УДК 517.5

Оценки постоянной в неравенстве типа Джексона для периодических функций. Бабушкин М. В. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 5–26.

Получены оценки постоянной J в неравенстве типа Джексона

$$E_n(f) \leqslant \frac{J(m,r,\tau)}{n^r} \omega_m(f^{(r)},\tau/n),$$

улучшающие известные ранее в случае $m \to +\infty$, $r \in \mathbb{N}$, $\tau \geqslant \pi$. Здесь f — непрерывная 2π -периодическая функция, E_n — наилучшее приближение тригонометрическими полиномами порядка меньше n, ω_m — модуль непрерывности порядка m.

Библ. – 13 назв.

УДК 517.5

Неравенство Литлвуда—Пэли—Рубио де Франсиа для двупараметрической системы Уолша. Боровицкий В. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 27–42.

В данной работе доказывается вариант неравенства Литлвуда–Пэли–Рубио де Франсиа для двупраметрической системы Уолша: для любого набора непересекающихся прямоугольников $I_k=I_k^1\times I_k^2$ в $\mathbb{Z}_+\times\mathbb{Z}_+$ и для функций f_k со спектром Уолша в I_k выполняется

$$\left\| \sum_{k} f_{k} \right\|_{L^{p}} \leqslant C_{p} \left\| \left(\sum_{k=1}^{\infty} |f_{k}|^{2} \right)^{1/2} \right\|_{L^{p}}, \quad 1$$

где C_p не зависит от выбора прямоугольников $\{I_k\}$ и функций $\{f_k\}$. Доказательство основано на атомной теории двупраметрических мартингальных классов Харди. В ходе доказательства формулируется двупраметрический вариант теоремы Ганди об ограниченности операторов, отображающих мартингалы в измеримые функции, что представляет самостоятельный интерес.

Библ. – 24 назв.

УДК 517.518.13

Сингулярные интегральные операторы в пространствах Зигмунда в областях. Васин А. В. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 43–51.

Для данной ограниченной липшицевой области $D\subset\mathbb{R}^d$ и оператора Кальдерона–Зигмунда T исследуются отношения между свойствами гладкости границы области ∂D и ограниченностью T в пространствах Зигмунда $\mathcal{C}_{\omega}(D)$, определяемых для функций роста ω общего вида. Доказывается $\mathrm{T}(P)$ теорема для пространств Зигмунда, в которой ограниченность оператора T проверяется на конечном множестве сужений полиномов на область. Также получена новая форма свойства сокращения, присущая операторам Кальдерона–Зигмунда с четным ядром.

Библ. - 14 назв.

УДК 517.5

О скорости стремления к нулю масштабирующей функции Мейера. Виноградов О. Л. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 52–65.

Масштабирующей функцией Мейера называют такую функцию

$$\varphi \colon \mathbb{R} \to \mathbb{R},$$

целочисленные сдвиги которой $\varphi(\cdot + n)$, $n \in \mathbb{Z}$, ортонормированы в $L_2(\mathbb{R})$, а преобразование Фурье $\widehat{\varphi}(y) = \frac{1}{\sqrt{2\pi}} \int\limits_{\mathbb{R}} \varphi(t) e^{-iyt} \, dt$ имеет вид: $\widehat{\varphi}$

четна,
$$\widehat{\varphi}=0$$
 вне $[-\pi-\varepsilon,\pi+\varepsilon]$, $\widehat{\varphi}=\frac{1}{\sqrt{2\pi}}$ на $[-\pi+\varepsilon,\pi-\varepsilon]$, где $\varepsilon\in\left(0,\frac{\pi}{3}\right]$. Основной результат работы следующий. Пусть $\omega\colon[0,+\infty)\to[0,+\infty)$,

Основной результат работы следующий. Пусть $\omega \colon [0,+\infty) \to [0,+\infty)$ функция $\frac{\omega(x)}{x}$ убывает. Тогда следующие утверждения равносильны.

1. Для любого (или, что равносильно, для некоторого) $\varepsilon\in(0,\frac{\pi}{3}]$ существуют $x_0>0$ и масштабирующая функция Мейера φ , такая что $\widehat{\varphi}=0$ вне $[-\pi-\varepsilon,\pi+\varepsilon]$ и $|\varphi(x)|\leqslant e^{-\omega(|x|)}$ при всех $|x|>x_0$.

$$2. \int_{1}^{+\infty} \frac{\omega(x)}{x^2} \, dx < +\infty.$$

Библ. – 11 назв.

УДК 517.5

Точная оценка приближения абстрактными операторами типа Канторовича через второй модуль непрерывности. Ихсанов Л. Н. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 66–93.

Получена оценка приближения ограниченной измеримой функции операторами типа Канторовича

$$B_n(f)(x) = \sum_{j=0}^{n} C_n^j x^j (1-x)^{n-j} F_j(f),$$

на отрезке [0, 1] через второй модуль непрерывности, где F_j – функционалы с достаточно малыми носителями, обладающие некоторой симметрией. Полученная оценка неулучшаема.

Библ. – 4 назв.

УДК 517.547+517.545+517.535+517.518.2+512.622+517.953

Неоднолистные индикаторная и сопряженная диаграммы целой функции порядка $\rho \neq 1$. Приложение к решению алгебраических уравнений. Маергойз Л. С. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 94–118.

В статье предлагается обзор недавних достижений в теории роста целых функций, ассоциированных с широко известной теоремой Пойа о связи между индикаторной и сопряженной диаграммами целой функции экспоненциального типа. Обсуждаются некоторые методы аналитического продолжения многозначной голоморфной функции одной переменной, заданной на части ее римановой поверхности в форме ряда Пюизе, порожденного степенной функцией $z=w^{1/\rho}$, где $\rho > 1/2, \ \rho \neq 1$. Представлен неоднолистный вариант упомянутой теоремы Пойа. Этот результат базируется на геометрической конструкции Бернштейна многолистной индикаторной диаграммы целой функции порядка $\rho \neq 1$ и нормального типа. Найдено обобщение метода Бореля аналитического продолжения степенного ряда, позволяющее найти область суммируемости "правильного" ряда Пюизе (неоднолистный "многоугольник Бореля"). Этот результат оказывается новым даже в случае степенного ряда. Полученные результаты применяются для описания областей аналитического продолжения рядов Пюизе, в которые разлагаются обращения рациональных функций. В качестве одного из следствий разработан новый подход к решению алгебраических уравнений.

Библ. - 14 назв.

УДК 517.572

Конструктивное описание гельдеровых классов на компактах в \mathbb{R}^3 . Павлов Д. А. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 119–144.

В работе дается конструктивное описание гельдеровых классов функций на компактном подмножестве кривой в \mathbb{R}^3 , дуга которой соизмерима с хордой, в терминах скорости приближения гармоническими функциями.

Библ. - 7 назв.

УДК 517.54

О гармонической мере дуг фиксированной длины. Самарасири С., Солынин А. Ю. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 145–152.

В работе рассматриваются жордановы области Ω с кусочно-гладкой границей, для которых все дуги $\alpha \subset \partial \Omega$ фиксированной длины l, $0 < l < \mathrm{length}(\partial \Omega)$, имеют равные гармонические меры $\omega(z_0,\alpha,\Omega)$ относительно некоторой точки $z_0 \in \Omega$. Доказывается, что такая область Ω или является кругом с центром z_0 , если отношение $l/\mathrm{length}(\partial \Omega)$ иррационально, или инвариантна по отношению к вращениям на некоторый угол $2\pi/n, \ n \geqslant 2$, вокруг точки z_0 , если указанное отношение длин рационально.

Библ. – 8 назв.

УДК 517.982.22

Отсутствие локальной безусловной структуры в пространствах гладких функций на двумерном торе. Целищев А. — В кн.: Исследования по линейным операторам и теории функций. 48. (Зап. научн. семин. ПОМИ, т. 491), СПб., 2020, с. 153–172.

Рассмотрим конечный набор $\{T_1,\ldots,T_J\}$ дифференциальных операторов с постоянными коэффициентами на \mathbb{T}^2 и пространство гладких функций, порожденное этим набором, а именно, пространство функций f таких, что $T_j f \in C(\mathbb{T}^2)$. В данной работе доказывается, что при некотором естественном условии это пространство не изоморфно

фактору пространства C(S) и не имеет локальной безусловной структуры. Этот факт обобщает ранее известный результат, что такие пространства не изоморфны дополняемому подпространству в C(S). Библ. – 19 назв.