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A PURITY THEOREM FOR QUADRATIC SPACES

Abstract. It is proved a purity theorem for quadratic spaces over
semi-local regular integral domain containing a field of odd charac-
teristic. This theorem extends to the semi-local case the correspond-
ing results proven previously by the author and by the author jointly
with K. Pimenov. To get this result we extend the purity theorem
of Ojanguren–Panin to this more general setting.

§1. Introduction

Let A be a commutative ring and P be a finitely generated projective
A-module. An element v ∈ P is called unimodular if the A-submodule vA
of P splits off as a direct summand. If P = An and v = (a1, a2, . . . , an)
then v is unimodular if and only if a1A+ a2A+ · · ·+ anA = A.

Let 1
2 ∈A. A quadratic space over A is a pair (P, α) consisting of a fini-

tely generated projective A-module P and an A-isomorphism α : P→P ∗

satisfying α = α∗, where P ∗ = HomR(P,R). Two spaces (P, α) and (Q, β)
are isomorphic if there exists an A-isomorphism ϕ : P → Q such that
α = ϕ∗ ◦ β ◦ ϕ.

Let (P, ϕ) be a quadratic space over A. One says that it is isotropic over
A, if there exists a unimodular v ∈ P with ϕ(v) = 0.

Recall the notion of unramified spaces. Let R be a Noetherian domain
and K be its quotient field. Recall that a quadratic space (W,ψ) over K is
unramified over R if for every height one prime ideal p of R there exists a
quadratic space (Vp, ϕp) over Rp such that the spaces (Vp, ϕp)⊗Rp

K and
(W,ψ) are isomorphic.

The main aim of the present paper is to prove the following purity the-
orem for quadratic spaces over semi-local regular integral domain. This
theorem extends to the semi-local case the corresponding results [7, Corol-
lary 1] and [8, Corollary 3.1].
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Theorem 1 (Main). Let R be a semi-local regular integral domain con-
taining a field of odd characteristic. Let K be the field of fractions of R.
Let (W,ψ) be a quadratic space over K which is unramified over R. Then
there exists a quadratic space (V, ϕ) over R extending the space (W,ψ),
that is the spaces (V, ϕ)⊗R K and (W,ψ) are isomorphic.

As indicated in [7, Remark 4] the main difficulty in proving Theorem 1
is in an extension of the purity theorem [4, Theorem A] to that semi-local
case. Let W be the Witt functor of quadratic spaces on the category of
commutative rings. Here is the desired extension of the purity theorem [4,
Theorem A].

Theorem 2 (A purity theorem). Let R be a semi-local regular integral
domain containing a field k of odd characteristic. Let K be the field of
fractions of R. Then the map W (R) →W (K) is injective and the sequence

{0} →W (R) →W (K)
∑

rp
−−−→

⊕

p

W (K)/W (Rp) (1)

is exact. Here p runs over all height one prime ideals of R and each rp is
the natural map (the projection to the factor group).

Remark 3. We will use often below the following well-known terminology.
Let R and K be as in the latter Theorem. Let p be a height one prime
ideal in R. Recall that an element a ∈ W (K) is unramified at p if it can
be lifted up to an element of W (Rp).

An element a ∈W (K) is R-unramified if it is unramified at every height
one prime ideal p of R. So, a part of the latter Theorem can be restated as
follows: each R-unramified element of W (K) can be lifted up to an element
in W (R).

Derivation Theorem 1 from Theorem 2. By Theorem 2 there exist a
quadratic space (V, ϕ) over R and an integer n > 0 such that (V, ϕ)⊗RK ∼=
(W,ψ) ⊥ H

n
K , where HK is a hyperbolic plane. If n > 0 then the space

(V, ϕ)⊗RK is isotropic. By [12, Theorem 5.1] the space (V, ϕ) is isotropic
too. Thus (V, ϕ) ∼= (V ′, ϕ′) ⊥ HR for a quadratic space (V ′, ϕ′) over R.
Now Witt’s Cancellation theorem over a field [3, Chap. I, Theorem 4.2]
shows that (V ′, ϕ′) ⊗R K ∼= (W,ψ) ⊥ H

n−1
K . Repeating this procedure

several times we may assume that n = 0, which means that (V, ϕ)⊗RK ∼=
(W,ψ). �

Proof of Theorem 2. The so called geometric case (see below) is an
output of general machineries developed in [5, 1] and [2]. We start with
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some recollections. Let k be a field. Recall that objects of the category
SmOp/k are pairs (X,U), where X is a smooth k-variety and U is its
Zarisky open subset. A morphism between (X,U) and (X ′, U ′) is a mor-
phism f : X → X ′ which takes U to U ′. A cohomology theory on SmOp/k
in the sense of Panin–Smirnov [10, Sec. 1] is a contra-variant functor

A : SmOp/k → Gr −Ab

to the category of graded abelian groups together with functor transforma-
tions ∂X,U : An(U) → An+1(X,U), which satisfies homotopy invariance,
étale excision and for any pair (X,U) ∈ SmOp/k the sequence of abelian
groups

· · · → An(X) → An(U)
∂X,U

−−−→ An+1(X,U) → An+1(X) → An+1(U) → . . .

is long exact. The Balmer–Witt theory (X,X − Z) 7→ ⊕Wn
Z (X) together

with functor transformations ∂X,X−Z : Wn(U) → Wn+1
Z (X) is a coho-

mology theory in the sense above (see [2] for details). On the category
of affine Noetherian regular schemes the functor W 0 coincides with the
classical functor of Witt groups W . For each discrete valuation ring A, the
scheme V = Spec(A), its closed point v and its general point ν one has
an isomorphism W (ν)/W (V ) = W 0(ν)/W 0(V ) ∼= W 1

v (V ) induced by the
boundary map ∂V,V−v :W 0(ν) →W 1

v (V ).
The geometric case of Theorem 2. Let R be the semi-local ring of finitely

many closed points on a k-smooth irreducible affine k-variety X . Let
U = Spec(R) and let η be the generic point of U . Write U (1) for the set of
codimension one points of U . By [5, Theorem 9.1] the comlex

0 →W 0(U)
η∗

−→W 0(η)
∂
−→ ⊕x∈U(1)W 1

x (U) (2)

is exact, where for each point x ∈ U (1) and its local ring Rx the group
W 1

x (U) is defined as the groupW 1
x (Spec(Rx)). LetK be the fraction field of

R. As mentioned just above one has equalities W 0(U) =W (R), W 0(η) =
W (K) and W 1

x (U) =W (K)/W (Rx), where x is an arbitrary codimension
one point in U . Combining these arguments all together we see that the
sequence (1) is exact if the ring R is as in this paragraph. Particularly, the
map W (R) →W (K) is injective in this case.

The quasi-geometric case of Theorem 2. LetX be a k-smooth irreducible
affine k-variety and ξ1, . . . , ξn be points of the scheme Spec(k[X ]) such that

for each pair r, s the point ξr is not in the closure {ξs} of ξs. Let R be
the semi-local ring OX,ξ1,...,ξn of scheme points ξ1, . . . , ξn of Spec(k[X ]).
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First, prove the injectivity of the map W (R) → W (K). Our assumption

on points ξr’s yield the following: one can choose closed points xs ∈ {ξs}

such that for each r 6= s the point xr is not in {ξs}. Particularly, for each

r 6= s one has xr 6= xs. Set R̃ = OX,x1,...,xn
Moreover, for a given element

α ∈ W (R) one can choose the points xr’s such that additionally there

exists an α̃ ∈ W (R̃) which is a lift of α. Let α ∈ W (R) be an element

vanishing in W (K). Find certain points xs ∈ {ξs} as just above and an

element α̃ ∈ W (R̃) which is a lift of α. The element α̃ ∈W (R̃) vanishes in

W (K) and the map W (R̃) → W (K) is injective by the geometric case of
Theorem 2. Thus, α̃ = 0 and hence α = 0.

Prove now the exactness of the complex (1) at the term W (K) for the
semi-local ring R = OX,ξ1,...,ξn . To do this take an element α ∈ W (k(X))
which is unramified at each irreducible divisor D containing at least one
of the points ξr. We have to prove that the element α is in the image of
W (R).

Clearly, there is a non-zero f ∈ k[X ] and an element α̃ ∈ W (k[Xf ])
which is a lift of α. Write down the divisor div(f) ∈ Div(X) in the form
div(f) = ΣmiDi + ΣnjD

′

j such that for each index i there is an index r
with ξr ∈ Di and for any index j and any index r the point ξr does not
belong to D′

j . There is an element g ∈ k[X ] such that for any index j the

D′

j is contained in the closed subset {g = 0} and g does not belong to any
of ξr’r. Replacing X with Xg we may and will assume that α̃ ∈ W (k[Xf ]),
div(f) = ΣmiDi and α is unramified at each irreducible divisor Di. Hence
α is unramified at each height one prime ideal of k[X ]. Our assumption

on points ξr’s yield the following: one can choose closed points xs ∈ {ξs}

such that for each r 6= s the point xr is not in {ξs}. Particularly, for each
r 6= s one has xr 6= xs. The element α is unramified at each height one
prime ideal of k[X ]. Thus, by the geometric case of Theorem 2 the element
α is in the image of W (OX,x1,...,xn

). So, the element α is in the image of
W (OX,ξ1,...,ξn) =W (R). The proof of the quasi-geometric case of Theorem
2 is completed.

The general case of Theorem 2. Clearly, we may assume that k is a prime
field and hence k is perfect. It follows from Popescu’s theorem [11, 13]
that R is a filtered inductive limit of smooth k-algebras Rα. Modifying the
inductive system Rα if necessary, we can assume that each Rα is integral.
For each maximal ideal mi in R (i = 1, . . . , n) set pi = φ−1

α (mi). The
homomorphism φα : Rα → R induces a homomorphism of semi-local rings
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ϕα : (Rα)p1,...,pn
→ R. Since this moment we will write Aα for (Rα)p1,...,pn

.
Thus, R is a filtered inductive limit of regular semi-local k-algebras Aα.
And for each index α the k-algebra Aα is quasi-geometric in the sense
above. These observations yield the following intermediate result
(∗∗) the sequence (2) is exact for each ring Aα. Particularly,
(∗ ∗ ∗) if Kα is the fraction field of Aα then the map W (Aα) →W (Kα) is
injective.

Let now K be the field of fractions of R and, for each index α, let Kα be
the field of fractions of Aα. For each index α let aα be the kernel of the map
ϕα : Aα → R and Bα = (Aα)aα

. Clearly, for each index α, Kα is the field of
fractions of Bα. The composition map Aα → R → K factors through Bα.
Since R is a filtering direct limit of the Aα’s we see that K is a filtering
direct limit of the Bα’s. We will write ψα for the canonical morphism
Bα → K. The intermediate result (∗ ∗ ∗) yields now the injectivity of the
maps W (Aα) →W (Bα). Hence the map W (R) → W (K) is injective.

It remains to prove the exactness of the sequence (2) at the term W (K).
We need in the following two lemmas.

Lemma 4. For each index α the group map W (Bα) →W (Kα) is injective.

Proof. Just apply the general case of Theorem 2 to the k-algebra Bα. �

Lemma 5. Let a ∈ W (K) be an R-unramified element. Then there exists
an index α and an element bα ∈ W (Bα) such that ψα(bα) = b and the
class bα ∈W (Kα) is Aα-unramified.

Proof. Repeat literally respecting arguments from the proof of [4, Proof
of Theorem A]. They work for the semi-local case as well. �

We complete the proof of the general case of Theorem 2 as follows.
Let a ∈ W (K) be an R-unramified element. We have to check that it
comes from W (R). By Lemma 5 there exists an index α and an element
bα ∈ W (Bα) such that ψα(bα) = b and the class bα ∈ W (Kα) is Aα-unra-
mified. For this index α consider a commutative diagram of k-algebras

Aα

��

ϕα
//

��

R

��

Bα

��

ψα
// K

Kα
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The class bα ∈ W (Kα) is Aα-unramified. Hence by the statement (∗∗)
there exists an element aα ∈ W (Aα) such that bα = aα in W (Kα). By
Lemma 4 one has an equality bα = aα in W (Bα). Hence b ∈ W (K) co-
incides with the image of the element ϕα(aα) in W (K). Thus, the se-
quence (1) is exact at the term W (K). The Theorem 2 is proved. �
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11. D. Popescu, General Néron desingularization and approximation. — Nagoya Math.

J. 104 (1986), 85–115.
12. S. Scully, The Artin–Springer theorem for quadratic forms over semi-local rings

with finite residue fields. — Proc. Amer. Math. Soc. 146 (2018), 1–13.
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