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Abstract. In this paper, we consider a parabolic toy-model for the
incompressible Navier–Stokes system. This model, as we shall see be-
low, shares a lot of similar features with the incompressible model;
among which the energy inequality, the scaling symmetry, and it
is also supercritical in 3D. Our goal is to establish some regularity
results for this toy-model in order to get, if possible, better insight
to the standard Navier–Stokes system. We also prove here, in a di-
rect manner, a Caffarelli–Kohn–Nirenberg type result for our model.
Finally, taking advantage of the absence of the divergence-free con-
straint, we are able to study this model in the radially symmetric
setting for which we are able to establish full regularity.

§1. Introduction

One of fundamental questions in the mathematical hydrodynamics is
the global well-posedness of the 3D incompressible Navier–Stokes system,
i.e. the global existence of a unique solution, for a given smooth divergence-
free initial data. Despite the effort of many mathematicians, this question
still remains unanswered. Nevertheless, a lot of progresses have been made,
which allow us to better understand the regular or singular behaviour of
this system.
We can enumerate many reasons why this problem is so difficult in 3D.
But, the most notable one is its supercriticality and we have a poor un-
derstanding of supercritical equations. And by supercritical, we mean that
the globally controlled quantities available for the system (in the case of
the incompressible Navier–Stokes system, those are the kinetic energy and
the dissipation) are very weak or do not control at all the solution when
we move down to smaller scales (or in other word when we zoom-in on
the solution). Another major difficulty that should also be mentioned is
the non-locality (characterised by the presence of the pressure) introduced
by the incompressibility condition. In order to tackle the latter difficulty,
one idea would be to find an approximate system to the Navier–Stokes
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equations which in a sense is completely local, study the regularity of solu-
tion(s) of this approximating system and hope to conserve this regularity
(if there is) in the limit. This has partially been done by Rusin in [8]. He
considered the following approximating model:

∂tu−∆u −
1

ǫ
∇ divu+ u · ∇u+

1

2
u divu = 0 (ǫ > 0).

He successfully proved convergence of a sequence of solution of the approx-
imating system to a solution of the incompressible Navier–Stokes system
was unable to establish a complete regularity result for his approximating
model. Our goal is to take a small step toward that realisation. We con-
sider and hope to get a complete understanding of that system, where the
bulk viscosity term "ǫ−1∇ divu" is removed:

∂tu−∆u+ u · ∇u+
1

2
u divu = 0, (1)

with u = (ui)
n
i=1 a vector field in R

n.
It is quite straightforward to check that a smooth and rapidly decaying
solution u to system (1) has the following energy identity

1

2

∫

R3

|u(x, t)|2dx+

t∫

0

∫

R3

|∇u(x, s)|2dxds =
1

2

∫

R3

|u0(x)|
2dx, (2)

which holds also true for the incompressible Navier–Stokes equations. Mo-
reover, this toy-model has the same scaling symmetry as the incompressible
Navier–Stokes system i.e. for any solution u(x, t) to system (1), we have
that uλ(x, t) := λu(λx, λ2t) (for λ > 0) is also solution to (1); and this
scaling symmetry is the only one we have for this system. With that in
mind and going back to the energy identity (2), we get that our toy-
model is (like the incompressible Navier–Stokes system) supercritical in
dimension 3. Indeed, we have:

∫

R3

|uλ(x, T )|2dx,

T∫

0

∫

R3

|∇uλ(x, s)|2dxds = O(1/λ) as λ→ 0.

We are not the first ones to study the regularity question for a toy-model
to the Navier–Stokes equations. In fact, this question has been extensively
examined (see for instance [5, 7, 12, 15]). Among those works done on this
subject, it’s worth mentioning the one by Tao in [12] who successfully
proved existence of a finite time blowup for a model that satisfies, unlike



A TOY-MODEL 175

in the other papers, the energy identity (2). It is also worth mentioning
that his system doesn’t have the special structure of the nonlinearity in
the Navier–Stokes system and therefore does not recover some of its fine
properties, such as e.g. Caffarelli–Kohn–Nirenberg results (see [3]) and the
backward uniqueness (see [14]) which, we are able to establish for our
models. Therefore when it comes to gaining a better understanding of
the regular and singular behaviour of the incompressible Navier–Stokes
equations, our toy-model appears to be a suitable next step following the
work of Tao.
As announced at the beginning of this paper, the goal here is to present
some partial regularity results that might not occur in the incompressible
model and discuss the radial symmetry case where one can completely
answer the question of regularity for our model. Unfortunately, we are not
yet able to fully answer that question in the general case. It’s also worth
mentioning that our partial regularity results hold true for a wider class
of model; to be more precise, equations of the form

∂tu−∆u+ S(u,∇u) = 0,

where S : Rn × R
n×n → R

n is bilinear and identity (2) holds also true.
For the radial symmetry case, an explicit knowledge of the structure of the
non linearity is necessary (and this structure should be also adequate) in
order to conclude, but the methodology to do so is similar to the one we
present here.

§2. Preliminaries

Before continuing our development, let us explain our notations

z = (x, t), z0 = (x0, t0), B(x0, R) = {|x− x0| < R};

B+(x0, R) = {x ∈ B(x0, R) : x03 > 0};

Q(z0, R) = B(x0, R)×(t0−R
2, t0), Q+(z0, R) = B+(x0, R)×(t0−R

2, t0);

B(r) = B(0, r), Q(r) = Q(0, r), B = B(1), Q = Q(1);

B+(r) = B+(0, r), Q+(r) = Q+(0, r), B+ = B+(1), Q+ = Q+(1)

For Ω an open subset of R
n and −∞ 6 T1 < T2 6 +∞. Set QT1,T2

:=
Ω × (T1, T2). We will be using Lm,n(QT1,T2

) := Ln(T1, T2;Lm(Ω)), the
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Lebesgue space with the norm

‖v‖m,n,QT1,T2
=





(
T2∫
T1

‖v(·, t)‖nLm(Ω)dt

)1/n

, 1 6 n <∞

ess sup
(T1,T2)

‖v(·, t)‖Lm(Ω), n = ∞,

Lm(QT1,T2
) = Lm,m(QT1,T2

), ‖v‖m,m,QT1,T2
= ‖v‖m,QT1,T2

;

W 1,0
m,n(QT1,T2

), W 2,1
m,n(QT1,T2

) are the Sobolev spaces with mixed norm,

W 1,0
m,n(QT1,T2

) = {v,∇v ∈ Lm,n(QT1,T2
)} ,

W 2,1
m,n(QT1,T2

) =
{
v,∇v,∇2v, ∂tv ∈ Lm,n(QT1,T2

)
}
,

W 1,0
m (QT1,T2

) =W 1,0
m,m(QT1,T2

), W 2,1
m (QT1,T2

) =W 2,1
m,m(QT1,T2

).

For various mean values of functions, we write

[f ]x0,R :=
1

|B(R)|

∫

B(x0,R)

f(x)dx, (f)z0,R =
1

|Q(R)|

∫

Q(z0,R)

g(z)dz

[f ],R := [f ]0,R, (g),R = (g)0,R.

Here |ω| and |Ω| stands for the 3 and 4-dimensional Lebesgue measure
of the domains ω and Ω respectively. Lastly, we denote for simplicity,
f,i := ∂if and summation over repeated indices running from 1 to 3 is
adopted.
We give in what follows, the right notion of solutions needed for our work.

Definition 2.1. Let ω be a domain of R3. We say that u is a suitable weak

solution to (1) in ω × (T1, T2) if u obeys the following conditions:

(1) u ∈ L2,∞(ω×(T1, T2))∩L2(T1, T2;W
1
2 (ω)) and satisfies system (1)

in the sense of distributions;
(2) The following local energy inequality holds

∫

ω

φ|u(x, t)|2dx+ 2

t∫

T1

∫

ω

φ|∇u|2dxds

6

t∫

T1

∫

ω

|u|2(∂tφ+∆φ)dxds +

t∫

T1

∫

ω

u · ∇φ|u|2dxds,

holds for a.e t ∈ (T1, T2) and all non-negative functions
φ ∈ C∞

0 (ω × (T1,∞)).
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Like in the case of the standard Navier–Stokes system, we do not know
whether or not every weak solution of our model (i.e. a solution that be-
longs to the energy class prescribed in the first point of the previous def-
inition) verifies the above local energy inequality, and this is one of the
motivation for considering such a subclass of weak solutions. Further rea-
sons will be discussed below.
For the partial boundary regularity, the right notion of solutions in given
by the following. For the sake of simplicity, we give the definition for the
case of the canonical cylinder, but this can be trivially extended to more
general cylinders.

Definition 2.2. We say that the function u is a boundary suitable weak

solution to (1) in Q+ if:

(1) u ∈ L2,∞(Q+) ∩W
1,0
2 (Q+), and satisfies (1) in the sense of distri-

butions in Q+ with the following no-slip boundary condition

u|x3=0

in the sense of the trace;
(2) The following local energy inequality holds true

∫

B+

φ|u(x, t)|2dx + 2

t∫

−1

∫

B+

φ|∇u|2dxds

6

t∫

−1

∫

B+

|u|2(∂tφ+∆φ)dxds +

t∫

−1

∫

B+

u · ∇φ|u|2dxds, (3)

for a.e t ∈ (−1, 0) with φ ∈ C∞
0 (B × (−1, 1)).

As additional motivation to consider those suitable weak solutions, we
mention the following. Firstly, among the energy solutions of our model
(those are for our toy-model the equivalents of the Navier–Stokes system’s
weak Leray–Hopf solutions) there is at least one suitable weak solution
(the construction of such solution can be done in the same as in the case of
Navier–Stokes system). Secondly, similarly to the Navier–Stokes system,
there are strong reasons to believe that smooth energy solutions to our
model are to be sought among the suitable weak solutions. And thirdly,
we are also able to connect the question of smoothness and uniqueness
for our toy-model. These last two points will be discussed in more detail
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elsewhere.
We are now ready to state the main results of this paper.

§3. Main Results

The first three main results of this paper are partial regularity results.
By this we mean, assuming an extra control on a certain norm of the solu-
tion, we aim to derive further regularity properties. The class of quantities
at the heart of this analysis are called scale invariant quantities, which are
quantities F (u, r) (with u a solution) such that:

F (uλ, 1) = F (u, λ),

for all λ > 0 and uλ = λu(λx, λ2t). Our first result in that direction states
as follows.

Theorem 3.1 (Higher space-time integrability for the gradient). Let u be

a suitable weak solution to (1) in Q such that

ess sup
−1<t<0

‖u(·, t)‖BMO−1(B) <∞.

Then we have that ∫

Q(1/2)

|∇u|2+δ <∞,

with δ > 0. Here, f ∈ BMO−1(B;R3) shall be understood as there exists

F ∈ BMO(B;R3×3) such that f = divF . (We do not need anything more

than this property in our proof but the interested reader may find more

details about the space BMO−1 in [2])

This assumption u ∈ L∞(−1, 0;BMO−1(B)) arise naturally when one
studies type one blow-ups for the Navier–Stokes equations. These connec-
tions will be presented elsewhere. We discuss the consequence of this result
in the last section of this paper. It is also worth mentioning that there is
no such higher integrability result for the 3D incompressible Navier–Stokes
system at this time, and this is mainly due to the presence of the pressure
(see e.g. [10] where this problem was considered).

Our next main result is a Caffarelli–Kohn–Nirenberg type theorem for
our model. The proof can done following ideas developed for the case of
the Navier–Stokes system (see e.g. [3, 4, 11]) but we present here a more
direct approach following ideas from [9]. The advantage of this method
is that it gives us an estimation of the smallness parameter (see proof of
Proposition 5.1 and Remark 1 below).
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Theorem 3.2 (A Caffarelli–Kohn–Nirenberg type result). There exists a

positive constant ǫ such if for any suitable weak solution u to (1) in Q, we

have

sup
0<r<1

1

r

∫

Q

|∇u|2 < ǫ, (4)

then the map z 7→ u(z) is hölder continuous in Q(12 ). Moreover, there exist

absolute positive constants ck,l (k, l = 0, 1, 2, . . .) such that

max
Q(1/2)

|∂lt∇
ku(z)| 6 ck,l

Before stating the next main result let us emphasise that, unlike the
case of the standard Navier–Stokes system, this Caffarelli–Kohn–Nirenberg
type result gives us for our model smoothness in time; and this mainly due
to the absence of pressure.
Our next main result is concerned with partial boundary regularity and
states as follows.

Theorem 3.3. Let u be a boundary suitable weak solution in Q+ (See

Definition 2.2) such that u ∈ L∞(Q+). Then, we have

u ∈ C∞(Q+(a)),

with 0 < a < 1.

It is worth mentioning that the previous high regularity (Hölder conti-
nuity of higher order derivatives) does not necessarily occur in the case of
the 3D incompressible Navier–Stokes system for which a counter-example
was constructed (see [13]). Our last main result is about the case where
our suitable weak solution is radially symmetric. Let us point our that the
divergence-free condition prevents such situation to occur in the case of
the incompressible Navier–Stokes system. We are able to prove regularity
of such solution in that case for our model. This gives us, to the contrary
of the previous two theorems, a geometric condition for obtaining regular-
ity. It is also worth mentioning that a similar result was proved by Šverák
and co-author in [16] for the whole space and relied on the decay at in-
finity of the solution. Our proof, on the contrary is for the local setting
and the ideas therein can easily be applied to more diverse cases e.g. ax-
ially symmetric case with radial dependence only (this will be presented
elsewhere).
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Theorem 3.4. Let u be a suitable weak solution to (1), which is moreover

radially symmetric i.e.,

u(x, t) = −v(|x|, t)x.

Then, we have that

u ∈ C∞(Q).

In the following sections, we give the proof of the theorems stated above.

§4. Proof of Theorem 3.1

Step I.. We begin by establishing the following Caccioppoli’s type inequal-
ity. To formulate it, we need to introduce additional notations. Fix non
negative cut-off functions ϕ ∈ C∞

0 (B(2)) such that ϕ ≡ 1 in B and χ with
the following properties:

χ(t) =





0 for t 6 −4,

(t+ 4)/3 for − 4 < t 6 −1,

1 for t > −1.

Now, for an arbitrary point z0 = (x0, t0) such that Q(z0, 2R) ⊂ Q, we set

χt0,2R(t) = χ((t− t0)/R
2), ϕx0,2R(x) = ϕ((x − x0)/R),

and, as in [6], we introduce the special mean value

ux0,2R(t) =

∫

B(x0,2R)

u(x, t)ϕ2
x0,2R(x)dx




∫

B(x0,2R)

ϕ2
x0,2R(x)dx




−1

.

Set ûx0,2R(x, t) := u(x, t) − ux0,2R(t) and introduce the matrix valued
function F = (Fij) ∈ L∞(−1, 0;BMO(B;R3×3)) which is such that u =
divF .
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Our Caccioppoli’s inequality reads as follows

∫

B(x0,2R)

|ûx0,2R(x, t
′
0)|

2ϕ2
x0,2R(x)χ

2
t0,2R(t

′
0)dx

+ 2

t′0∫

−1

∫

B(x0,2R)

χ2
t0,2Rϕ

2
x0,2R|∇ûx0,2R|

2dz

6

t′0∫

−1

∫

B(x0,2R)

|ûx0,2R|
2(ϕ2

x0,2R∂tχ
2
t0,2R + χ2

t0,2R∆ϕ
2
x0,2R)dz (5)

−

t′0∫

−1

∫

B(x0,2R)

(Fik − [Fik]x0,2R)(ϕ
2
x0,2R),ik|ûx0,2R|

2χ2
t0,2Rdz

− 2

t′0∫

−1

∫

B(x0,2R)

(Fik − [Fik]x0,2R)χ
2
t0,2R(ϕ

2
x0,2R),iû

j
x0,2R

(ûjx0,2R
)kdz

−

t′0∫

−1

χ2
t0,2Rux0,2R ·




∫

B(x0,2R)

ûx0,2Rϕ
2
x0,2R div ûx0,2Rdx


 dt,

for almost every t′0 ∈ (−t0 − (2R)2, t0), for all z0 = (x0, t0) ∈ Q and all
R > 0 satisfying the additional condition Q(z0, 2R) ⊂ Q.

We will need some information on the regularity of ux0,2R in the proof
of (5). What we can show is that

u̇x0,2R(:=
d

dt
ux0,2R) ∈ L 3

2
(−1, 0), (6)

and that’s all we actually need to make our computations rigorous. To see
this, we take as test function in (1),

wj
i (x, t) = δijϕ

2
x0,2R(x)η(t),



182 F. HOUNKPE

where δij is the Kronecker symbol and η is an arbitrary function in
C∞

0 (−1, 0). As a result, we get that

u̇ix0,2R(t)=−




∫

B(x0,2R)

∇ui · ∇ϕ
2
x0,2R(x)dx+

∫

B(x0,2R)

u · ∇uiϕ
2
x0,2R(x)dx

+
1

2

∫

B(x0,2R)

uiϕ
2
x0,2R(x)div udx







∫

B(x0,2R)

ϕ2
x0,2R(x)dx




−1

, (7)

which readily gives (6).
Next, we replace u(x, t), in his local energy inequality, by ûx0,2R(x, t) +
ux0,2R(t) and take as test function φ = χ2

t0,2R
ϕ2
x0,2R

. Then, the terms that
do not contain any spatial derivatives can be transform as follows

∫

B(x0,2R)

|ûx0,2R(x, t
′
0) + ux0,2R(t

′
0)|

2χ2
t0,2R(t

′
0)ϕ

2
x0,2R(x)dx

=

∫

B(x0,2R)

|ûx0,2R(x, t
′
0)|

2χ2
t0,2R(t

′
0)ϕ

2
x0,2R(x)dx + χ2

t0,2R(t
′
0)|ux0,2R(t

′
0)|

2

×

∫

B(x0,2R)

ϕ2
x0,2R(x)dx,

and

t′0∫

−1

∫

B(x0,2R)

|ûx0,2R + ux0,2R|
2∂tχ

2
t0,2Rϕ

2
x0,2Rdz

=

t′0∫

−1

∫

B(x0,2R)

|ûx0,2R|
2∂tχ

2
t0,2Rϕ

2
x0,2Rdz

+

∫

B(x0,2R)

ϕ2
x0,2R(x)dx

(
χ2
t0,2R(t

′
0)|ux0,2R(t

′
0)|

2−2

t′0∫

−1

ux0,2R(t) · u̇x0,2R(t)dt

)
.
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Notice that
t′0∫

−1

∫

B(x0,2R)

|ûx0,2R + ux0,2R|
2χ2

t0,2R∆ϕ
2
x0,2Rdz

=

t′0∫

−1

∫

B(x0,2R)

|ûx0,2R|
2χ2

t0,2R∆ϕ
2
x0,2Rdz

−2

∫

−1

χ2
t0,2Rux0,2R ·




∫

B(x0,R)

∇ûx0,2R∇ϕ
2
x0,2Rdx


 dt.

Taking into account the previous expansions and (7), the local energy
becomes∫

B(x0,2R)

|ûx0,2R(x, t
′
0)|

2ϕ2
x0,2R(x)χ

2
t0,2R(t

′
0)dx

+

t′0∫

−1

∫

B(x0,2R)

χ2
t0,2Rϕ

2
x0,2R|∇ûx0,2R|

2dz

6

t′0∫

−1

∫

B(x0,2R)

|ûx0,2R|
2(ϕ2

x0,2R∂tχ
2
t0,2R + χ2

t0,2R∆ϕ
2
x0,2R)dz (8)

+

t′0∫

−1

∫

B(x0,2R)

u · ∇ϕ2
x0,2R|u|

2χ2
t0,2Rdz

+2

t′0∫

−1

χ2
t0,2Rux0,2R ·

(
u · ∇uϕ2

x0,2R +
1

2
uϕ2

x0,2R divudx

)
dt.

All that is left is to transform the last two terms in (8) and notice that
some cancellations occur when putting them together. We have

t′0∫

−1

∫

B(x0,2R)

u · ∇ϕ2
x0,2R|u|

2χ2
t0,2Rdz
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= A0+

t′0∫

−1

∫

B(x0,2R)

u · ∇ϕ2
x0,2R|ûx0,2R|

2χ2
t0,2Rdx,

with

A0 =

t′0∫

−1

χ2
t0,2R|ux0,2R|

2

∫

B(x0,2R)

u · ∇ϕ2
x0,2Rdxdt

+ 2

∫

−1

χ2
t0,2Rux0,2R ·

(
u · ∇ϕ2

x0,2Rûx0,2R

)
dt.

Using the fact that u = divF and by integrating by part, we get

t′0∫

−1

∫

B(x0,2R)

u · ∇ϕ2
x0,2R|ûx0,2R|

2χ2
t0,2Rdx

= −

t′0∫

−1

∫

B(x0,2R)

(Fik − [Fik]x0,2R)(ϕ
2
x0,2R),ik|ûx0,2R|

2χ2
t0,2Rdz

− 2

t′0∫

−1

∫

B(x0,2R)

(Fik − [Fik]x0,2R)χ
2
t0,2R(ϕ

2
x0,2R),iû

j
x0,2R

(ûjx0,2R
)kdz.

Now, performing on more integration by part in the last term of (8), we
obtain that

2

t′0∫

−1

χ2
t0,2Rux0,2R ·

(
u · ∇uϕ2

x0,2R +
1

2
uϕ2

x0,2R divudx

)
dt

= −A0 −

t′0∫

−1

χ2
t0,2Rux0,2R ·




∫

B(x0,2R)

ûx0,2Rϕ
2
x0,2R div ûx0,2Rdx


 dt,

which conclude the proof of (5) after putting all the terms together.



A TOY-MODEL 185

Step II.. We derive now a reverse holder inequality using the Caccioppoli’s
inequality established previously. Using simple known arguments, we get
from (5) the following estimate

I :=

∫

B

|ûx0,2R(x, t0)|
2ϕ2

x0,2R(x)dx + 2

t0∫

−1

∫

B

χ2
x0,2Rϕ

2
x0,2R|∇ûx0,2R|

2dz

6 c




1

R2

∫

Q(z0,2R)

|ûx0,2R|
2dz +

1

R2

∫

Q(z0,2R)

|F − [F ]x0,2R||ûx0,2R|
2dz

1

R

∫

Q(z0,2R)

|F − [F ]x0,2R|(|∇ûx0,2R|ϕx0,2Rχt0,2R)|ûx0,2R|dz

t0∫

−1

|ux0,2R(t)|

∫

B

(|∇ûx0,2R|ϕx0,2Rχt0,2R)|ûx0,2R|dz




=: I1 + I2 + I3 + I4.

Next, we estimate the Ii’s. For this we introduce s ∈ (1, 2) and obtain the
following

I2 6

t0∫

t0−(2R)2




∫

B(x0,2R)

|ûx0,2R|
2s

2−s dx




2−s
s

×




∫

B(x0,2R)

|F − [F ]x0,2R|
s

2s−2 dx




2s−2

s

dt

6 CR2( 3

s′
−1)

t0∫

t0−(2R)2




∫

B(x0,2R)

|ûx0,2R|
2s

2−s dx




2−s
s

dt,

with C = C(s,Γ) > 0 (where we set for simplicity Γ := ess sup−1<t<0

‖F (·, t)‖BMO(B)) and as usual s′ = s/(s− 1). Similarly, we have
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I36
C(s)

R
R

3

s′ ess sup
t0−(2R)2<t<t0

sup
B(x0,2R)⊂B

(
1

|B(2R)|

∫

B(x0,2R)

|F−[F ]x0,2R|
s′dx

)1

s′

×

t0∫

t0−(2R)2

( ∫

B(x0,2R)

|∇ûx0,2R|
2ϕ2

x0,2Rχ
2
t0,2Rdx

)1
2
( ∫

B(x0,2R)

|ûx0,2R|
2s

2−s dx

)2−s
2s

dt

6 CR
3

s′
−1

( ∫

Q(z0,2R)

|∇ûx0,2R|
2ϕ2

x0,2Rχ
2
t0,2Rdz

) 1
2

×

( t0∫

t0−(2R)2

( ∫

B(x0,2R)

|ûx0,2R|
2s

2−s dx

) 2−s
s

dt

) 1
2

,

with C = C(s,Γ) > 0. Next, notice that ux0,2R(t) can be rewritten as
follows

ux0,2R(t) = −
1

R3
∫

B(2)

ϕ2(x)dx

∫

B(x0,2R)

(Fik − [Fik]x0,2R)(ϕ
2
x0,2R),kdx,

thus,

|ux0,2R(t)| 6
C

R
,

for all t ∈ [−1, 0] and C = C(s, ϕ,Γ) > 0. We get, as before

I4 6 CR
3

s′
−1

( ∫

Q(z0,2R)

|∇ûx0,2R|
2ϕ2

x0,2Rχ
2
t0,2Rdz

) 1
2

×




t0∫

t0−(2R)2

( ∫

B(x0,2R)

|ûx0,2R|
2s

2−s dx

) 2−s
s

dt




1
2

,

with C = C(s, ϕ,Γ) > 0.
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Summarising our efforts, we have

∫

B

|ûx0,2R(x, t0)|
2ϕ2

x0,2R(x)dx +

t0∫

−1

∫

B

χ2
x0,2Rϕ

2
x0,2R|∇ûx0,2R|

2dz

6 C(s, ϕ,Γ)R2( 3

s′
−1)

t0∫

t0−(2R)2




∫

B(x0,2R)

|ûx0,2R|
2s

2−s dx




2−s
s

dt. (9)

It’s worth mentioning that a careful analysis of the constant in the previous
inequality shows the following dependency in Γ

C = c(s, ϕ)(1 + Γ2).

From this point the rest of the proof follows line by line the proof of a
similar result in [1]. We, nonetheless, present the proof here, for the sake
of completeness. Upon assuming s ∈ (1, 3/2), on can find without difficulty
numbers 0 < λ < 1, 0 < µ < 1 and 1 < r < 2 such that

2s

2− s
= 2λ+

3r

3− r
µ,

λ+ µ = 1,

3r

3− r
µ
2− s

s
= 1.

Using these numbers, we derive from (9)

∫

Q(z0,R)

|∇ûx0,2R|
2dz 6 CR2( 3

s′
−1)

t0∫

t0−(2R)2

( ∫

B(x0,2R)

|ûx0,2R|
2λ+ 3r

3−r
µdx

) 2−s
s

dt

6 CR2( 3

s′
−1)

t0∫

t0−(2R)2

( ∫

B(x0,2R)

|ûx0,2R|
2dx

)2−s
s

λ( ∫

B(x0,2R)

|ûx0,2R|
3r
3−r dx

) 2−s
s

µ

dt.
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The last term can be estimated with the help of Sobolev’s inequality

∫

Q(z0,R)

|∇ûx0,2R|
2dz 6 CR2( 3

s′
−1)ess sup

t0−(2R)2<t<t0

( ∫

B(x0,2R)

|ûx0,2R(x, t)|
2dx

) 1
2

×R2 r−1

r

( ∫

Q(z0,2R)

|∇ûx0,2R|
r

) 1
r

, (10)

with C = C(s, ϕ,Γ) > 0. To estimate the first multiplier on the right-hand
side of the last inequality, we proceed as follows. By Poincare-Sobolev
inequality, we have that




∫

B(x0,2R)

|ûx0,2R|
2s

2−s dx




2−s
s

6 c(s)R3 2−s
s

−1. (11)

Combining this with (9), we get that

∫

B

|ûx0,2R(x, t0)|
2ϕ2

x0,2R(x)dx 6 C

∫

Q(z0,2R)

|∇ûx0,2R|
2dx.

Assuming now that Q(z0, 3R) ⊂ Q, we have the following estimate

ess sup
t0−(2R)2<t<t0

∫

B(x0,2R)

|ûx0,2R(x, t)|
2dx 6 C

∫

Q(z0,3R)

|∇ûx0,2R|
2dz, (12)

where C = C(s, ϕ,Γ) > 0. We are now ready to estimate the fist multiplier
on the right-hand side of (10). We apply (12) in the following way

∫

B(x0,2R)

|u(x, t)− ux0,2R(t)|
2dx 6 c

∫

B(x0,2R)

|u(x, t)− ux0,4R(t)|
2dx

6 C

∫

Q(z0,3R)

|∇ûx0,2R|
2dz,
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for almost every t ∈ (t0 − (2R)2, t0). Finally, (10) becomes

1

|Q(R)|

∫

Q(z0,R)

|∇u|2dz 6 C




1

|Q(6R)|

∫

Q(z0,6R)

|∇u|2dz




1
2

×




1

|Q(2R)|

∫

Q(z0,2R)

|∇u|rdz




1
r

,

which holds for some r ∈ (1, 2) and any Q(z0, 6R) ⊂ Q. And as before,
C = C(s, ϕ,Γ) > 0. This leads to (see [6]) the existence of p > 2 such that
∇u ∈ Lp(Q(R)), for any R ∈ (0, 1). Moreover, the following estimate is
valid



1

|Q(R)|

∫

Q(z0,R)

|∇u|pdz




1
p

6 C




1

|Q(6R)|

∫

Q(z0,6R)

|∇u|2dz




1
2

, (13)

for all Q(z0, 6R) ⊂ Q with 6R <dist(x0, ∂B) and t0 − (6R)2 > −1. More-
over, the constant C > 0 depends only on Γ. This concludes the proof of
Theorem 3.1.

§5. Proof of Theorem 3.2

We start by proving the following proposition.

Proposition 5.1. There exists an absolute positive constant ǫ0 with the

following property. Assume that u is suitable weak solution to (1) in

Q ≡ B × (−1, 0) and satisfies the condition
∫

Q

|u|
10
3 dz < ǫ0. (14)

Then we have that u is Hölder continuous in Q(̺) with 0 < ̺ < 1.

Let us start with the proof of auxiliary lemmata and by mentioning that
it is equivalent to prove Proposition 5.1 with condition (14) replaced by

1

R



∫

Q(R)

|u|
10
3 dz




3
5

< ǫ1, (15)
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with R fixed (say in (0, 1/2)) and u is now a suitable weak solution
in Q(2R). We also introduce the following notations

M(z0, R) :=
1

R




∫

Q(z0,R)

|u|
10
3 dz




3
5

|u|22,Q(z0,R) := ess sup
t0−R2<t<t0

∫

B(x0,R)

|u(·, t)|2dx+

∫

Q(z0,R)

|∇u|2dz

and for simplicity, we take M(R) =M(0, R). Also, unless otherwise spec-
ified all the constants c in this section are positive universal constants.

Lemma 1 (A Caccioppoli type inequality). Let u be a suitable weak so-

lution to (1) in Q(2R) and τ ∈ (0, 1), then

|ū|22,Q(τR) 6
c

R



∫

Q(R)

|ū|
5
2 dz




4
5 (

1 +M(R)

(1− τ)2
+
M(R)

τ3

)
, (16)

where ū := u− (u),τR.

Proof. Making use of the fact that u is a suitable weak solution, we have
that

∫

B(R)

|ū(·, t0)|
2ϕ2

̺,r(·, t0)dx+ 2

t0∫

−R2

∫

B(R)

|∇ū|2ϕ2
̺,rdz

6

t0∫

−R2

∫

B(R)

|ū|2(∂tϕ
2
̺,r +∆ϕ2

̺,r)dz +

t0∫

−R2

∫

B(R)

|ū|2u · ∇ϕ2
̺,rdz

+ (u),r ·

t0∫

−R2

∫

B(R)

ūϕ2
̺,r(div u)dz,

for a.e. t0 ∈ (−R2, 0), 0 < r < ̺ 6 R; here 0 6 ϕ̺,r 6 1 is a cut-off function
with the following properties: ϕ̺,r ∈ C∞

0 (B(̺) × (−̺2, ̺)), ϕ̺,r ≡ 1 in
B(r)× (−r2, r2), |∇kϕ̺,r| 6 c/(̺− r)k, k = 1, 2, and ∂tϕ̺,r 6 c/(̺− r)2.
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From the previous inequality, we get that

|ūϕ̺,r|
2
2,Q(̺) 6 c



(

1

(̺− r)2
+ |(u),r|

2

) ∫

B(̺)

|ū|2dz

+
1

̺− r

( ∫

B(̺)

|ū|
5
2 dz

) 2
5
( ∫

Q(̺)

|ūϕ̺,r |
10
3 dz

) 3
10
( ∫

Q(̺)

|u|
10
3 dz

) 3
10


 . (17)

By interpolation inequality and Sobolev embedding, we have that

‖ūϕ̺,r‖ 10
3
,Q(̺) 6 c|ūϕ̺,r|2,Q(̺).

Therefore, using Young’s inequality for the last term on the right hand
side of (17), we have

|ūϕ̺,r |
2
2,Q(̺)6 c



(

1

(̺−r)2
+|(u),r|

2

) ∫

B(̺)

|ū|2dz+
RM(R)

(̺−r)2

( ∫

B(̺)

|ū|
5
2 dz

)4
5


 .

Next, using the fact that

∫

B(̺)

|ū|2dz 6 |Q(R)|
1
5



∫

B(̺)

|ū|
5
2 dz




4
5

,

and that

|(u),r|
2 6

c

r3
RM(R),

we get

|ūϕ̺,r|
2
2,Q(̺) 6 c

(
R+RM(R)

(̺− r)2
+
R2M(R)

r3

)


∫

B(̺)

|ū|
5
2 dz




4
5

. (18)

Finally, taking r = τR, ̺ = R, we have that the lemma is proved. �

We consider now the following initial boundary value problem
{
∂tw −∆w = F in Q(34R)

w|∂′Q( 3
4
R) = 0,

(19)
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where F := −u·∇u− 1
2u divu and the symbol "∂′" stands for the parabolic

boundary; we have on one hand that
∫

Q( 3
4
R)

|F |
5
4 dz 6 c

(
|ū|22,Q( 3

4
R)RM(R)

) 5
8

. (20)

On the other hand, we have that the problem (19) is uniquely solvable and
moreover and the following estimate holds

∫

Q( 3
4
R)

(
|∂tw|

5
4 + |∇2w|

5
4

)
dz 6 c

∫

Q( 3
4
R)

|F |
5
4 dz. (21)

Next, we have thanks to parabolic embeddings that

∫

Q( 3
4
R)

|w|
5
2 dz 6 c



∫

Q( 3
4
R)

(
|∂tw|

5
4 + |∇2w|

5
4

)
dz




2

. (22)

Finally, by combining inequalities (20),(21), (22) and using Lemma 1 (with
τ = 3/4), we get that

∫

Q( 3
4
R)

|w|
5
2 dz 6 c[(1 +M(R))M(R)]

5
4

∫

Q( 3
4
R)

|ū|
5
2 dz. (23)

Now, we introduce the function v := u− w and notice that

∂tv −∆v = 0, in Q(
3

4
R),

and therefore, the following estimate is valid
∫

Q(r)

|v − (v),r |
5
2 dz 6 c

(
r

̺

)5+2 ∫

Q(̺)

|v − (v),̺|
5
2 dz, (24)

for all 0 < r < ̺ 6 3R/4. Next, we have the following lemma

Lemma 2. Let u be a suitable weak solution to (1) in Q(2R), then
∫

Q(r)

|u−(u),r|
5
2 dz 6 c

[( r
R

)5+2
+(1+M(R))

5
4M(R)

5
4

] ∫

Q( 3
4
R)

|u−(u), 3
4
R|

5
2 dz,

for all 0 < r < 3R/4.
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Proof. We have, for all 0 < r < 3R/4, that

∫

Q(r)

|u− (u),r|
5
2 dz 6 c



∫

Q(r)

|v − (v),r|
5
2 dz +

∫

Q(r)

|w − (w),r |
5
2 dz




6 c
( r
R

)5+2
∫

Q( 3
4
R)

|v − (v), 3
4
R|

5
2 dz + c

∫

Q(r)

|w|
5
2 dz (here we used (24))

6 c
( r
R

)5+2
∫

Q( 3
4
R)

|u− (u), 3
4
R|

5
2 dz + c

∫

Q( 3
4
R)

|w|
5
2 dz

6 c

[( r
R

)5+2

+ (1 +M(R))
5
4M(R)

5
4

] ∫

Q( 3
4
R)

|u− (u), 3
4
R|

5
2 dz,

where (23) is used to obtain the last line. �

Our goal now is to iterate Lemma 2 (see [9] for a similar situation). We
start with the following lemma.

Lemma 3. Let u be a suitable weak solution to (1) in Q(2R) and τ ∈ (0, 1),
then

√
M(τk+1R) 6

c

(1 − τ)τ
7
2

k−1∑

i=0

τ i(1 +M(τ iR))
1
2M(τ iR)

1
2 + τk

√
M(τR),

with k = 1, 2, . . .

Proof. We have
√
τ2RM(τ2R) 6

(
‖u− (u)τR‖10/3,Q(τR) + |(u)τR| × |Q(τ2R)|

3
10

)

6 c|u− (u)τR|2,Q(τR) + τ
3
2

√
τRM(τR),

thus making use of Lemma 1, we get

√
M(τ2R) 6

c

(1− τ)τ
5
2

(1 +M(R))
1
2

(
1

R
5
2

∫

Q(R)

|u− (u),τR|
5
2 dz

) 2
5

+ τ
√
M(τR).

(25)
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Now notice that (since τ < 1)
∫

Q(R)

|u− (u),τR|
5
2 dz 6

c

τ5

∫

Q(R)

|u− (u),R|
5
2 dz,

therefore (25) becomes

√
M(τ2R) 6

c

(1− τ)τ
7
2

(1 +M(R))
1
2

(
1

R
5
2

∫

Q(R)

|u− (u),R|
5
2 dz

) 2
5

+ τ
√
M(τR);

(26)

and the lemma is proved by iterating the above inequality and noticing
that

(
1

(τ iR)
5
2

∫

Q(τ iR)

|u− (u),τ iR|
5
2 dz

) 2
5

6 cM(τ iR)
1
2 , (27)

for every integer i. �

Remark 1. Let us notice that for ǫ1 ∈ (0, 1) as given in (15) and for any
τ ∈ (0, 1/4), we have that

M(τkR) 6
ǫ1
B
, (28)

for every positive integer, and with

B = B(τ) = max

{
(1− τ)2τ7

27c2
,

3τ

1− 4τ

}
,

here the constant c is the same as in Lemma 3. We can also show without
too much difficulty that

(1 +
ǫ1
B
)×

ǫ1
B

6
(1− τ)2

9τ2
×
ǫ1
B
;

set for simplicity

B1 =
9τ2B

(1 − τ2)

By iterating Lemma 2 and taking into account Remark 1, we obtain the
following.
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Lemma 4. Let u be a suitable weak solution to (1) in Q(2R) and

τ ∈ (0, 1/4) as in Remark 1, then
∫

Q(r)

|u− (u),r|
5
2 dz 6

c0
τ17R6

r5+2−1

∫

Q(τR)

|u− (u),τR|
5
2 dz,

for all 0 < r < τR if τ 6 1/(2c), where c is a in (29) and (ǫ1/B1)
5
4 6 τ5+2.

Proof. We obviously have from Lemma 2 that
∫

Q(r)

|u−(u),r|
5
2 dz 6 c

[( r
R

)5+2

+(1+M(R))
5
4M(R)

5
4

] ∫

Q(R)

|u− (u),R|
5
2 dz,

for all 0 < r < 3R/4. We take r = τR and derive the following recursive
formula∫

Q(τk+1R)

|u− (u),τk+1R|
5
2 dz 6c

[
τ5+2 + (1 +M(τkR))

5
4M(τkR)

5
4

]

×

∫

Q(τkR)

|u− (u),τkR|
5
2 dz,

Setting for simplicity

Φ(r) :=

∫

Q(r)

|u− (u),r|
5
2 dz,

and taking into account Remark 1, we get

Φ(τk+1R) 6 c(τ5+2 + (ǫ1/B1)
5/4)Φ(τkR). (29)

We add the following additional restriction τ 6 min{1/(2c), 1/4} (c as in
(29)) and define ǫ∗ = τ5+2; we have for

(
ǫ1
B1

) 5
4

6 ǫ∗, (30)

that

Φ(τk+1R) 6 cττ5+2−1(1 + ǫ∗τ
−5−2)Φ(τkR)

6 τ5+2−1Φ(τkR).

Iterating the last inequality in k starting with k = 1, we find

Φ(τkR) 6 τ (k−1)(5+2−1)Φ(τR),
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for any positive integer k. The remaining of the proof is fairly standard.
The lemma is proved. �

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. Clearly, there exists 0 < ̺ < R/8, such that

M(z0, R) < ǫ1,

for all z0 ∈ Q(̺), with the same R as in (15). Consequently, inequality
Lemma 4 can be strengthen as follows (we just repeat the above argument
with Q(z0, R) instead of Q(R))

∫

Q(z0,r)

|u− (u)z0,r|
5
2 dz 6

c0
τ17R6

r5+2−1

∫

Q(z0,τR)

|u− (u)z0,τR|
5
2 dz,

6
c0

τ22R6
r5+2−1

∫

Q(2R)

|u− (u),2R|
5
2 dz,

for all z0 ∈ Q(̺) and τ 6 min{1/(2c), 1/4}. The conclusion follows from
Campanato’s type condition for parabolic Hölder continuity. Proposition
5.1 is then proved. �

As a straightforward consequence of Proposition 5.1, we have the fol-
lowing.

Proposition 5.2. There exists an absolute positive constant ǫ0 with the

following property. Assume that u is suitable weak solution to (1) in

Q ≡ B × (−1, 0) and satisfies the condition
∫

Q

|u|3dz < ǫ0. (31)

Then we have that u is Hölder continuous in Q(̺) with 0 < ̺ < 1.

Proof. The proof is an easy consequence of the following estimate

‖u‖210/3,Q(1/2) 6 |u|22,Q(1/2) 6 c



∫

Q

|u|3dz +

(∫

Q

|u|3

)2/3

 ,

and Proposition 5.1. �
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We turn now to the proof of Theorem 3.2. The following scaled energy
quantities will be needed

A(r) := sup
t0−r26t6t0

1

r

∫

B(x0,r)

|u(x, t)|2dx, E(r) :=
1

r

∫

Q(z0,r)

|∇u|2dz

C(r) :=
1

r2

∫

Q(z0,r)

|u|3dz

(32)

Let us start first proving some auxiliary lemmata.

Lemma 5. For all 0 < r 6 ̺ < 1,

C(r) 6 c

[(
r

̺

)3

A3/2(̺) +
(̺
r

)3
A3/4(̺)E3/4(̺)

]
.

Proof. We have
∫

B(r)

|u|2dx =

∫

B(r)

(
|u|2 − [|u|2],̺

)
dx+

(
r

̺

)3 ∫

B(̺)

|u|2dx

6

∫

B(̺)

∣∣|u|2 − [|u|2],̺
∣∣ dx+

(
r

̺

)3 ∫

B(̺)

|u|2dx.

By Poincaré’s inequality on the ball, we have
∫

B(̺)

∣∣|u|2 − [|u|2],̺
∣∣ dx 6 c

∫

B(̺)

|∇u||u|dx,

(where c, as usual, is an absolute positive constant). Therefore, we get

∫

B(r)

|u|2dx 6 c̺



∫

B(̺)

|∇u|2dx




1/2

∫

B(̺)

|u|2




1/2

+

(
r

̺

)3 ∫

B(̺)

|u|2dx

6 c̺3/2A1/2(̺)



∫

B(̺)

|∇u|2dx




1/2

+

(
r

̺

)3

̺A(̺).

(33)
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By interpolation inequality (and Sobolev embedding and Poincaré’s in-
equality on the ball), we obtain that

∫

B(r)

|u|3dx 6 c

[( ∫

B(r)

|∇u|2dx

)3/4( ∫

B(r)

|u|2

)3/4

+
1

r3/2

( ∫

B(r)

|u|2dx

)3/2]

6 c

{
̺3/4A3/4(̺)

( ∫

B(r)

|∇u|2dx

)3/4

+
1

r3/2

[
c̺3/2A1/2(̺)

( ∫

B(̺)

|∇u|2dx

)1/2(
r

̺

)3

̺A(̺)

]3/2}

6 c

{(
r

̺

)3

A3/2(̺) +

( ∫

B(̺)

|∇u|2dx

)3/4 [
̺3/4 +

̺9/4

r3/2

]
A3/4(̺)

}
.

Integrating the latter inequality in t on (t0 − r2, t0), we get
∫

Q(r)

|u|3dz

6 c

{
r2
(
r

̺

)3

A3/2(̺) +

[
̺3/4 +

̺9/4

r3/2

]
A3/4(̺)r1/2

( ∫

Q(̺)

|∇u|2dx

)3/4}

6 c

{
r2
(
r

̺

)3

A3/2(̺) +

[
̺3/4 +

̺9/4

r3/2

]
A3/4(̺)r1/2E3/4(̺)̺3/4

}
.

Noticing that
[
̺3/4 +

̺9/4

r3/2

]
r1/2̺3/4 =

[(̺
r

)3/2
+
(̺
r

)3]
r2 6 2

(̺
r

)3
r2,

we have that the proof is completed. �

Lemma 6. For any 0 < R < 1,

A(R/2) + E(R/2) 6 c
[
C2/3(R) +A1/2(R)C1/3(R)E1/2(R)

]

.
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Proof. Picking up a suitable cut-off function in the energy inequality (see
Definition 2.1), we get the following estimates

A(R/2) + E(R/2) 6 c

[
1

R3

∫

Q(R)

|u|2dz +
1

R2

∫

Q(R)

∣∣|u|2 − [|u|2],R
∣∣ |u|dz

+

0∫

−R2

[|u|2],R

∫

B(R)

1

R
|∇u|dxdt.

]
(34)

First, let us notice that

1

R3

∫

Q(R)

|u|2dz 6 cC2/3(R);

next,

0∫

−R2

[|u|2],R

∫

B(R)

1

R
|∇u|dxdt

= c

0∫

−R2

(
1

R3

∫

B(R)

|u|2dx

)1/2(
1

R3

∫

B(R)

|u|2dx

)1/2(
1

R

∫

B(R)

|∇u|dx

)
dt

6 c
A(R)

1
2

R

(
1

R3

∫

Q(R)

|u|2dz

)1/2( 0∫

−R2

(
1

R

∫

B(R)

|∇u|dx

)2

dt

)1/2

6 c
A(R)

1
2

R
C1/3(R)RE1/2(R)

6 cA(R)1/2C1/3(R)E1/2(R).

We dealt with the last term as follows

∫

Q(R)

∣∣|u|2−[|u|2],R
∣∣ |u|dz 6

0∫

−R2

( ∫

B(R)

∣∣|u|2−[|u|2],R
∣∣3/2
)2/3( ∫

B(R)

|u|3

)1/3

6 c

0∫

−R2

( ∫

B(R)

|∇u|2dx

)1/2( ∫

B(R)

|u|2dx

)1/2( ∫

B(R)

|u|3dx

)1/3

dt
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6 cR1/2A1/2(R)

( ∫

Q(R)

|u|3dz

)1/3



0∫

−R2

( ∫

B(R)

|∇u|2dx

)3/4

dt




2/3

6 cR1/2+2/3A1/2(R)C1/3(R)R1/3

( ∫

Q(R)

|∇u|2dz

)1/2

6 cR2A1/2(R)C1/3(R)E1/2(R),

which concludes the proof. �

Proof of Theorem 3.2. It follows from Lemma 5 and the assumptions
of Theorem 3.2 that:

C(r) 6 c

[(̺
r

)3
A3/4(̺)ǫ3/4 +

(
r

̺

)3

A3/2(̺)

]
(35)

Introducing, the new quantity

E(r) := A3/2(r),

we derive from Lemma 6

E(r) 6
[
C(2r) +A3/4(2r)C1/2(2r)ǫ3/4

]
. (36)

Now let us assume that 0 < r 6 ̺/2 < ̺ 6 1. Replacing r with 2r in (35),
we can reduce (36) to the form

E(r) 6 c

[(̺
r

)3
A3/4(̺)ǫ3/4 +

(
r

̺

)3

A3/2(̺)

+A3/4(2r)

((̺
r

)3
A3/4(̺)ǫ3/4 +

(
r

̺

)3

A3/2(̺)

)1/2

ǫ3/4

]

6 c

[(̺
r

)3
A3/4(̺)ǫ3/4+

(
r

̺

)3

A3/2(̺)+
(̺
r

)3/2+3/4
A3/4+3/8(̺)ǫ3/4+3/8

+
(̺
r

)3/4
A3/4(̺)

(
r

̺

)3/2

A3/4(̺)ǫ3/4

]
.
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Here, the obvious inequality A(2r) 6 c̺A(̺)/r has been used. Applying
Young’s inequality with an arbitrary positive constant δ, we show that

E(r) 6 c

(
r

̺

)3/4

(ǫ3/4 + 1)E(̺) + cδE(̺) + c(δ)

(
ǫ3/2

(̺
r

)6
+
(̺
r

)9
ǫ9/2

)
.

Therefore,

E(r) 6 c

[(
r

̺

)3/4

(ǫ3/4 + 1) + δ

]
E(̺) + c(δ)

(̺
r

)9
(ǫ3/2 + ǫ9/2). (37)

Inequality (37) holds for r 6 ̺/2 and can be rewritten as follows:

E(ϑ̺) 6 c
[
ϑ3/4(ǫ3/4 + 1) + δ

]
E(̺) + c(δ)ϑ−9(ǫ3/2 + ǫ9/2) (38)

for any 0 < ϑ 6 1/2 and any 0 < ̺ 6 1.
Now, assuming that ǫ 6 1, let us fix ϑ and δ to such that

2cϑ1/4 < 1/2, 0 < ϑ 6 1/2, cδ < ϑ1/2/2. (39)

Obviously, ϑ and δ are independent of ǫ. So,

E(ϑ̺) 6 ϑ1/2E(̺) +G (40)

for any 0 < ̺ 6 1, where G = G(ǫ) → 0 as ǫ→ 0+.
Iterating (40), we obtain

E(ϑk̺) 6 ϑk/2E(̺) + cG, (41)

for any natural number k and any 0 < ̺ 6 1. Letting ̺ = 1, we obtain
that

E(ϑk) 6 ϑk/2E(1) + cG, (42)

for the same values of k. Hence, it can be easily deduced from (42), that

E(r) 6 c
(
r1/2E(1) +G(ǫ)

)
, (43)

for all 0 < r 6 1/2. Now, (35) implies, for 0 < r 6 1/4

C(r) 6 c
[
E1/2(2r)ǫ3/4 + E(2r)

]

6 c
[
r1/4E1/2ǫ3/4 +G(ǫ)1/2ǫ3/4 + r1/2E(1) +G(ǫ)

]
.

Choosing ǫ sufficiently small and r0 also sufficiently small, we obtain that

C(r0) < ǫ0,

where ǫ0 is as in Proposition 5.2. Since u is suitable weak solution in Q(r0),
Proposition 5.2 and the scaling symmetry of our system yield the required
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statement and the estimate holds for the case k = l = 0; the other cases can
be obtained by a straightforward bootstrap argument. Thus, Theorem 3.2
is proved. �

§6. Proof of Theorem 3.3

Let χ ∈ C∞
0 (−1, 1) and φ ∈ C∞

0 (B) be two cut-off functions such
that 0 6 χ, φ 6 1, χ ≡ 1 in (−(1/2)2, (1/2)2) and χ ≡ 0 in (−1, 1) \
(−(3/4)2, (3/4)2). And, similarly φ ≡ 1 in B(1/2) and φ ≡ 0 in B\B(3/4).
Now, set for simplicity ψ(x, t) := χ(t)φ(x) and introduce the functions
vi := uiψ and Fi := −(u · ∇ui + ui divu)ψ − (2∇ui · ∇ψ + ui∆ψ) + ui∂tψ
(with i = 1, 2, 3). We have, at least in the sense of distributions in Q+ that

∂tvi −∆vi = Fi,

with Fi ∈ L2(Q+). We define

F̄i(x, t) :=

{
Fi(x1, x2, x3, t) in {x3 > 0}

−Fi(x1, x2,−x3, t) in {x3 6 0}

the odd extension of Fi and consider the initial boundary value problem
{
∂tv̄i −∆v̄i = F̄i in Q

v̄i|∂′Q = 0.

Standard parabolic theory insure the existence of a unique solution v̄i that
satisfies the following estimate

‖v̄i‖W 2,1
2

(Q) 6 c‖F̄i‖L2(Q),

where c is an absolute positive constant. This uniqueness of v̄i together
with the parity of F̄i ensure us that v̄i is also odd. From this, we deduce
without too much difficulty that

vi = v̄i|{x3>0}, (44)

which gives us vi ∈W 2,1
2 (Q+) and by embedding vi ∈W 1,0

p1
(Q+) where

p1 =
5× 2

5− 2
> 2;

thus we have that Fi ∈ Lp1
(Q+(1/2)). Starting again the above machinery,

but this time with Fi ∈ Lp1
(Q+(1/2)) (the cut-off functions have to be

changed into a suitable manner), and iterating, we end up with

Fi ∈ W 1,0
p (Q+(ap)),
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with 0 < ap < 1 and for all p ∈ [1,∞). Going back to the equation of v̄i,
we have at least in the sense of distribution that

∂tv̄i,j −∆v̄i,j = F̄i,j

where j = 1, 2, 3. But we have, if we fix p > 5/2, that F̄i,j ∈ Lp(Q(a)), and

by standard parabolic theory we obtain that v̄i,j ∈ Cα,α/2(Q(a/2)) with
α = 2− 5/p > 0. Next, using (44), we get that

vi,j ∈ Cα,α/2(Q+(a/2)),

for i, j = 1, 2, 3 and 0 < a < 1. Next, let us notice that by choosing
appropriately the cut-off functions, we have now that Fi ∈ Cα,α/2(Q(a/4));
and therefore, we get that (even if it means to change the domain on which
we solve the equation of v̄i into Q(a/4)):

v̄i ∈ Cα+2,α/2+1(Q(a/4)),

thanks to Schauder’s estimates. Using once more (44), we obtain that

vi ∈ Cα+2,α/2+1(Q+(a/4)) and similarly as before Fi,j ∈ Cα,α/2(Q(a/8))

Repeating this process, we have that the theorem is proved.

§7. Proof of Theorem 3.4

Before continuing our development, let us point out that because of
Theorem 3.2 i.e. our version of the Caffarelli–Kohn–Nirenberg, we have
that if u admits singular points those points should necessary belong to
the set {0}×(−1, 0) (this is due to the fact that the 1-dimensional parabolic
Hausdorff measure of the set of singular points of u in Q is equal to zero;
we have the same consequence for our model by following line by line the
proof of that statement in [3]).
We recall that a point z0 is a regular point of u if there exists ̺ > 0 such
that u is Hölder continuous in Q(z0, ̺). And a point z0 is a singular point
if it is not a regular one. Assume now that zt0 = (0, t0) (with −1 < t0 < 0)
is a singular point of u in B × (−1, 0]. Making use again of Theorem 3.2,
we may construct, upon use of a space-time shift and using the natural
scaling of (1) (i.e. uλ(x, t) := λu(λx, λ2t) with λ > 0 is also a solution
to (1) if u is) a function ũ with the following properties:

(1) ũ ∈ L2,∞(Q) ∩W 1,0
2 (Q) and obey (1) in Q in the sense of distri-

bution;
(2) ũ ∈ L∞(B × (−1,−a2)) for all a ∈ (0, 1);
(3) for all r1 ∈ (0, 1) such that ũ ∈ L∞({r1 < |x| < 1} × (−1, 0));
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(4) ũ(x, t) = −ṽ(|x|, t)x.

To see the previous assertion, we proceed in the following manner. Because
of the observations made at the begin of this section, we have that there
exists r > 0 such that the first three points hold true in Q(zt0 , r). Define
now ũ(x, t) = ru(rx, t0 + r2t) (with (x, t) ∈ Q) and we steadily get that
the new function satisfies all the above points. Moreover the origin z = 0
is a singular point of ũ.
Next, we have the following proposition.

Proposition 7.1. The solution ũ constructed above has the following prop-

erty

sup
z∈Q(1/2)

|x|2/3|u(x, t)| <∞.

A straightforward consequence of the previous proposition is that the
origin is actually a regular point for ũ. Indeed, one can steadily show
that ũ ∈ L3,∞(Q(1/2)) which is necessary condition for regularity. We will
present the proof of this in a forthcoming paper; the proof essentially relies
on an application of the backward uniqueness and unique continuation
(introduced in [14]) to the system (1). Since z = 0 is shown now to be
a regular point, we arrive to a contradiction. Consequently, we have that
z = (0, t0) is a regular point and this conclude the proof of Theorem 3.4.
The only thing left is to prove the proposition.

Proof. For simplicity, we drop in the sequel, the tilde symbol for u and v.
We steadily have the following equation for v

vt = vrr +
4

r
vr +

3

2
rvvr +

5

2
v2 (45)

for (r, t) ∈ (0, 1)× (−1, 0). Let us introduce the function

v(1)(r, t) = r1+2/3v(r, t)

We have the following equation for v(1)

v
(1)
t − v(1)rr − (

4

3r
+

3

2r2/3
v(1))v(1)r +

20

9r2
v(1) = 0, (46)

for (r, t) ∈ (0, 1)× (−1, 0). Let a ∈ (0, 1/2) and ε ∈ (0, 1/2). Our goal now
is to apply a weak maximum principle to (46) in (ε, 1/2) × (−1/4,−a2);
indeed, notice that v smooth in the closure of (ε, 1/2)× (−1/4,−a2). We
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have that

max
(r,t)∈[ε,1/2]×[−1/4,−a2]

|v(1)(r, t)|

=max

{
max

ε6r6 1
2

|v(1)(r,−
1

4
)|, max

−1/46t6−a2
|v(1)(

1

2
, t)|, max

−1/46t6−a2
|v(1)(ε, t)|

}

But from the second and third point of the properties we enumerated for ũ
above and notice that v(1)(0, t) = 0 for all t ∈ (−1/4,−a2), we deduce that
there exists a finite positive constant C = C(u) independent of a such that

max
(r,t)∈[0,1/2]×[−1/4,−a2]

|v(1)(r, t)| 6 C,

for all a ∈ (0, 1/2). Consequently, we have that

max
(r,t)∈[0,1/2]×[−1/4,0]

|v(1)(r, t)| 6 C, (47)

which concludes the proof. �

We conclude this paper by mentioning a consequence of Theorem 3.1.
The latter gives us a refinement of the set of singular points of the solution
u (this is systematically true as soon as one have a higher integrability of
the gradient of u). Indeed, we have, thanks to Hölder’s inequality, that

1

r

∫

Q(r)

|∇u|2dz 6 c(δ)




1

r1−2δ

∫

Q(r)

|∇u|2+δdz




2
2+δ

; (48)

consequently, Theorem 3.2 guarantees that there exists a constant ǫ1 =
ǫ1(δ) > 0 such that if

sup
0<r<1

1

r1−2δ

∫

Q(r)

|∇u|2+δdz < ǫ1,

then z = 0 is a regular point. From this, we derive in the same way as
for the Caffarelli–Kohn–Nirenberg Theorem that the (1− 2δ)-dimensional
parabolic Hausdorff measure of the set of singular points of suitable weak
solutions u such that u ∈ L∞(−1, 0;BMO−1(B)) in Q is null. If δ > 1/2,

then it is easy to see from (48) that u is regular in Q(1/2). Unfortunately,
we are not able to prove or disprove the same result at the moment.

I would like to thank Prof. Seregin for the many discussions and advises
he gave me while I was writing this paper.
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13. G. Seregin, V. Šverák, On a bounded shear flow in half-space. — Zap. Nauchn.
Semin. POMI, 385 (2010), 200–205.
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