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HARMONIC MEASURE OF ARCS OF FIXED LENGTH

Abstract. Jordan domains Ω with piece-wise smooth boundaries
are treated such that all arcs α ⊂ ∂Ω having fixed length l, 0 < l <
length(∂Ω), have equal harmonic measures ω(z0, α,Ω) evaluated at
some point z0 ∈ Ω. It is proved that Ω is a disk centered at z0 if
the ratio l/length(∂Ω) is irrational and that Ω possesses rotational
symmetry by some angle 2π/n, n > 2, around the point z0, if this
ratio is rational.

Let Ω be a Jordan domain on C with rectifiable boundary ∂Ω of length
L, 0 < L < ∞. We recall that the harmonic measure with respect to Ω
is a function ω(z, E,Ω) such that: (1) for each z ∈ Ω, ω(z, ·,Ω) is a Borel
probability measure on ∂Ω, (2) for each continuous function ϕ : ∂Ω → R

the generalized Poisson integral

u(z) =

∫

∂Ω

ϕ(ζ) dω(z, ·,Ω)

solves the Dirichlet problem on Ω with boundary values ϕ(ζ); see, for
instance, [8, Chapter 4.3].

Suppose that for a point z0 ∈ Ω there is positive l, 0 < l < L, such
that all open boundary arcs α ⊂ ∂Ω of length l have the same harmonic
measure with respect to Ω evaluated at z0; i.e., such that

ω(z0, α1,Ω) = ω(z0, α2,Ω), (1)

whenever α1 and α2 are open arcs on ∂Ω with

length(α1) = length(α2) = l. (2)

In this note we discuss the following question: When do conditions (1)
and (2) determine the shape of Ω?

To address this question, we first introduce necessary definitions and
recall few known results.
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Let f : D → Ω be a conformal mapping from the unit disk D = {z :
|z| < 1} onto Ω. Since ∂Ω is Jordan and rectifiable, the derivative f ′(ζ),
defined by

f ′(ζ) = lim
z→ζ,z∈D

f(z)− f(ζ)

z − ζ
6= 0,∞, (3)

exists for almost all ζ ∈ T = ∂D. Furthermore, the derivative f ′ belongs
to the Hardy space H1 and

length(f(E)) =

∫

E

|f ′(eiθ)| dθ (4)

for every measurable set E ⊂ T. We recall here that the Hardy space H1

consists of all functions g analytic in D such that

sup
0<r<1

2π∫

0

|g(reiθ)| dθ < ∞. (5)

For all properties mentioned in equations (3)–(5), see, for instance, Theo-
rem 6.8 in [7].

As equation (4) shows, the length of every boundary set f(E) with a
measurable E ⊂ T can be found via the values of the modulus of the
derivative f ′(eiθ). On the other hand, surprisingly enough, the derivative
f ′(z) , z ∈ D, itself cannot be recovered from the boundary values of
its modulus |f ′(eiθ)|, in general. Domains Ω for which such a recovery
is possible are called Smirnov domains. More precisely, Ω is a Smirnov
domain if f ′(z) can be found via the following formula (see Section 7.1
in [7]):

log |f ′(z)| =
1

2π

2π∫

0

1− |z|2

|eiθ − z|2
log |f ′(eiθ)| dθ for z ∈ D. (6)

The first example of a non-Smirnov domain was constructed by
M. W. Keldysh and M. A. Lavrentiev in 1937; see [5]. The following the-
orem of K. Øyma [3] implies that the non-Smirnov domains are dense in
the set of all simply connected domains in the sense of Carathéodory.

Theorem 1 (K. Øyma, [3]). Let g(z) be univalent in D and let 0 < r1 <
r2 < 1. Then there exists a non-Smirnov domain Ω such that g(|z| < r1) ⊂
Ω ⊂ g(|z| < r2) and there exists a conformal mapping f : D → Ω such that

|f ′(eiθ)| = constant almost everywhere on T.
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This theorem by Øyma implies that the shape of Ω cannot be recov-
ered from conditions (1) and (2) if Ω is non-Smirnov. More precisely, the
following holds.

Corollary 1. Let Γ be an analytic Jordan curve and let Γε = {z :
dist(z,Γ) < ε} denote the neighborhood of Γ of radius ε > 0. Then there is

a Jordan rectifiable curve γ ⊂ Γε homotopic to Γ in Γε and a point z0 in

the bounded component (call it Ω) of C \ γ such that

ω(z0, α,Ω) = length(α)/length(γ) (7)

for every arc α ⊂ γ.

Actually, (7) is true for all measurable sets α ⊂ γ, not only for arcs.
Our emphasis on arcs here is solely in relation with our question stated
above.

Thus, Øyma’s theorem stated above shows that the shape of a Jordan
rectifiable domain cannot be recovered in general from conditions (1) and
(2), not even from the proportionality condition (7) applied to all measur-
able sets γ ⊂ Γ!

Therefore, to get more information from conditions (1) and (2), we
have to restrict ourselves to the subclass of rectifiable Smirnov domains.
In this direction, the following important result was proved independently
by P. Ebenfelt, D. Khavinson, and H. S. Shapiro [1] and by S. J. Gardi-
ner [2].

Theorem 2 ([1, 2]). Suppose Γ is a rectifiable Jordan curve such that the

equilibrium measure, which coincides with the harmonic measure

ω(∞, ·,Ω∞)

of the outer domain Ω∞ of Γ with respect to the point z = ∞, is a multiple

of arclength measure on Γ.

If the outer domain Ω∞ is Smirnov, then Γ is a circle.

It was mentioned in [2] that a version of Theorem 2 for a smaller class
of bounded Lipshitz domains had first been proved by O. Mendez and
W. Reichel [6] in response to a conjecture by P. Gruber.

Our main result, stated in Theorem 3 below, shows that, when restricted
to piecewise smooth Jordan curves Γ, the conclusion in the spirit of The-
orem 2 can be derived under a much weaker assumption, namely, when
proportionality condition between harmonic measure and arclength is as-
sumed only for boundary arcs of specific length.
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Theorem 3. Let Ω be a domain bounded by a piecewise smooth Jordan

curve Γ of length L. Suppose that for a point z0 ∈ Ω there is positive l,
0 < l < L, such that conditions (1), (2) are satisfied for all arcs α1, α2 ⊂ Γ.

Then the following holds true.

1) If l/L is irrational, then Ω is a disk centered at z0.
2) If l/L is rational of the form m/n in lowest terms, then Ω is in-

variant under rotations by an angle of 2π/n around z0.

Proof. Let an arc α ⊂ ∂Ω of length l have its endpoints at ζ1 and ζ2. We
assume here that a walk from ζ1 to ζ2 along α corresponds to the positive
orientation with respect to Ω. Let f : D → Ω be a conformal mapping
from D to Ω such that f(0) = z0. Let eiθk = f−1(ζk), k = 1, 2. Since Γ is
piecewise smooth, the derivatives f ′(eiθk), k = 1, 2, exist for all arcs α of
length l except, possibly, a finite number of such arcs. Suppose that, for
our choice of α, f ′(eiθ1) and f ′(eiθ2) exist.

We claim that

|f ′(eiθ1)| = |f ′(eiθ2)|. (8)

To prove this, we assume that ε > 0 is sufficiently small and consider
two arcs β1 = β1(ε) and β2 = β2(ε). Here β1 ⊂ α is a subarc of α of length

ε with the initial point at ζ1 and β2 ⊂ Γ \ α is a subset of Γ \ α with the
initial point at ζ2.

Let ζ′k = ζ′k(ε) be the end-point of the arc βk, k = 1, 2, and let α′ = α′(ε)
be the arc on Γ with end-points ζ′1 and ζ′2, such that β2 ⊂ α′. Then
length(α′) = l and therefore

ω(z0, α
′,Ω) = ω(z0, α,Ω) (9)

by the assumptions of the theorem. Let α̃ ⊂ α be a sub-arc of α with
end-points ζ′1 and ζ2. Since the harmonic measure is an additive function
on boundary sets, using (9), we obtain

ω(z0, β2,Ω) = ω(z0, α
′,Ω)− ω(z0, α̃,Ω)

= ω(z0, α,Ω)− ω(z0, α̃,Ω) = ω(z0, β1,Ω).

Thus, the arcs β1 and β2 have the same harmonic measures at z0. Since
f−1(z0) = 0, the last statement implies that if, for some δ = δ(ε) > 0, the
point ei(θ1+δ) = f−1(ζ′1) is the preimage of ζ′1 under the mapping f(z),
then the point ei(θ2+δ) is the preimage of ζ′2 under this mapping. Now,
formula (4) gives the following expressions for the length of the arcs β1

and β2:
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ε = length(β1) =

θ1+δ∫

θ1

|f ′(eit)| dt = |f ′(eit1)| δ (10)

with some t1 = t1(δ), θ1 < t1 < θ1 + δ, and

ε = length(β2) =

θ2+δ∫

θ2

|f ′(eit)| dt = |f ′(eit2)| δ (11)

with some t2 = t2(δ), θ2 < t2 < θ2 + δ. The third identity in equations
(10) and (11) follows from the mean value theorem for integrals.

Since Γ is piecewise smooth, the function |f ′(eiθ)| is continuous for
0 6 θ < 2π except, possibly, a finite number of points. Therefore, using
equations (10) and (11), we obtain:

|f ′(eiθ1)| = lim
ε→0

|f ′(ei(t1(δ(ε))))| = lim
ε→0

|f ′(ei(t2(δ(ε))))| = |f ′(eiθ2)|. (12)

Thus, we have proved that for any two points ζ1 and ζ2 on Γ, one lying
from the other at the distance l along Γ, the moduli of the derivatives
f ′(eiθ1) and f ′(eiθ2) at the corresponding preimages must be equal if these
derivatives exist. Now we are ready to prove parts 1) and 2) of the theorem.

1) Suppose that l/L is irrational and consider any two distinct points
ζ1 and ζ2 on Γ. Let {ζk}∞k=1 be a sequence of points on Γ such that ζ1 = ζ1
and such that, for all k = 1, 2, . . ., the distance along Γ in positive direction

between the points ζk and ζk+1 equals l. Let {eiθ
k

= f−1(ζk)}∞k=1 be the
sequence of preimages of the points ζk under the mapping f(z). Since
l/L is irrational, from the well-known results of the theory of irrational
rotational dynamics on a circle, see, for instance Proposition 1.3.3 in [4], it
follows that all points ζk are distinct and the sequence {ζk}∞k=1 is dense on
Γ. Since f(eiθ) is continuous and one-to-one on T, the last fact implies that

all points eiθ
k

are also distinct and the sequence {eiθ
k

}∞k=1 is dense on T.

Therefore, either eiθ2 = eiθ
k

for some k or there is a subsequence {eiθ
ks

}∞s=1

that converges to eiθ2 . From (12), it follows that |f ′(eiθ
ks

)| = |f ′(eiθ1)| for
all s = 1, 2, . . . Since Γ is smooth at ζ2, the function |f ′(eiθ)| is continuous
at eiθ2 . Therefore,

|f ′(eiθ2)| = lim
s→∞

|f ′(eiθ
ks

)| = |f ′(eiθ1)|.
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Thus, we have proved that there is a constant c > 0 such that |f ′(eiθ)| =
c for all eiθ ∈ T except, possibly, a finite number of points. Since Γ = ∂Ω
is piecewise smooth, and thus Ω is a Smirnov domain, the last claim and
equation (6) imply that

log |f ′(z)| =
1

2π

2π∫

0

1− |z|2

|eiθ − z|2
log c dθ = log c for z ∈ D.

This equation and the assumption f(0) = z0 imply that f(z) = az + z0
with some a ∈ C such that |a| = c and therefore Ω is a disk centered at

z0. Furthermore, since L = length(Γ) =
2π∫
0

|f ′(eiθ)| dθ = 2πc, the radius of

the disk is c = L/(2π).

2) Now, we assume that l/L is rational of the form r = m/n, 0 < m <
n, in the lowest terms. Once again, we will use sequences {ζk}∞k=1 and

{eiθ
k

}∞k=1 defined in part 1) of this proof. In this case we deal with the
rational rotational dynamics and the behavior of the sequence {ζk}∞k=1

is different compared to case 1). In particular, this sequence is periodic
in the sense that ζk+n = ζk for all k > 1. Thus, the terms ζk of this
sequence visit only finitely many points on Γ. These points are the points
νs ∈ Γ, s = 0, . . . , n − 1, oriented in the positive direction on Γ with
ν0 = ζ1 such that these points divide Γ into n arcs of equal length. Let
γs, s = 0, . . . , n− 1, denote the arc joining the points νs and νs+1. Here,
νn = ζ1. Then length(γs) = L/n for s = 0, . . . , n − 1. We assume further
that the arcs γs are parameterized by length. Then νs(τ), 0 6 τ 6 L/n,
will denote the point on γs such that the length of the subarc γs(τ) of γs
between νs and νs(τ) equals τ .

Let g(w) = f−1(w) be the inverse function of f which is defined on Ω.
For s = 0, . . . , n− 1, let eiθs(τ) = g(νs(τ)). The same argument as we used
to prove (8), shows that

|f ′(eiθs(τ))| = |f ′(eiθ0(τ))| (13)

for all s = 0, . . . , n − 1 and all 0 6 τ 6 L/n if the derivatives exist.
Therefore, similar conclusion holds for the inverse function g(w):

|g′(νs(τ))| = |g′(ν0(τ))| (14)

for all s = 0, . . . , n− 1 and all 0 6 τ 6 L/n if the derivatives exist.



HARMONIC MEASURE OF ARCS OF FIXED LENGTH 151

Integrating (14) over the arcs γs(τ) and γ0(τ) with respect to arclength,
we obtain the following equation:

θs(τ)− θs(0) = length(f−1(γs(τ))) =

∫

γs(τ)

|g′(νs(t))| dt

=

∫

γ0(τ)

|g′(ν0(t))| dt = length(f−1(γ0(τ))) = θ0(τ) − θ0(0)

for all s = 0, . . . , n− 1 and 0 6 τ 6 L/n.
This equation implies that

θs(τ) − θ0(τ) = 2πs/n for s = 0, . . . , n− 1 and 0 6 τ 6 n− 1.

In particular,

θs(L/n)− θs(0) = 2π/n for s = 0, . . . , n− 1.

This equation together with (13) implies

|f ′(eiθs(τ))| = |f ′(ei(θs(τ)+2πs/n))|,

which means that the function |f ′(eiθ)| is periodic with the period 2π/n,
except possibly a finite number of points.

Since, as we mentioned above, Ω is a Smirnov domain, we have

log |f ′(e2πi/nz)| =
1

2π

2π∫

0

1− |z|2

|eiθ − e2πi/nz|2
|f ′(eiθ)| dθ

=
1

2π

2π∫

0

1− |z|2

|ei(θ−2π/n) − z|2
|f ′(ei(θ−2π/n))| d(θ − 2π/n)

= log |f ′(z)|.

Since f ′(z) 6= 0 for z ∈ D, the functions log f ′(e2πi/nz) and log f ′(z) are
analytic on D. Since these functions have equal real parts, we must have

log f ′(e2πi/nz) = log f ′(z) + iµ with some µ ∈ R.

Hence,

f ′(e2πi/nz) = eiµf ′(z) for all z ∈ D. (15)
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Since f ′(0) = eiµf ′(0), we obtain eiµ = 1 and therefore equation (15)
becomes

f ′(e2πi/nz) = f ′(z) for all z ∈ D. (16)

Integrating equation (16) from 0 to z and then multiplying by e2πi/n, we
obtain

f(e2πi/nz)− f(0) = e2πi/n(f(z)− f(0)).

This implies that the image domain Ω = f(D) is invariant under rotation
by the angle 2π/n around the point z0, as required. �

Remark 1. Let Dn denote a regular polygon with n > 3 sides centered at
the origin z = 0, with perimeter 1. One can easily find that all boundary
arcs α ⊂ ∂Dn of length 1

n have equal harmonic measures ω(0, α,Dn) =
1
n .

Furthermore, the length 1
n is the smallest length with this property; i.e.,

for every l, 0 < l < 1
n , there exist two arcs α1 ⊂ ∂Dn and α2 ⊂ ∂Dn such

that length(α1) = length(α2) = l but ω(0, α1, Dn) 6= ω(0, α2, Dn).

References

1. P. Ebenfelt, D. Khavinson, H.S. Shapiro, A free boundary problem related to single-

layer potentials — Ann. Acad. Sci. Fenn. Math., 27, No. 1 (2002), 21–46.

2. S. J. Gardiner, An equilibrium measure characterization of circles — Forum Math.,
14 (2002), 953–954.

3. K. Øyma, Non-Smirnov domains — Proc. Amer. Math. Soc., 123, No. 5 (1995),
1425–1429.

4. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems.
— With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia
of Mathematics and its Applications, 54, Cambridge University Press, Cambridge
(1995).

5. M. W. Keldysh, M. A. Lavrentiev, Sur la repréntation conforme des domaines limités
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