgroups.

• The brimming congruence subgroupG(n,R, I), which is the full preim-
age of the diagonal subgroup D(n,R/I) 6 GL(n,R/I). In the terminology
of Zenon Borewicz, G(n,R, I) = G(σ) is the net subgroup corresponding
to the D-net σ = (σij), 1 6 i 6= j 6 n, such that σij = I for all i 6= j,
while σii = R as they should be, for D-nets, see [7, 8].

G(n,R, I) =
{

g = (gij) ∈ GL(n,R) | gij ≡ 0 (mod I) , i 6= j
}

.
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• For a subgroup Ω 6 (R/I)∗ we can define CΩ(n,R, I) consists of
matrices which modulo I, have the form λe, for some λ ∈ Ω. The largest
one of those is the group consisting of all matrices that become (non-
central!) homotheties modulo I, it corresponds to Ω = (R/I)∗:

C∗(n,R, I) =
{

g = (gij) ∈ G(n,R, I) | gii ≡ gjj (mod I)
}

.

• But actually, we will be most interested in the following special case.
Let A,B �R be two ideals of R. We consider the subgroup

Ω = Ω(A,B) = ρ(B:A)/B

(

CentR/B

(

(A+B)/B
)

)

∩
(

R/(B : A)
)

∗

Let G = GL(n,R) and

CΩ(A,B)

(

n,R, (B : A)
)

=
{

g ∈ GL(n,R) | gij , gii − gjj ∈ (B : A)

for i 6= j, and gii ∈ CentR(A,B)
}

.

In other words, this group is defined in exactly the same way as the full
congruence subgroup C

(

n,R, (B : A)
)

, only that now instead of requiring
that the diagonal entries of matrices become central modulo (B : A), we
impose a weaker condition that modulo B they commute with elements
of A. Of course, since (B : A) ◦ A 6 B, this condition depends not on
the entry itself, but only on its congruence class modulo (B : A), which
secures correctness of this definition.

In particular, when R is commutative,

CΩ(A,B)

(

n,R, (B : A)
)

= C
(

n,R, (B : A)
)

is the usual full congruence subgroup of level (B : A).

§4. Centralisers of E(n,R,A) and GL(n,R,A),
modulo GL(n,R,B)

Now we are all set to prove the first main result of the present paper.
Here we consider relative centralisers modulo the principal congruence sub-
groups GL(n,R,B), which are always normal in GL(n,R), which makes
the analysis considerable

Theorem 1. Let R be an arbitrary associative ring with 1, A,B�R, and

n > 3. Further, let H 6 GL(n,R) be any subgroup such that E(n,A) 6

H 6 GL(n,R,A). Then

CGL(n,R)

(

H,GL(n,R,B)
)

= CΩ(A,B)

(

n,R, (B : A)
)

.
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Proof. First, we calculate CGL(n,R)

(

E(n,A),GL(n,R,B)
)

. Assume that
g ∈ GL(n,R) commutes with E(n,A) modulo GL(n,R,B). In particular
this means that for all 1 6 r 6= s 6 n and all a ∈ A one has

[g, trs(a)] ∈ GL(n,R,B),

so that
gtrs(a) ≡ trs(a)g (mod B) .

The left hand side only differs from g in the s-th column, while the right
hand side only differs from g in the r-th row. Comparing the entries of
these matrices in positions (i, s), (r, j) 6= (r, s), we see that

• gira ∈ B, for all i 6= r,

• agsj ∈ B, for all j 6= s,

in particular, we can conclude that all non-diagonal entries of g belong to
(B : A).

It remains to compare the entries in the position (r, s).

• grra ≡ agss (mod B) , or, what is the same, grra − agss ∈ B, for all
r 6= s.

Now, since n > 3, we can choose an index t 6= r, s, and conclude that grra−
agtt ∈ B. Comparing the above inclusions, we see that a(gss − gtt) ∈ B, so
that gss − gtt ∈ A−1B, for all s 6= t. By the same token, agss − gtta ∈ B,
and again comparing the above inclusions we see that (grr − gtt)a ∈ B, so
that grr − gtt ∈ BA−1, for all r 6= t. This means that pairwise differences
of the diagonal entries of g belong to (B : A). But then the congruence in
the last item implies that grra − agrr ∈ B, for all r, 1 6 r 6 n, and all
a ∈ A. Summarising the above, we see that

CGL(n,R)

(

E(n,A),GL(n,R,B)
)

6 CΩ(A,B)

(

n,R, (B : A)
)

.

On the other hand,

CGL(n,R)

(

GL(n,R,A),GL(n,R,B)
)

6 CGL(n,R)

(

H,GL(n,R,B)
)

6

CGL(n,R)

(

E(n,A),GL(n,R,B)
)

,

and to prove the theorem it only remains to verify that

CΩ(A,B)

(

n,R, (B : A)
)

6 CGL(n,R)

(

GL(n,R,A),GL(n,R,B)
)

.

Indeed, let g = (gij) ∈ CΩ(A,B)

(

n,R, (B : A)
)

and h ∈ GL(n,R,A). We
claim that then gh ≡ hg (mod B) . Indeed,

(gh)rs =
∑

grthts, (hg)rs =
∑

hrtgts,
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where both sums are taken over 1 6 t 6 n.

• First, let r 6= s. Then the summands corresponding to t 6= r, s belong
to (B : A)A 6 B on the left hand side, and to A(B : A) 6 B on the right
hand side, and can be discarded.

• This means that for the case r 6= s it only remains to take care of the
summands corresponding to t = r, s. But since r 6= s one has hrs ∈ A, so
that grrhrs ≡ hrsgss (mod B) by the very definition of CΩ(A,B)

(

n,R, (B :

A)
)

. On the other hand, hrr ≡ hss ≡ 1 (mod A) and since grs ∈ (B : A),
also grshss ≡ hrrgrs (mod B) .

• By the same token, for the remaining case r = s all summands grthtr

and hrtgtr belong to B and can be discarded. On the other hand, hrr ≡ 1
(mod A), and since 1 commutes with grr, while elements of A commute
with grr modulo B, one has grrhrr ≡ hrrgrr (mod B) , as claimed.

This proves the desired inclusion, and thus the theorem. �

§5. Generation of relative subgroups and

commutator formulas

In the present section we collect the requisite results on relative elemen-
tary subgroups that will be used in the rest of this paper.

The following lemma on generation of relative elementary subgroups
E(n,R,A) is a classical result discovered in various contexts by Stein, Tits
and Vaserstein, see, for instance, [26] (or [16], Lemma 3, for a complete
elementary proof). It is stated in terms of the Stein–Tits–Vaserstein gen-

erators :

zij(a, c) = tij(c)tji(a)tij(−c), 1 6 i 6= j 6 n, a ∈ A, c ∈ R.

Lemma 1. Let R be an associative ring with 1, n > 3, and let A be a two-

sided ideal of R. Then as a subgroup E(n,R,A) is generated by zij(a, c),
for all 1 6 i 6= j 6 n, a ∈ A, c ∈ R.

In the following theorem a further type of generators occur, the elemen-

tary commutators:

yij(a, b) = [tij(a), tji(b)], 1 6 i 6= j 6 n, a ∈ A, b ∈ B.

The following analogue of Lemma 1 for commutators

[E(n,R,A), E(n,R,B)]

was discovered (in slightly less precise forms) by Roozbeh Hazrat and
the second author, see [18], Lemma 12 and then in our joint paper with
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Hazrat [16], Theorem 3A. The strong form reproduced below is established
only in our paper [39], Theorem 1 (see also [40]), as a spin-off of our
papers [27, 38].

Lemma 2. Let R be any associative ring with 1, let n > 3, and let A,B
be two-sided ideals of R. Then the mixed commutator subgroup

[

E(n,R,A), E(n,R,B)
]

is generated as a group by the elements of the form

• zij(ab, c) and zij(ba, c),

• yij(a, b),

where 1 6 i 6= j 6 n, a ∈ A, b ∈ B, c ∈ R. Moreover, for the second type

of generators, it suffices to fix one pair of indices (i, j).

In the proofs below we use not just Lemma 2 itself, but also some
of the results used in its proof. The first of them is standard, see, for
instance, [16, 36, 37] and references there.

Lemma 3. R be an associative ring with 1, n > 3, and let A and B be

two-sided ideals of R. Then

E(n,R,A ◦B) 6
[

E(n,A), E(n,B)
]

6
[

E(n,R,A), E(n,R,B)
]

6 GL(n,R,A ◦B).

The first of the following lemmas is [39], Lemma 3, or [40], Lemma 9.
The second is [40], Lemma 10. And the third one is [39], Lemma 5, or [40],
Lemma 11.

Lemma 4. Let R be an associative ring with 1, n > 3, and let A,B be

two-sided ideals of R. Then for any 1 6 i 6= j 6 n, a ∈ A, b ∈ B, and any

x ∈ E(n,R) one has

xyij(a, b) ≡ yij(a, b) (mod E(n,R,A ◦B)) .

Lemma 5. Let R be an associative ring with 1, n > 3, and let A,B be two-

sided ideals of R. Then for any 1 6 i 6= j 6 n, a, a1, a2 ∈ A, b, b1, b2 ∈ B
one has

yij(a1 + a2, b) ≡ yij(a1, b) · yij(a2, b) (mod E(n,R,A ◦B)) ,

yij(a, b1 + b2) ≡ yij(a, b1) · yij(a, b2) (mod E(n,R,A ◦B)) ,

yij(a, b)
−1 ≡ yij(−a, b) ≡ yij(a,−b) (mod E(n,R,A ◦B)) ,

yij(ab1, b2) ≡ yij(a1, a2b) ≡ e (mod E(n,R,A ◦B)) .
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Lemma 6. Let R be an associative ring with 1, n > 3, and let A,B be

two-sided ideals of R. Then for any 1 6 i 6= j 6 n, any 1 6 k 6= l 6 n,

and all a ∈ A, b ∈ B, c ∈ R, one has

yij(ac, b) ≡ ykl(a, cb) (mod E(n,R,A ◦B)) .

For quasi-finite rings the following result is [37], Theorem 5 and [16],
Theorem 2A, but for arbitrary associative rings it was only established
in [40], Theorem 2.

Lemma 7. Let R be any associative ring with 1, let n > 3, and let A and

B be two-sided ideals of R. If A and B are comaximal, A+B = R, then

[E(n,A), E(n,B)] = E(n,R,A ◦B).

The following result is [37], Theorem 4.

Lemma 8. Let A and B be two ideals of a commutative ring R and n > 3.
Then

[

E(n,R,A), C(n,R,B)
]

=
[

E(n,R,A), E(n,R,B)
]

.

Finally, the following lemma is [28], Theorem 2.

Lemma 9. Let A and B be two ideals of a Dedekind ring of arithmetic

type R = OS. Assume that the multiplicative group R∗ is infinite and that

n > 3. Then
[

GL(n,R,A),GL(n,R,B)
]

= E(n,R,AB).

§6. Centralisers of E(n,R,A) and GL(n,R,A),
modulo E(n,R,B)

The group Z(n,R, I) is defined as the centraliser of GL(n,R) modulo
E(n,R, I):

Z(n,R, I) =
{

g ∈ GL(n,R) | [g,GL(n,R)] 6 E(n,R, I)
}

.

When E(n,R, I) is normal in GL(n,R), the quotient Z(n,R, I)/E(n,R, I)
is the centre of

GL(n,R)/E(n,R, I).

Let us make some obvious observations concerning this group.

• By definition

C(n,R, I) =
{

g ∈ GL(n,R) |
[

g,GL(n,R)
]

6 GL(n,R, I)
}

.



20 N. A. VAVILOV, Z. ZHANG

In other words, C(n,R, I)/GL(n,R, I) is the centre of

GL(n,R)/GL(n,R, I).

Since E(n,R, I) 6 GL(n,R, I), one has Z(n,R, I) 6 C(n,R, I).

• Since
[

GL(n,R, I),GL(n,R)
]

6 E(n,R, I) for n > max(sr(R)+1, 3),
in this case E(n,R, I) is normal in GL(n,R) and GL(n,R, I)/E(n,R, I) is
contained in the centre of GL(n,R)/E(n,R, I). Thus, in the stable range

GL(n,R, I) 6 Z(n,R, I) 6 C(n,R, I).

However even in the stable range, it may happen that Z(n,R, I) is strictly
smallser than C(n,R, I).

• Below the stable range funny things may happen. In particular, below
the stable range even for commutative rings and n > 3 the group

K1(n,R, I) = GL(n,R, I)/E(n,R, I)

does not have to be abelian. The first such counter-examples were con-
structed by Wilberd van der Kallen [19] and Anthony Bak [2]. For finite
dimensional rings this group is indeed nilpotent by abelian, but the nilpo-
tent part may have arbitrarily large nilpotency class.

This means that Z(n,R, I) may sit at the very bottom of GL(n,R, I).
Both Alec Mason [22] and Anthony Bak [2] used the fact that Z(n,R, I) <
C(n,R, I) to construct subgroups of level I that are normalised by E(n,R),
but not normal in GL(n,R).

This means that in general such relative centralisers as

CGL(n,R)

(

GL(n,R,A), E(n,R,B)
)

and CGL(n,R)

(

E(n,R,A), E(n,R,B)
)

do not have an obvious description in the style of the previous section.
But for commutative rings it is very easy to slightly modify E(n,R,B),
to get exactly the same answer, as above. In this case all commutativity
assumptions are automatically satisfied, so that C(n,R, I) = C∗(n,R, I)
for all ideals.

Theorem 2. Let R be a commutative ring and A,B �R, n > 3. Then

CGL(n,R)

(

E(n,R,A),
[

E
(

n,R, (B : A)
)

, E(n,R,A)
]

)

= C
(

n,R, (B : A)
)

.

Proof. By Lemma 8 one has
[

C
(

n,R, (B : A)
)

, E(n,R,A)
]

=
[

E
(

n,R, (B : A)
)

, E(n,R,A)
]

.

In other words, the right hand side of the equality in the statement of
theorem is contained in the left hand side.
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On the other hand,
[

E
(

n,R, (B : A)
)

, E(n,R,A)
]

6
[

GL
(

n,R, (B : A)
)

,GL(n,R,A)
]

6 GL
(

n,R, (B : A)A
)

,

and thus, by Theorem 1

CGL(n,R)

(

E(n,R,A),
[

E
(

n,R, (B : A)
)

, E(n,R,A)
]

)

6 CGL(n,R)

(

E(n,R,A),GL
(

n,R, (B : A)A
)

)

= C
(

n,R,
(

(B : A)A : A
))

.

It remains only to observe that the level of this last subgroup is precisely
the what it should be, ((B : A)A : A) = (B : A). Indeed, x ∈ ((B : A)A :
A) means that xA 6 (B : A)A 6 B, so that ((B : A)A : A) 6 (B : A). On
the other hand, if x ∈ (B : A), then xA 6 (B : A)A, so that (B : A) 6 ((B :
A)A : A). This means that C

(

n,R,
(

(B : A)A : A
))

= C
(

n,R, (B : A)
)

,
which proves the theorem. �

Of course, the level of the commutator subgroup
[

E
(

n,R, (B : A)
)

, E(n,R,A)
]

is (B : A)A, which in general is smaller than B. However, for Dedekind
rings always (B : A)A = B.

On the other hand, when the levels coincide, the mixed commutator
subgroup

[

E
(

n,R, (B : A)
)

, E(n,R,A)
]

is in general larger than E(n,R,B). It suffices to take the known examples,
where A = (B : A) = I, while B = I2, see [40]. The simplest such example
was constructed by Alec Mason and Wilson Stothers [21, 23] already for
the ring Z[i] of Gaussian integers. However, in [28] the first author noticed
that this cannot possibly occur for Dedekind rings of arithmetic type with
infinite multiplicative group.

Theorem 3. Let R be a Dedekind ring of arithmetic type with infinite

multiplicative group and A,B �R, n > 3. Then

CGL(n,R)

(

E(n,R,A), E(n,R,B)
)

= C
(

n,R, (B : A)
)

.

Proof. Indeed, by Lemma 9, one has
[

E
(

n,R, (B : A)
)

, E(n,R,A)
]

= E
(

n,R, (B : A)A
)

= E(n,R,B),
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and it remains to apply the previous theorem. �

§7. Final remarks

It would be natural to generalise results of the present paper to more
general contexts.

Problem 1. Generalise Theorems 1 and 2 to Chevalley groups.

Problem 2. Generalise Theorems 1 and 2 to Bak’s unitary groups.

It seems, that in both cases the strategy is clear, but there are a lot
of technical details to take care of. For Chevalley groups the ground ring
R is commutative anyway, which makes many technical details consider-
ably less burdensome. On the other hand, calculations in representations
themselves necessary to establish analogues of Theorem 1, will be some-
what more delicate, especially for exceptional groups. But the pattern of
such calculations should be mostly known from [30–33]. Most tools nec-
essary to derive from there an analogue of Theorem 2, are in our recent
papers [38, 42]. On the other hand, so far we are still missing several key
components necessary to generalise to this case the results of [28], and
before we do that, there is no hope to generalise Theorem 3.

The authors thank Roozbeh Hazrat and Alexei Stepanov for ongoing
discussion of this circle of ideas, and long-standing cooperation over the
last decades.
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