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Abstract. This paper deals with the maximal Lp-Lq regularity
theorem for the linearized electro-magnetic field equations with in-
terface conditions and perfect wall condition. This problem is mo-
tivated by linearization of the coupled magnetohydrodynamics sys-
tem, which generates two separate problems. The first problem is
associated with the well studied Stokes system. Another problem
related to the magnetic field is studied in this paper. The maximal
Lp-Lq regularity theorem for the Stokes equations with interface
and non-slip boundary conditions has been proved by Pruess and
Simonett [15], Maryani and Saito [12]. Combination of these results
and the result obtained in this paper yields local well-posedness for
MHD problem in the case of two incompressible liquids separated
by a closed interface. We plan to prove it in a forthcoming paper.

The main part of the paper is devoted to proving the existence
of R bounded solution operators associated with the generalized
resolvent problem. The maximal Lp-Lq regularity is established by
applying the Weis operator valued Fourier multiplier theorem.

§1. Introduction

First of all, we formulate the magneto-hydro-dynamic (MHD) equations
in the two liquids case. Let Ω be a bounded domain in the N -dimensional
Euclidean space RN and let Ω+ be a subdomain of Ω, Ω− = Ω \ Ω+.
The boundary of Ω we denote by S, let it be a smooth closed surface.
The boundary of Ω+ is a closed surface Γ. We assume that dist (Γ, S) =
inf{|x − y| | x ∈ Γ, y ∈ S} > d > 0. Let Ωt+ and Γt be the evolution of
Ω+ and Γ for t > 0, Ωt− = Ω \ (Ωt+ ∪Γt). Let n0, nt, and n be unit outer
normals to Γ, Γt and S, respectively (nt are oriented from Ωt+ to Ωt−).
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For any given functions h±(x) defined in Ωt±, we denote by h the function
h(x) = h±(x) for x ∈ Ωt±, t > 0 (Ω0± = Ω±). The jump of h across Γ is
defined by

[[h]](x0) = lim
x→x0
x∈Ωt+

h+(x)− lim
x→x0
x∈Ωt−

h−(x)

for every point x0 ∈ Γt. We also use the notations Ω̇t = Ωt+ ∪ Ωt−,

Q̇T = {(x, t)
∣∣t ∈ (0, T ), x ∈ Ω̇t}, GT = {(x, t)

∣∣t ∈ (0, T ), x ∈ Γt}. The
MHD equations in the case of two liquids are as follows:

ρ(∂tv+v · ∇v)−Div (T(v, p)+TM (H))=0, div v=0 in Q̇T ,

[[(T(v, p)+TM (H))nt]]=σH(Γt)nt, [[v]]=0, VΓt=v · nt on GT ,

µ∂tH+Div {α−1curlH−µ(v⊗H−H⊗v)}=0, divH=0 in Q̇T ,

[[{α−1curlH− µ(v ⊗H−H⊗ v)}nt]] = 0 on GT ,

[[µH · nt]] = 0, [[H− < H,nt > nt]] = 0 on GT ,

v = 0, n ·H− = 0, (curlH−)n = 0 on S × (0, T ),

(v,H)|t=0 = (v0,H0) in Ω̇. (1.1)

Here, v = v± = (v±1(x, t), . . . , v±N (x, t))⊤ is the velocity vector field,
M⊤ stands for the transposed M , p = p±(x, t) is the pressure field,
H = H± = (H±1(x, t), . . . , H±N (x, t))⊤ is the magnetic field, while v0

and H0 are prescribed initial data for v and H, respectively. Furthermore,
T = ν±D(v±)−p±I is the viscous stress tensor, D(v±) = ∇v±+(∇v±)

⊤

is the doubled deformation tensor whose (i, j) component is ∂jv±i+ ∂iv±j

with ∂i = ∂/∂xi, I is the N × N unit matrix, TM (H) = TM (H±) =
µ±(H±⊗H±− 1

2 |H±|2I) is the magnetic stress tensor, curlv = curlv± =

(∇v±)
⊤ − (∇v±) is the doubled rotation tensor whose (i, j) component is

∂iv±j − ∂jv±i (see for example [6]), VΓt is the velocity of the evolution of
Γt in the direction of nt, and H(Γt) is the doubled mean curvature of Γt

that is given by the relation H(Γt)nt = ∆Γtx, where ∆Γt is the Laplace
Beltrami operator on Γt. The positive constants ρ = ρ±, µ = µ±, ν = ν±,
and α = α± correspond to the mass density, the magnetic permeability,
the kinematic viscosity, and conductivity, respectively. By σ we denote
the coefficient of the surface tension, it is also assumed to be a positive
constant. For any matrix field K with (i, j) component Kij , the quan-

tity DivK is an N -vector -functions with the ith component
N∑
j=1

∂jKij .

For any vector-functions u = (u1, . . . , uN )⊤ and w = (w1, . . . , wN )⊤,
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divu =
N∑
j=1

∂juj , u ·∇w is a N -vector with the ith component
N∑
j=1

uj∂jwi,

and u⊗w is a N ×N matrix with the (i, j)th components uiwj .
Note that

∆v = −Div curlv +∇div v, Div (v ⊗H−H⊗ v)

= vdivH−Hdiv v +H · ∇v − v · ∇H. (1.2)

In the three dimensional case, we have

rot rotH = Div curlH, rot (v ×H) = Div (v ⊗H−H⊗ v),

(curlH)nt corresponds to the tangential components of curlH on Γt. In
the three dimensional case, when the domain Ωt− is a vacuum region
MHD problem has been studied by Solonnikov [21], [22], Padula and Solon-
nikov [14], Frolova and Solonnikov [20]. In particular, Lp estimates to the
corresponding linear problem has been obtained in [22]. Corresponding to
(1.1) linear problem for magnetic field in the three dimensional case has
been studied by Frolova in [9], where the unique solvability in Sobolev–

Slobodetskii spaces W
2+l,1+l/2
2 was proved.

System (1.1) is overdetermined, because we have too many equations
for the magnetic field H. In this paper, we consider the equivalent system
of MHD equations:

ρ(∂tv + v · ∇v) −Div (T(v, p) +TM (H)) = 0, div v = 0 in Q̇T ,

[[(T(v, p)+TM (H))nt]]=σH(Γt)nt, [[v]]=0, VΓt =v · n on GT ,

µ∂tH− α−1∆H−Div µ(v ⊗H−H⊗ v) = 0 in Q̇T ,

[[{α−1curlH−µ(v⊗H−H⊗ v)}nt]]=0, [[µdivH]]=0 on GT ,

[[µH · nt]] = 0, [[H− < H,nt > nt]] = 0 on GT ,

v = 0, n ·H− = 0, (curlH−)n = 0 on S × (0, T ),

(v,H)|t=0 = (v0,H0) in Ω̇. (1.3)

Namely, instead of the conditions divH± = 0 in Ω±, we set the condition:
[[µdivH]] = 0 on Γ. In Appendix, we prove that if the solution to (1.3) sat-
isfies the condition divH = 0 at the initial moment of time, then divH = 0
in Ω̇t for any t > 0 as long as the solution exists. It yields equivalence of
the problems (1.1) and (1.3).

To prove local well-posedness of Eq. (1.3), the key step is to show the
maximal Lp-Lq regularity for the linearized equations. Since the coupling
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of v and H in Eq. (1.3) is of lower order, it is sufficient to consider the
Stokes equations with interface condition and non-slip boundary condition
and linearized equations for the magnetic field separately.

The Stokes equations with interface and non-slip conditions have been
studied by Pruess and Simonett [15], Solonnikov [23], and also by Maryani
and Saito [12] (by different approaches). Parabolic systems were studied
by Zhitarashu [10] and Zhitarashu and Eidelman [11] in the Lp framework
(where conjugation problems also were considered), by Denk, Hieber and
Pruss [4] in the Lp-Lq framework. At the present paper, we prove the
maximal Lp-Lq regularity for the system of heat equations with interface
conditions and perfect wall conditions, which corresponds to the linear
equations for the magnetic field and has the form

µ∂tH− α−1∆H = f in Ω̇× (0,∞),

[[α−1curlH]]n0 = g′, [[βdivH]] = gN on Γ× (0,∞),

[[H− 〈H,n0〉n0]] = h′, [[βH · n0]] = hN on Γ× (0,∞),

(curlH−)n = g−, n ·H− = h− on S × (0,∞),

H|t=0 = H0 in Ω̇.

(1.4)

Here β = β±, α = α±, µ = µ± are positive constants. Henceforth, we use
the notation g = (g′, gN), h = (h′, hN ). We assume that the domain Ω
satisfies the following conditions.

Definition 1.1. Let 1 < r < ∞. We say that Ω is a uniform W
3−1/r
r

domain, if there exist positive constants αi (i = 1, 2, 3), and K such that
the following two assertions hold:

• For any x0 = (x01, . . . , x0N ) ∈ Γ, there exist a coordinate number

j and a function h(x′j) ∈ W
3−1/r
r (B′

α1
(x′0j)) such that

‖h‖
W

3−1/r
r (B′

α1
(x′

0j))
6 K,

Ω ∩Bα2(x0) = {x ∈ R
N | −α3 + h(x′j) < xj < h(x′j) + α3

(x′j ∈ B′
α1
(x′0j))} ∩Bα2(x0),

Γ ∩Bα2(x0) = {x ∈ R
N | xj = h(x′j) (x′j ∈ B′

α1
(x′0j))} ∩Bα2(x0). (1.5)
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• For any x0 = (x01, . . . , x0N ) ∈ S there exist a coordinate number

j and a function h(x′j) ∈ W
3−1/r
r (B′

α1
(x′0j)) such that

‖h‖
W

3−1/r
r (B′

α1
(x′

0j))
6 K,

Ω ∩Bα2(x0) = {x ∈ R
N | xj > h(x′j) (x′j ∈ B′

α1
(x′0j))} ∩Bα2(x0),

S ∩Bα2(x0) = {x ∈ R
N | xj = h(x′j) (x′j ∈ B′

α1
(x′0j))} ∩Bα2(x0). (1.6)

Here,

x′j = (x1, . . . , xj−1, xj+1, . . . , xN ),

x′0j = (x01, . . . , x0j−1, x0j+1, . . . , x0N ),

B′
α1
(x′0j) = {x′j ∈ R

N−1 | |x′j − x′0j | < α1}

and

Bα2(x0) = {x ∈ R
N | |x− x0| < α2}.

Theorem below is the main result of the present paper.

Theorem 1.2. Let 1 < p, q < ∞, 2/p + 1/q 6= 1 and 6= 2. Let Ω be a

uniform W
3−1/r
r domain with N < r < ∞. Assume that there exists a

constant γ > 0 such that the given functions f , g, h, g−, and h− in (1.4)
satisfy the following conditions: e−γtf ∈ Lp(R, Lq(Ω)

N ),

e−γtg ∈ Lp(R, H
1
q (Ω)

N ) ∩H1/2
p (R, Lq(Ω)

N ),

e−γth ∈ Lp(R, H
2
q (Ω)

N ) ∩H1
p (R, Lq(Ω)

N ),

e−γtg− ∈ Lp(R, H
1
q (Ω−)

N−1) ∩H1/2
p (R, Lq(Ω−)

N−1),

e−γth− ∈ Lp(R, H
2
q (Ω−)) ∩H1

p (R, Lq(Ω−)).

Let at the initial moment of time H0 ∈ B
2(1−1/p)
q,p (Ω̇) and the following

compatibility conditions hold:

[[α−1curlH0]]n0 = g′|t=0, [[βdivH0]] = gN |t=0 on Γ,

(curlH0−)n = g−|t=0 on S

if 1 > 2/p+ 1/q, and

[[H0− < H0,n0 > n0]] = h′|t=0, [[βH0 · n0]] = hN |t=0 on Γ,

n ·H0 = h−|t=0 on S (1.7)
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if 2 > 2/p + 1/q > 1. We do not impose any compatibility conditions if

2/p+ 1/q > 2. Then, problem (1.4) admits a unique solution

H ∈ H1
p ((0,∞), Lq(Ω̇)

N ) ∩ Lp((0,∞), H2
q (Ω̇)

N ))

satisfying the estimate:

‖e−γt∂tH‖Lp((0,∞),Lq(Ω̇)N ) + ‖e−γtH‖Lp((0,∞),H2
q (Ω̇)N )

6 C{‖H0‖B2(1−1/p)
q,p (Ω̇)

+ ‖e−γtf‖Lp(R,Lq(Ω̇))

+ ‖e−γtg‖
H

1/2
p (R,Lq(Ω))

+ ‖e−γtg‖Lp(R,H1
q (Ω)) + ‖e−γt∂th‖Lp(R,Lq(Ω))

+ ‖e−γth‖Lp(R,H2
q (Ω)) + ‖e−γtg−‖H1/2

p (R,Lq(Ω−))

+ ‖e−γtg−‖Lp(R,H1
q (Ω−)) + ‖e−γt∂th−‖Lp(R,Lq(Ω−))

+ ‖e−γth−‖Lp(R,H2
q (Ω−))}.

To prove Theorem 1.2, we use an R bounded solution operator associ-
ated with the following generalized resolvent equations corresponding to
problem (1.4):

µλH− α−1∆H = f in Ω̇,

[[α−1curlH]]n0 = g′, [[βdivH]] = gN on Γ,

[[H− < H,n0 > n0]] = h′, [[βH · n0]] = hN on Γ,

(curlH−)n = g−, n ·H− = h− on S.

(1.8)

Now we give the definition of R boundedness of an operator family.

Definition 1.3. Let X and Y be two Banach spaces. A family of operators
T ⊂ L(X,Y ) is called R-bounded on L(X,Y ), if there exist constants
q ∈ [1,∞) and Cq > 0 such that for each n ∈ N, {Tj}nj=1 ⊂ T , {fj}nj=1 ⊂ X
and for all sequences {rj(u)}nj=1 of independent, symmetric, {−1, 1}-valued

random variables on [0, 1], there holds the inequality:

1∫

0

‖
n∑

j=1

rj(u)Tjfj‖qY du 6 Cq

1∫

0

‖
n∑

j=1

rj(u)fj‖qX du. (1.9)

The smallest Cq in (1.9) is called R-bound of T on L(X,Y ), and is denoted
by RL(X,Y )(T ).

Remark 1.4. The definition of R-boundedness is independent of q ∈
[1,∞) (cf. [3, p.26 3.2. Remarks (2)]). Namely, if there exist constants
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q ∈ [1,∞) and Cq for which (1.9) holds, then for any q ∈ [1,∞), there
exists a constant Cq for which (1.9) holds.

Theorem 1.5. Let 1 < q < ∞, 0 < ǫ < π/2, and N < r < ∞. Assume

that Ω is a uniform W
3−1/r
r domain in RN . Let

Zq(Ω) ={F=(f ,g,h,g−, h−) | f ∈ Lq(Ω)
N , g ∈ H1

q (Ω)
N , h ∈ H2

q (Ω)
N ,

g− ∈ H1
q (Ω−)

N−1, h− ∈ H2
q (Ω−)},

Zq(Ω) ={(F0, F1, . . . , F10) | F0, F1, F3 ∈ Lq(Ω)
N , F2, F4 ∈ H1

q (Ω)
N ,

F5 ∈ H2
q (Ω)

N , F6 ∈ Lq(Ω−)
N−1, F7 ∈ H1

q (Ω−)
N−1,

F8 ∈ Lq(Ω−), F9 ∈ H1
q (Ω−), F10 ∈ H2

q (Ω−)}.
Let

Σǫ = {λ ∈ C\{0} | | argλ| 6 π−ǫ}, Σǫ,λ1 = {λ ∈ Σǫ | |λ| > λ1}. (1.10)

Then, there exist a constant λ1 > 1 and an operator family

A(λ) ∈ Hol (Σǫ,λ1 ,L(Zq(Ω), H
2
q (Ω̇)

N ))

such that for any λ ∈ Σǫ,λ1 , F ∈ Zq(Ω), the unique solution of Eq. (1.8) is

given by H = A(λ)FλF, where

FλF = (f , λ1/2g,g, λh, λ1/2h,h, λ1/2g−,g−, λh−, λ
1/2h−, h−) ∈ Zq(Ω).

(1.11)
The estimate

RL(Zq(Ω),H2−k
q (Ω̇)N )({(τ∂τ )ℓ(λk/2A(λ)) | λ ∈ Σǫ,λ1}) 6 γ, τ = Imλ

is valid for ℓ = 0, 1 and k = 0, 1, 2. Here, γ is a positive constant depending

on µ±, α±, β±, ǫ, q, and N .

Remark 1.6. (1) The variables F0, F1, F2, F3, F4, F5, F6, F7, F8, F9,
and F10 correspond to f , λ1/2g, g, λh, λ1/2h, h, λ1/2g−, g−, λh−, λ1/2h−,
and h−, respectively.
(2) The norms of Zq(Ω) and Zq(Ω) are defined by

‖F‖Zq = ‖f‖Lq(Ω) + ‖g‖H1
q (Ω) + ‖h‖H2

q (Ω) + ‖g−‖H1
q (Ω−) + ‖h−‖H2

q (Ω−),

‖(F0, F1, . . . , F10)‖Zq(Ω) = ‖(F0, F1, F3)‖Lq(Ω) + ‖(F2, F4)‖H1
q (Ω)

+ ‖F5‖H2
q (Ω) + ‖(F6, F8)‖Lq(Ω−) + ‖(F7, F9)‖H1

q (Ω−) + ‖F10‖H2
q (Ω−).

Finally, we explain some symbols used throughout the paper. For any
multi-index κ= (κ, . . . , κN), κj ∈ N0, we set ∂κx = ∂κ1

1 · · · ∂κN

N , |κ|= κ1 +
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· · ·+κN . For 16q 6∞,m∈N, s∈R, and any domainD⊂RN , we denote by
Lq(D), Hm

q (D), and Bs
q,p(D) the standard Lebesgue, Sobolev, and Besov

spaces, respectively (W s
q (D) = Bs

q,q(D)), while ‖ · ‖Lq(D), ‖ · ‖Hm
q (D), and

‖·‖Bs
q,p(D) denote the norms of these spaces. We set (u, v)D=

∫
D

u(x)v(x) dx,

(u, v)Γt =
∫
Γt

uv dσ, and (u, v)S =
∫
S

uv dσ.

For H ∈ {Hm
q , B

s
q,p}, the function spaces H(Ḋ) (Ḋ = D+ ∪ D−) and

their norms are defined by setting

H(Ḋ) = {f = f± | f± ∈ H(D±)}, ‖f‖H(Ḋ) = ‖f+‖H(D+) + ‖f−‖H(D−).

For any Banach space X with the norm ‖·‖X , Xd denotes the d product
space defined by {x = (x1, . . . , xd) | xi ∈ X}, while the norm of Xd is sim-

ply written by ‖·‖X , that is ‖x‖X =
d∑

j=1

‖xj‖X . For any time interval (a, b),

Lp((a, b), X) and Hm
p ((a, b), X) denote the standard X-valued Lebesgue

space and X-valued Sobolev space, while ‖ ·‖Lp((a,b),X) and ‖ ·‖Hm
p ((a,b),X)

denote their norms, respectively. Let L and L−1
λ be the Laplace transform

and the Laplace inverse transform defined by

L[f ](λ) =

∞∫

−∞

e−(γ+iτ)tf(t) dt,

L−1
λ [g(λ)](t) =

1

2π

∞∫

−∞

e(γ+iτ)tg(γ + iτ) dτ,

where λ = γ + iτ ∈ C. Let Hs
p(R, X), s > 0, be the Bessel potential space

of order s defined by

Hs
p(R, X) = {f ∈ Lp(R, X) | ‖e−γtf‖Hs

p(R,X) = ‖e−γtΛsf‖Lp(R,X) <∞},
Λsf = L−1

λ [λsL[f ](λ)]

for γ > 0. For any two Banach spaces X and Y , L(X,Y ) denotes the set
of all linear bounded operators from X into Y , while ‖ · ‖L(X,Y ) denotes
the operator norm. We write L(X,X) simply by L(X). For a domain U
in C, Hol (U,L(X,Y )) denotes the set of all L(X,Y ) valued holomorphic
functions defined on U . Given a vector a and a matrix K, a|i and K|(i,j)
denote the i-th component of a and (i, j)th component of K, respectively.
For two N -vectors a and b with a|i = ai and b|i = bi, < a,b >= a ·
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b =
N∑
i=1

aibi. For two N × N matrices A and B with A|(i,j) = aij and

B|(i,j) = bij , A : B =
N∑

i,j=1

aijbij . Throughout the paper, the letter C de-

notes generic constants and Ca,b,··· the constant which depends on a, b, · · · .
Values of C, Ca,b,··· may be changed from line to line.

The paper is organized as follows. In Sect. 2, the existence of R bounded
solution operators for the model problems are proved. In Sect. 3, the exis-
tence of R bounded solution operators for the bent space is proved. In Sect.
4, Theorem 1.5 is proved. In Sect. 5, Theorem 1.2 is proved with the help
of R bounded solution operators given in Theorem 1.5 and Weis’ operator
valued Fourier multiplier theorem [26]. In the Appendix, it is proved that
any solution H of Eq. (1.3) with divH|t=0 = 0 satisfies Eq. (1.1).

§2. Model Problems

2.1. Model problem in the whole space. In this subsection, we con-
sider the whole space problem:

µkλH− α−1
k ∆H = f in R

N (2.1)

with k ∈ {+,−}. Let Σǫ be the set defined in (1.10). We know that

|µkλ+ α−1
k |ξ|2| > Ck(|λ|+ |ξ|2)

for any λ ∈ Σǫ and ξ ∈ R
N with some constant Ck depending on µk

and αk. Let F and F−1
ξ be the Fourier transform and the inverse Fourier

transform defined by

F [f ](ξ) =

∫

RN

e−ix·ξf(x) dx, F−1
ξ [g(ξ)](x) =

1

(2π)N

∫

RN

eix·ξg(ξ) dξ,

respectively. We define the operators K±(λ) acting on f ∈ Lq(R
N )N by

the formula

K±(λ)f = F−1
ξ

[ F [f ](ξ)

µ±λ+ α−1
± |ξ|2

]
, (2.2)

then H = K±(λ)f ∈ H2
q (R

N )N is a unique solution of Eq. (2.1) for any λ ∈
Σǫ and f ∈ Lq(R

N )N . Our proof is based on the theory of Lp multipliers
in Fourier integrals initiated by Mihlin [13]. To prove the R boundedness
of K±(λ), we use the following lemma due to Denk and Schnaubelt [5,
Lemma 2.1] and Enomoto and Shibata [7, Theorem 3.3].
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Lemma 2.1. Let 1 < q < ∞ and let Λ ⊂ C, m = m(λ, ξ) be a function

defined on Λ × (RN \ {0}) which is infinitely differentiable with respect to

ξ ∈ RN \ {0} for each λ ∈ Λ. Assume that for any multi-index κ ∈ NN
0

there exists a constant Cκ depending on κ and Λ such that

|∂κξm(λ, ξ)| 6 Cκ|ξ|−|κ| (2.3)

for any (λ, ξ) ∈ Λ × (RN \ {0}). Let Kλ be an operator defined by Kλf =
F−1

ξ [m(λ, ξ)Ff(ξ)]. Then, the family of operators {Kλ | λ ∈ Λ} is R-

bounded on L(Lq(R
N )) and

RL(Lq(RN ))({Kλ | λ ∈ Λ}) 6 Cq,N max
|κ|6N+1

Cκ (2.4)

with some constant Cq,N depending only on q and N .

At this point, we introduce some fundamental properties of R-bounded
operators and Bourgain’s results concerning Fourier multiplier theorems
with scalar multiplier.

Proposition 2.2. a) Let X and Y be Banach spaces, T and S be R-

bounded families in L(X,Y ). Then, T + S = {T + S | T ∈ T , S ∈ S} is

also an R-bounded family in L(X,Y ) and

RL(X,Y )(T + S) 6 RL(X,Y )(T ) +RL(X,Y )(S).
b) Let X, Y and Z be Banach spaces, T and S be R-bounded families in

L(X,Y ) and L(Y, Z), respectively. Then, ST = {ST | T ∈ T , S ∈ S} is

also an R-bounded family in L(X,Z) and

RL(X,Z)(ST ) 6 RL(X,Y )(T )RL(Y,Z)(S).

c) Let 1 < p, q < ∞ and let D be a domain in RN . Let m = m(λ) be a

bounded function defined on a subset Λ in C and let Mm(λ) be a map de-

fined by Mm(λ)f = m(λ)f for any f ∈ Lq(D). Then, RL(Lq(D))({Mm(λ) |
λ ∈ Λ}) 6 CN,q,D‖m‖L∞(Λ).

d) Let n = n(τ) be a C1-function defined on R \ {0} which satisfies the

conditions |n(τ)| 6 γ and |τn′(τ)| 6 γ with some constant γ > 0 for any

τ ∈ R \ {0}. Let Tn be the operator-valued Fourier multiplier defined by

Tnf = F−1[nF [f ]] for any f with F [f ] ∈ D(R, Lq(D)). Then, Tn can

be extended to a bounded linear operator from Lp(R, Lq(D)) into itself.

Moreover, denoting this extension also by Tn, we have

‖Tn‖L(Lp(R,Lq(D))) 6 CD,p,qγ.
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Here, D(R, Lq(D)) denotes the set of all Lq(D)-valued C∞-functions on

R with compact support.

Remark 2.3. (1) In view of (a) and (b), we can treat R norms like usual
norms.
(2) Let Λ = {λ ∈ C | |λ| > λ0} with some λ0 > 0. Let ma = λ−a with
0 < a 6 1. By (c),

RL(Lq(D))({Mma(λ) | λ ∈ Λ}) 6 Cλ−a
0 . (2.5)

(3) Let K(λ)∈Hol (Λ,L(Lq(D))) such that RL(Lq(D))({K(λ) | λ∈Λ})6γ.
Then, by (b) we have

RL(Lq(D))({λ−aK(λ) | λ ∈ Λ})
6 RL(Lq(D))({Mma(λ) | λ ∈ Λ})RL(Lq(D))({K(λ) | λ ∈ Λ}) 6 λ−a

0 γ.

Applying Lemma 2.1 and Proposition 2.2, we have the following theo-
rem.

Theorem 2.4. Let 1 < q < ∞, 0 < ǫ < π/2, and λ0 > 0. Let Σǫ and

Σǫ,λ0 be the sets defined in (1.10), K±(λ) be the operators defined in (2.2).
Then, K±(λ) ∈ Hol (Σǫ,L(Lq(R

N )N , H2
q (R

N )N ) and the estimate

RL(Lq(RN )N ,H2−j
q (RN )N )({(τ∂τ )ℓ(λj/2K±(λ)) | λ ∈ Σǫ,λ0}) 6 γλ0 , τ = Imλ

holds for ℓ = 0, 1 and j = 0, 1, 2. The constant γλ0 depends on λ0 in such

a way that γλ0 → ∞ as λ0 → 0.

2.2. Model problem in a half-space. Let

R
N
+ = {x = (x1, . . . , xN ) ∈ R

N | xN > 0},
R

N
0 = {x = (x1, . . . , xN ) ∈ R

N | xN = 0}. (2.6)

In this subsection, we consider the half space problem:

{
µ−λH− α−1

− ∆H = f− in R
N
+ ,

(curlH)n = g−, H · n = h− on R
N
0 ,

(2.7)

where n = (0, . . . , 0,−1), g− = (g1, . . . , gN−1).
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Theorem 2.5. Let 1 < q <∞, 0 < ǫ < π/2, and λ0 > 0. Let

Xq(R
N
+ )={(f−,g−, h−) | f−∈Lq(R

N
+ )N, g−∈H1

q (R
N
+ )N−1, h− ∈ H2

q (R
N
+ )},

Xq(R
N
+ )={(F0−, F6, F7, F8, F9, F10) | F0− ∈ Lq(R

N
+ )N ,

F6 ∈ Lq(R
N
+ )N−1, F7 ∈ H1

q (R
N
+ )N−1, F8 ∈ Lq(R

N
+ ),

F9 ∈ H1
q (R

N
+ ), F10 ∈ H2

q (R
N
+ )}.

Then, there exists an operator family B(λ) ∈ Hol (Σǫ, L(Xq(R
N
+ ),

H2
q (R

N
+ )N )) such that for any λ ∈ Σǫ,λ0 and (f−,g−, h−) ∈ Xq(R

N
+ ), the

unique solution of (2.7) is given by H = B(λ)F 1
λ (f−,g−, h−), where

F 1
λ(f−,g−, h−) = (f−, λ

1/2g−,g−, λh−, λ
1/2h−, h−) ∈ Xq(R

N
+ ).

The estimate

RL(Xq(RN
+ ),H2−j

q (RN
+ )N )({(τ∂τ )ℓ(λj/2B(λ)) | λ ∈ Σǫ,λ0}) 6 γλ0 , τ = Imλ

holds for ℓ = 0, 1 and j = 0, 1, 2 with some constant γλ0 , which depends

on λ0 in such a way that γλ0 → ∞ as λ0 → 0.

Remark 2.6. (1) The variables F0−, F6, F7, F8, F9, and F10 correspond
to f−, λ1/2g−, g−, λh−, λ1/2h−, and h− respectively.
(2) The norm of Xq(R

N
+ ) is defined by

‖(F0−, F6, F8)‖Lq(RN
+ ) + ‖(F7, F9)‖H1

q (R
N
+ ) + ‖F10‖H2

q (R
N
+ ).

Extending f− by 0 into RN
− , and denoting this extension by f , we can

reduce (2.7) to the similar problem with homogeneous equation using the
solution K−(λ)f constructed in the previous section. Thus, it is sufficient
to consider the problem:

{
µ−λH− α−1

− ∆H = 0 in R
N
+ ,

(curlH)n = g−, H · n = h− on R
N
0 .

(2.8)

Let F ′ and F−1
ξ′ be the partial Fourier transform with respect to x′ =

(x1, . . . , xN−1) ∈ RN−1 and the inverse partial Fourier transform with
respect to ξ′ = (ξ1, . . . , ξN−1) ∈ RN−1 defined by

f̂ = F ′[f ] =

∫

RN−1

e−ix′·ξ′f(x′, xN ) dx′,

F−1
ξ′ [g(ξ′, xN )] =

1

(2π)N−1

∫

RN−1

eix
′·ξ′g(ξ′, xN ) dξ′.
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Applying the partial Fourier transform to the first equation in (2.8), we
have

α−µ−λĤ+ |ξ′|2Ĥ−D2
NĤ = 0.

Bounded solutions to this equation in RN
+ have the form Ĥj = βje

−ω−xN ,

where ω− =
√
α−µ−λ+ |ξ′|2, βj ∈ R, j = 1, ..., N .

We rewrite the boundary conditions in (2.8) componentwise:

HN = −h−, ∂NHj = gj + ∂jHN = gj − ∂jh−, j = 1, . . . , N − 1.

Applying the partial Fourier transform, we obtain

∂N Ĥj |xN=0 = F ′[gj − ∂jh−], ĤN |xN=0 = −ĥ−. (2.9)

Inserting Ĥj = βje
−ω−xN into (2.9) yields the relation

βj = − 1

ω−
F ′[gj − ∂j ĥ−], βN = −ĥ−.

Thus, we have

Ĥj(ξ
′, xN ) = −e

−ω−xN

ω−
F ′[gj − ∂jh−](ξ

′, 0),

ĤN (ξ′, xN ) = −e−ω−xN ĥ−(ξ
′, 0).

We use the method suggested by Volevich [25] and obtain

Ĥj(ξ
′, xN ) = −

∞∫

0

e−ω−(xN+yN)F ′[gj − ∂jh−](ξ
′, yN) dyN

+

∞∫

0

e−ω−(xN+yN )

ω−
F ′[∂Ngj − ∂j∂Nh−](ξ

′, yN ) dyN ,

ĤN (ξ′, xN ) = −
∞∫

0

ω−e
−ω(xN+yN )ĥ−(ξ

′, yN) dyN

+

∞∫

0

e−ω−(xN+yN )∂N ĥ−(ξ
′, yN) dyN .

Using the identities:

ω− =
α−µ−λ

ω−
+

|ξ′|2
ω−

, 1 =
α−µ−λ

ω2
−

+
|ξ′|2
ω2
−

, (2.10)
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we have

Ĥj(ξ
′, xN )=−

∞∫

0

λ1/2e−ω−(xN+yN )α−µ−

ω2
−

F ′[λ1/2gj−λ1/2∂jh−](ξ′, yN ) dyN

−
N−1∑

k=1

∞∫

0

|ξ′|e−ω−(xN+yN ) iξk
|ξ′|ω2

−

F ′[∂kgj − ∂j∂kh−](ξ
′, yN) dyN

+

∞∫

0

(λ1/2e−ω−(xN+yN )α−µ−λ
1/2

ω3
−

+ |ξ′|e−ω−(xN+yN ) |ξ′|
ω3
−

)

(
F ′[∂Ngj − ∂j∂Nh−](ξ

′, yN )
)
dyN ,

ĤN (ξ′, xN ) =

∞∫

0

(λ1/2e−ω−(xN+yN )α−µ−λ
1/2

ω3
−

+ |ξ′|e−ω−(xN+yN ) |ξ′|
ω3
−

)

(
α−µ−F ′[λh−](ξ

′, yN )−
N−1∑

k=1

F ′[∂2kh−](ξ
′, yN )

)
dyN

+

∞∫

0

(λ1/2e−ω−(xN+yN )α−µ−λ
1/2

ω3
−

+ |ξ′|e−ω−(xN+yN ) |ξ′|
ω3
−

)

(α−µ−λ
1/2

ω−
F ′[λ1/2∂Nh−](ξ

′, yN )−
N−1∑

k=1

iξk
ω−

F [∂k∂Nh−](ξ
′, yN )

)
dyN .

We define the operators

Bj(λ)(F6, . . . , F10)

= −
∞∫

0

F−1
ξ′

[
λ1/2e−ω−(xN+yN )α−µ−

ω2
−

(F ′[F6j − ∂jF9](ξ
′, yN)

]
(x′) dyN

−
N−1∑

k=1

∞∫

0

F−1
ξ′

[
|ξ′|e−ω−(xN+yN ) iξk

|ξ′|ω2
−

F ′[∂kF7j− ∂j∂kF10](ξ
′, yN )

]
(x′) dyN

+

∞∫

0

F−1
ξ′

[
(λ1/2e−ω−(xN+yN )α−µ−λ

1/2

ω3
−

+ |ξ′|e−ω−(xN+yN ) |ξ′|
ω3
−

)
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(
F ′[∂NF7j − ∂j∂NF10](ξ

′, yN )
)]

(x′) dyN ,

BN(λ)(F6, . . . , F10)

=

∞∫

0

F−1
ξ′

[
(λ1/2e−ω−(xN+yN )α−µ−λ

1/2

ω3
−

+ |ξ′|e−ω−(xN+yN ) |ξ′|
ω3
−

)

(
α−µ−F ′[F8](ξ

′, yN )−
N−1∑

k=1

F ′[∂2kF10](ξ
′, yN )

)]
(x′) dyN

+

∞∫

0

F−1
ξ′

[
(λ1/2e−ω−(xN+yN )α−µ−λ

1/2

ω3
−

+ |ξ′|e−ω−(xN+yN ) |ξ′|
ω3
−

)

(α−µ−λ
1/2

ω−
F ′[∂NF9](ξ

′, yN )−
N−1∑

k=1

iξk
ω−

F ′[∂k∂NF10](ξ
′, yN)

)]
(x′) dyN .

Obviously,

Hj(x) = F−1
ξ′ [Ĥj(ξ

′, xN )](x′) = Bj(λ)(λ
1/2g−,g−, λh−, λ

1/2h−, h−).

As a preparation for the proof of the R boundedness of Bj(λ), we in-
troduce some classes of multipliers.

Definition 2.7. Let Ξ ⊂ Λ × (RN−1 \ {0}), Λ ⊂ C and let m : Ξ →
C, (λ, ξ′) 7→ m(λ, ξ′) be C1 with respect to τ (λ = γ + iτ) and C∞ with
respect to ξ′.

(1) m(λ, ξ′) is called a multiplier on Ξ of type 1 of the order s if there
hold the estimates:

|∂κ′

ξ′ m(λ, ξ′)| 6 Cκ′(|λ|1/2 + |ξ′|)s−|κ′|,

|∂κ′

ξ′ (τ∂τm(λ, ξ′))| 6 Cκ′(|λ|1/2 + |ξ′|)s−|κ′| (2.11)

for any multi-index κ′ ∈ N
N−1
0 and (λ, ξ′) ∈ Ξ with some constant

Cκ′ depending solely on κ′ and Ξ.
(2) m(λ, ξ′) is called a multiplier on Ξ of type 2 of the order s if there

hold the estimates:

|∂κ′

ξ′ m(λ, ξ′)| 6 Cκ′(|λ|1/2 + |ξ′|)s|ξ′|−|κ′|,

|∂κ′

ξ′ (τ∂τm(λ, ξ′))| 6 Cκ′(|λ|1/2 + |ξ′|)s|ξ′|−|κ′| (2.12)
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for any multi-index κ′ ∈ N
N−1
0 and (λ, ξ′) ∈ Ξ with some constant

Cκ′ depending solely on κ′ and Ξ.

Let Ms,i(Ξ) be the set of all multipliers on Ξ of type i (i = 1, 2) of the
order s. Especially, below we write Ms,i(Σǫ×(RN−1\{0})) simply by Ms,i.

The following lemma immediately follows from the inequality

(|λ|1/2 + |ξ′|)−|α′|
6 |ξ′|−|α′|

and the Leibniz rule.

Lemma 2.8. Let s1, s2 be two real numbers. Then, the following three

assertions hold.

a) Given mi ∈ Msi,1(Ξ) (i = 1, 2), we have m1m2 ∈ Ms1+s2,1(Ξ).
b) Given ℓi ∈ Msi,i(Ξ) (i = 1, 2), we have ℓ1ℓ2 ∈ Ms1+s2,2(Ξ).
c) Given ni ∈ Msi,2(Ξ) (i = 1, 2), we have n1n2 ∈ Ms1+s2,2(Ξ).

For any s ∈ R, ωs ∈ Ms,1. Moreover, ξj ∈ M1,1, |ξ′|2 ∈ M2,1. To prove
the R-boundedness of the operators Bj(λ), we use the following lemma
due to Shibata and Shimizu [19, Lemma 5.6].

Lemma 2.9. Let 0 < ǫ < π/2. For given ℓ0(λ, ξ
′) ∈ M−2,1 and ℓ1(λ, ξ

′) ∈
M−2,2, we define the operators Kj(λ) (j = 1, 2) by

[K1(λ)h](x) =

∞∫

0

F−1
ξ′ [ℓ0(λ, ξ

′)λ1/2e−ω−(x
N
+y

N
)F ′[h](ξ′, yN )](x

′) dyN ,

[K2(λ)h](x) =

∞∫

0

F−1
ξ′ [ℓ1(λ, ξ

′)|ξ′|e−ω−(x
N
+y

N
)F ′[h](ξ′, y

N
)](x′) dy

N
.

Then,

RL(Lq(RN
+ ))

(
{(τ∂τ )s(λi/2∂αxKj(λ)) | λ ∈ Σǫ}

)
6 CN,q

(s = 0, 1, i+ |α| = 2, j = 1, 2).

Applying Lemma 2.9 to Bj(λ) and using Proposition 2.2, we observe

RL(Xq(RN
+ ),H2−i

q (RN
+ ))({(τ∂τ )(λi/2Bj(λ)) | λ ∈ Σǫ,λ0}) 6 γλ0

with some constant γλ0 that depends on λ0 in such a way that γλ0 → ∞
as λ0 → 0. Uniqueness follows from the existence of solutions to the dual
problem. This completes the proof of Theorem 2.5.
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2.3. Model interface problem. Let RN
+ and RN

0 be the symbols defined
in (2.6) and

R
N
− = {x = (x1, . . . , xN ) ∈ R

N | xN < 0}, Ṙ
N = R

N
+ ∪ R

N
− . (2.13)

Let n = (0, . . . , 0,−1). Consider the problem




µλH− α−1∆H = f in Ṙ
N ,

[[α−1curlH]]n = g′, [[βdivH]] = gN on R
N
0 ,

[[H− (H · n)n]] = h′, [[βH · n]] = hN on R
N
0 .

(2.14)

Theorem 2.10. Let 1 < q <∞, 0 < ǫ < π/2, and λ0 > 0. Let

Yq(R
N ) = {(f ,g,h) | f ∈ Lq(R

N )N , g ∈ H1
q (R

N )N , h ∈ H2
q (R

N )N},
Yq(R

N ) = {(F0, F1, F2, F3, F4, F5) | F0, F1, F3 ∈ Lq(R
N )N ,

F2, F4 ∈ H1
q (R

N )N , F5 ∈ H2
q (R

N )N}.
Then, there exists an operator family

BI(λ) ∈ Hol (Σǫ,L(Yq(R
N ), H2

q (Ṙ
N )N ))

such that for any λ ∈ Σǫ, (f ,g,h) ∈ Yq(R
N ), the unique solution of

Eq. (2.14) is given by H = BI(λ)F
0
λ (f ,g,h), where

F 0
λ(f ,g,h) = (f , λ1/2g,g, λh, λ1/2h,h) ∈ Yq(R

N ).

The estimate

RL(Yq(RN ),H2−j
q (ṘN )N )({(τ∂τ )ℓ(λj/2BI(λ)) | λ ∈ Σǫ,λ0}) 6 γλ0 , τ = Imλ

holds for ℓ = 0, 1 and j = 0, 1, 2. The constant γλ0 depends on λ0 in such

a way that γλ0 → ∞ as λ0 → 0.

Remark 2.11. The norm of Yq(R
N ) is defined by

‖(F0, F1, F3)‖Lq(RN ) + ‖(F2, F4)‖H1
q (R

N ) + ‖F5‖H2
q (R

N ).

Let f = f± and let f0± be the zero extensions of f± to RN
∓ . By using

K±(λ)f
0
±, where K±(λ) are the operators defined in (2.2), we can reduce

Eq. (2.14) to the case f = 0. Thus, it is enough to consider the following
problem:




µλH− α−1∆H = 0 in Ṙ
N ,

[[α−1curlH]]n = g′, [[βdivH]] = gN on R
N
0 ,

[[H− (H · n)n]] = h′, [[βH · n]] = hN on R
N
0 .

(2.15)
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We assume that g ∈ H1
q (R

N )N and h ∈ H2
q (R

N )N . The jump conditions
in (2.15) have the form

− α−1
+ (∂jH+N − ∂NH+j)|xN=0+ + α−1

− (∂jH−N − ∂NH−j)|xN=0− = gj ,

β+

N∑

j=1

∂jH+j |xN=0+ − β−

N∑

j=1

∂jH−j |xN=0− = gN , (2.16)

H+j −H−j = hj , −β+H+N + β−H−N = hN , j = 1, ..., N − 1.

Let Ĥ±j = F ′[H±j ](ξ
′, xN ). Applying the partial Fourier transform to the

first equation in (2.15), we have

µ±λĤ±j + α−1
± |ξ′|2Ĥ±j − α−1

± D2
NĤ±j = 0 for ±xN > 0. (2.17)

Let ω± =
√
α±µ±λ+ |ξ′|2. Bounded solution to (2.17) has the form

Ĥ±j = A±je
∓ω±xN . To find A±j , applying the partial Fourier transform

to conditions (2.16) and inserting Ĥ±j , we arrive at the following linear
system

− α−1
+ (iξjA+N + ω+A+j) + α−1

− (iξjA−N − ω−A−j) = ĝj (2.18)

β+(

N−1∑

j=1

iξjA+j − ω+A+N )− β−(

N−1∑

j=1

iξjA−j + ω−A−N ) = ĝN , (2.19)

A+j = A−j + ĥj , A+N =
β−
β+

A−N − 1

β+
ĥN . (2.20)

Multiplying (2.18) by iξj and taking a sum from j = 1 through j = N − 1,
we have

α−1
+ |ξ′|2A+N − α−1

+ ω+iξ
′ · A′

+ − α−1
− |ξ′|2A−N − α−1

− ω−iξ
′ · A′

− = iξ′ · ĝ′,

which, combined with (2.20), furnishes that

(α−1
+ ω+ + α−1

− ω−)iξ
′ ·A′

− + |ξ′|2(α−1
− − α−1

+

β−
β+

)A−N

= −iξ′ · ĝ′ − α−1
+ ω+iξ

′ · ĥ′ − |ξ′|2
α+β+

ĥN .

(2.21)

Combination of (2.19) and (2.20) yields the following relation

(β+ − β−)iξ
′ ·A′

− − β−(ω+ + ω−)A−N = ĝN − β+iξ
′ · ĥ′ − ω+ĥN . (2.22)
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We set

A =

(
α−1
+ ω+ + α−1

− ω− β−|ξ′|2((α−β−)
−1 − (α+β+)

−1)
β+ − β− −β−(ω+ + ω−)

)
.

With the help of (2.21) and (2.22), we obtain

A
(
iξ′ · A′

−

A−N

)
=

(
−iξ′ · ĝ′ − α−1

+ ω+iξ
′ · ĥ′ − (α+β+)

−1|ξ′|2ĥN
ĝN − β+iξ

′ · ĥ′ − ω+ĥN

)
. (2.23)

By simple calculations, we observe that

detA = −β−{(ω+ + ω−)(α
−1
+ ω+ + α−1

− ω−)

− |ξ′|2(β+ − β−)((α+β+)
−1 − (α−β−)

−1)}
= −β−{α−1

+ (α+µ+λ+ |ξ′|2) + α−1
− (α−µ−λ+ |ξ′|2)

+ (α−1
+ + α−1

− )ω+ω− − |ξ′|2(β+ − β−)((α+β+)
−1 − (α−β−)

−1)}
= −β−{(µ+ + µ−)λ+ (β+(α−β−)

−1

+ β−(α+β+)
−1)|ξ′|2 + (α−1

+ + α−1
− )ω+ω−}.

Hence

| detA| 6= 0, (2.24)

provided that (λ, ξ′) ∈ Σǫ × (RN−1 \ {0}). In fact, if 0 6 argλ < π, then

0 6 arg((µ+ + µ−)λ+ (β+(α−β−)
−1 + β−(α+β+)

−1)|ξ′|2) < π

and 0 6 arg((α−1
+ + α−1

− )ω+ω−) < π. And, if −π < argλ 6 0, then

−π < arg((µ+ + µ−)λ+ (β+(α−β−)
−1 + β−(α+β+)

−1)|ξ′|2) 6 0

and −π < arg((α−1
+ + α−1

− )ω+ω−) 6 0. Thus, we have (2.24).
Now, we prove that there exists a constant c0 > 0 such that

| detA| > c0(|λ|+ |ξ′|2) (2.25)

for any (λ, ξ′) ∈ Σǫ× (RN−1 \ {0}). Really, in the case |ξ′| > R1|λ|1/2 with
large R1 > 1, we have

| detA| > β−((β+(α−β−)
−1 + β−(α+β+)

−1) + α−1
+ + α−1

− +O(R−2
1 ))|ξ′|2.

Choosing R1 > 1 so large that

(β+(α−β−)
−1 + β−(α+β+)

−1) + α−1
+ + α−1

− +O(R−2
1 ) > (α−1

+ + α−1
− ),

we obtain

| detA| > (β−/2)(α
−1
+ + α−1

− )(|λ|+ |ξ′|2).
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In the case |λ|1/2 > R2|ξ′| with a large number R2 > 1, we have

| detA| > β−(µ+ + µ− + (α−1
+ + α−1

− )(α+α−µ+µ−)
1/2 +O(R−2

2 ))|λ|.

Choosing R2 so large that

µ+ + µ− + (α−1
+ + α−1

− )(α+α−µ+µ−)
1/2 +O(R−2

2 ) > µ+ + µ−,

we have

| detA| > (β−/2)(µ+ + µ−)(|λ|+ |ξ′|2).

Finally, we study the case when R−1
1 |ξ′| 6 |λ|1/2 6 R2|ξ′|. We introduce

the notations λ̃ = λ
|λ|+|ξ′|2 , ξ̃j =

ξj√
|λ|+|ξ′|2

,

then |λ̃|+ |ξ̃′|2 = 1 and 1
1+R2

1
6 |λ̃| 6 1, 1

1+R2
2
6 |ξ̃′|2 6 1.

Let

Λǫ = {(λ̃, ξ̃′) ∈ Σǫ × (RN−1 \ {0}) | |λ̃|+ |ξ̃′|2 = 1,

1

1 +R2
1

6 |λ̃| 6 1,
1

1 +R2
2

6 |ξ̃′|2 6 1}.

Obviously, Λǫ is a compact set. If (λ, ξ′) ∈ Σǫ × (RN−1 \ {0}) satisfies

the condition: R−1
1 |ξ′| 6 |λ|1/2 6 R2|ξ′|, then (λ̃, ξ̃′) ∈ Λǫ. If we set ω̃± =√

α±µ±λ̃+ |ξ̃′|2, then we have | detA| = (|λ|+|ξ′|2)θ(λ̃, ξ̃′) with θ(λ̃, ξ̃′) =

β−((µ++µ−)λ̃+(β+(α−β−)
−1+β−(α+β+)

−1)|ξ̃′|2+(α−1
+ +α−1

− )ω̃+ω̃−).

By (2.24), θ(λ̃, ξ̃′) 6= 0 for (λ̃, ξ̃′) ∈ Σǫ × (RN−1 \ {0}), it implies

inf
(λ̃,ξ̃′)∈Λǫ

θ(λ̃, ξ̃′) = c1 > 0.

Thus, we have (2.25), provided that (λ, ξ′) ∈ Σǫ × (RN−1 \ {0}) and
R−1

1 |ξ′| 6 |λ|1/2 6 R2|ξ′|. It completes the proof of (2.25).
Since

A−1 =
1

detA

(
−β−(ω+ + ω−) −β−|ξ′|2((α−β−)

−1 − (α+β+)
−1)

−(β+ − β−) α−1
+ ω+ + α−1

− ω−

)
,
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we have

iξ′ · A′
− =

β−
detA{(ω+ + ω−)iξ

′ · ĝ′(ξ′, 0)

+ ((α+β+)
−1 − (α−β−)

−1)|ξ′|2ĝN (ξ′, 0)

+ (µ+λ+ β+(α−β−)
−1|ξ′|2 + α−1

+ ω+ω−)iξ
′ · ĥ′(ξ′, 0)

+ ((α−β−)
−1ω+ + (α+β+)

−1ω−)|ξ′|2ĥN(ξ′, 0)},

A−N =
1

detA{(β+−β−)iξ′ ·ĝ′(ξ′, 0)+(α−1
+ ω++α

−1
− ω−)ĝN (ξ′, 0)

− (β−α
−1
+ ω+ + β+α

−1
− ω−)iξ

′ · ĥ′(ξ′, 0)
− (µ+λ+ β−(α+β+)

−1|ξ′|2 + α−1
− ω+ω−)ĥN (ξ′, 0)}.

(2.26)

Since A+N = β−β
−1
+ A−N − β−1

+ ĥN , using the formula of detA, we obtain

A+N =
β−β

−1
+

detA {(β+−β−)iξ′ · ĝ′(ξ′, 0)+(α−1
+ ω++α−1

− ω−)ĝN (ξ′, 0)

− (β−α
−1
+ ω+ + β+α

−1
− ω−)iξ

′ · ĥ′(ξ′, 0)
+ (µ−λ+ β+(α−β−)

−1|ξ′|2 + α−1
+ ω+ω−)ĥN (ξ′, 0)}.

(2.27)

By (2.18), we have

−ĝj = α−1
+ iξjA+N − α−1

− iξjA−N + α−1
+ ω+A+j + α−1

− ω−A−j

=
( β−
α+β+

A−N − 1

α+β+
ĥN

)
iξj − α−1

− iξjA−N

+ (α−1
+ ω+ + α−1

− ω−)A−j + α−1
+ ω+ĥj .

It implies

A−j =
1

α−1
+ ω+ + α−1

− ω−

(−ĝj − α−1
+ ω+ĥj + (α+β+)

−1iξj ĥN )

− ((α+β+)
−1β− − α−1

− )iξj

α−1
+ ω+ + α−1

− ω−

A−N .

By (2.20)

A+j =
1

α−1
+ ω+ + α−1

− ω−

(−ĝj + α−1
− ω−ĥj + (α+β+)

−1iξj ĥN )

− ((α+β+)
−1β− − α−1

− )iξj

α−1
+ ω+ + α−1

− ω−

A−N .

(2.28)
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Using the Volevich method [25], we have

Ĥ+j(x) = −
∞∫

0

e−ω+(xN+yN )∂NA+j(ξ
′, yN ) dyN

+

∞∫

0

ω+e
−ω+(xN+yN )A+j(ξ

′, yN ) dyN for xN > 0,

Ĥ−j(x) =

0∫

−∞

eω−(xN+yN )∂NA−j(ξ
′, yN ) dyN

+

0∫

−∞

ω−e
ω−(xN+yN )A−j(ξ

′, yN ) dyN for xN < 0.

Using the identities (2.10) for ω±, we obtain

Ĥ±j(x) = −
±∞∫

0

{
λ1/2e∓ω±(xN+yN )α±µ±λ

1/2

ω2
±

+ |ξ′|e∓ω±(xN+yN ) |ξ′|
ω2
±

}
∂NA±j(ξ

′, yN) dyN

±
±∞∫

0

{
λ1/2e∓ω±(xN+yN )α±µ±λ

1/2

ω±

+ |ξ′|e∓ω±(xN+yN ) |ξ′|
ω±

}
A±j(ξ

′, yN ) dyN

(2.29)

for ±xN > 0. In the sequel, we prove that there exist multipliers m1
i,±j ,

m2
ik,±j , m

3
i,±j , m

4
ik,±j and m5

ikℓ,±j belonging to M−2,1, and multipliers

n1
i,±j , n

2
i,±j and n3

ik,±j belonging to M−1,1 such that A±j and ∂NA±j are
represented as follows:

A±j=

N∑

i=1

m1
i,±j(λ, ξ

′)F ′[λ1/2gi](ξ
′, yN )+

N∑

i,k=1

m2
ik,±j(λ, ξ

′)F ′[∂igk](ξ
′, yN)

+
N∑

i=1

m3
i,±j(λ, ξ

′)F ′[λhi](ξ
′, yN ) +

N∑

i,k=1

m4
ik,±j(λ, ξ

′)F ′[λ
1
2 ∂ihk](ξ

′, yN)
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+

N∑

i,k,ℓ=1

m5
ikℓ,±j(λ, ξ

′)F ′[∂i∂khℓ](ξ
′, yN) for ±xN > 0; (2.30)

∂NA±j=
N∑

i=1

n1
i,±j(λ, ξ

′)F ′[∂Ngi](ξ
′, yN )+

N∑

i=1

n2
i,±j(λ, ξ

′)F ′[λ
1
2 ∂Nhi](ξ

′, yN)

+

N∑

i,k=1

n3
ik,±j(λ, ξ

′)F ′[∂i∂Nhk](ξ
′, yN ) for ±xN > 0. (2.31)

It suffices to prove (2.30) and (2.31) for A+j and ∂NA+j , because A−j and
∂NA−j can be treated in the same manner. First, we treat A+N given by
(2.27). We write

iξ′ · ĝ′(ξ′, yN) =

N−1∑

k=1

F ′[∂kgk](ξ
′, yN )

and use (2.10) for ω±, we obtain

(α−1
+ ω+ + α−1

− ω−)ĝN(ξ′, yN ) =
(µ+λ

1/2

ω+
+
µ−λ

1/2

ω−

)
F ′[λ1/2gN ](ξ′, yN )

−
N−1∑

k=1

(α−1
+ iξk

ω+
+
α−1
− iξk

ω−

)
F ′[∂kgN ](ξ′, yN );

(β−α
−1
+ ω+ + β+α

−1
− ω−)iξ

′ · ĥ′(ξ′, yN) =

N−1∑

k=1

(β−µ+λ
1/2

ω+
+
β−µ−λ

1/2

ω−

)

×F ′[λ1/2∂khk](ξ
′, yN )−

N−1∑

k,ℓ=1

(β−α−1
+ iξℓ

ω+
+
β−α

−1
− iξℓ

ω−

)
F ′[∂ℓ∂khk](ξ

′, yN );

(µ−λ+ β+(α−β−)
−1|ξ′|2 + α−1

+ ω+ω−)ĥN (ξ′, yN)

=
(
µ−+

µ+ω−

ω+

)
F ′[λhN ](ξ′, yN )−

N−1∑

k=1

( β+
α−β−

+
α+ω−

ω+

)
F ′[∂2khN ](ξ′, yN ).

Since

(detA)−1 ∈ M−2,1, λ1/2ω−1
± ∈ M0,1, iξkω

−1
± ∈ M0,1, ω−ω

−1
+ ∈ M0,1,

we have (2.30) for A+N .
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On the other hand, by (2.27), we see that

∂NA+N (ξ′, yN ) =
β−β

−1
+

detA
{(β− − β+)iξ

′ · ∂N ĝ′(ξ′, yN )

+ (α−1
+ ω+ + α−1

− ω−)∂N ĝN (ξ′, yN )

− (β−α
−1
+ ω+ + β+α

−1
− ω−)iξ

′ · ∂N ĥ′(ξ′, yN )

− (µ−λ+ β+(α−β−)
−1|ξ′|2 + α−1

+ ω+ω−)∂N ĥN (ξ′, yN)}.

Notice that

iξ′ · ∂N ĝ′(ξ′, yN ) =

N−1∑

k=1

iξkF ′[∂Ngk](ξ
′, yN ),

iξ′ · ∂N ĥ′(ξ′, yN) =

N−1∑

k=1

F ′[∂k∂Nhk](ξ
′, yN),

(µ−λ+ β+(α−β−)
−1|ξ′|2 + α−1

+ ω+ω−)∂N ĥN(ξ′, yN )

= (µ− + µ+ω−ω
−1
+ )λ1/2F ′[λ1/2∂NhN ](ξ′, yN)

−
N−1∑

k=1

(β+(α−β−)
−1 + α−1

+ ω−ω
−1
+ )iξkF ′[∂k∂NhN ](ξ′, yN).

Since

λ1/2

detA ∈ M−1,1,
iξk

detA ∈ M−1,1,
ω±

detA ∈ M−1,1,

ω−λ
1/2

ω+ detA ∈ M−1,1,
ω−iξk
ω+ detA ∈ M−1,1,

we have (2.31) for ∂NA+N .
Taking into account (2.10), we obtain the following relations:

ĝj ± α−1
∓ ω∓ĥj + (α+β+)

−1iξj ĥN =
α+µ+λ

1
2

ω2
+

F ′[λ
1
2 gj](ξ

′, yN )

−
N−1∑

k=1

iξk
ω2
+

F ′[∂kgj ](ξ
′, yN)±

(µ∓

ω∓
F ′[λhj ](ξ

′, yN)−
N−1∑

k=1

α−1
∓

ω∓
F ′[∂2khj ](ξ

′, yN)
)

+
(µ+β

−1
+ λ

1
2

ω2
+

F ′[λ
1
2 ∂jhN ](ξ′, yN )−

N−1∑

k=1

(α+β+)
−1iξk

ω2
+

F ′[∂k∂jhN ](ξ′, yN )
)
.
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Since

λ1/2

(α−1
+ ω+ + α−1

− ω−)ω2
+

∈ M−2,1,
iξk

(α−1
+ ω+ + α−1

− ω−)ω2
+

∈ M−2,1,

1

(α−1
+ ω+ + α−1

− ω−)ω±

∈ M−2,1,

in accordance with (2.28), we have (2.30) for A±j . On the other hand, we
see that

∂N (ĝj ± α−1
∓ ω∓ĥj + (α+β+)

−1iξjĥN ) = F ′[∂Ngj](ξ
′, yN)

±
(µ∓λ

1
2

ω∓
F ′[λ

1
2 ∂Nhj ](ξ

′, yN )−
N−1∑

k=1

α−1
∓ iξk

ω∓
F ′[∂k∂Nhj](ξ

′, yN )
)

+
(µ+β

−1
+ λ

1
2

ω+
F ′[λ

1
2 ∂jhN ](ξ′, yN)−

N−1∑

k=1

(α+β+)
−1iξk

ω+
F ′[∂k∂jhN ](ξ′, yN)

)
.

Since

λ1/2

(α−1
+ ω+ + α−1

− ω−)ω±

∈ M−1,1,
iξk

(α−1
+ ω+ + α−1

− ω−)ω±

∈ M−1,1,

we have (2.31) for ∂NA±j .

Let F1, F2, F3, F4 and F5 be corresponding to λ1/2g, g, λh, λ1/2h, and
h, respectively. We define operators B±j(λ) acting on F = (F1, . . . , F5) by
the following rule:

B±j(λ)F = −
±∞∫

0

F−1
ξ′

[(
λ

1
2 e∓ω±(xN+yN )α±µ±λ

1
2

ω2
±

+ |ξ′|e∓ω±(xN+yN ) |ξ′|
ω2
±

)

×
( N∑

j=1

n1
j,±i(λ, ξ

′)F [∂NF2j ](ξ
′, yN) +

N∑

j=1

n2
j,±i(λ, ξ

′)F [∂NF4j ](ξ
′, yN)

+
N∑

j,k=1

n3
jk,±i(λ, ξ

′)F [∂j∂NF5k](ξ
′, yN )

)]
(x′) dyN

±
±∞∫

0

F−1
ξ′

[(
λ

1
2 e∓ω±(xN+yN)α±µ±λ

1
2

ω±
+ |ξ′|e∓ω±(xN+yN ) |ξ′|

ω±

)
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× (

N∑

j=1

m1
j,±i(λ, ξ

′)F [F1j ](ξ
′, yN) +

N∑

j,k=1

m2
jk,±i(λ, ξ

′)F [∂jF2k](ξ
′, yN)

+
N∑

j=1

m3
j,±i(λ, ξ

′)F [F3j ](ξ
′, yN ) +

N∑

j,k=1

m4
jk,±i(λ, ξ

′)F [∂jF4k](ξ
′, yN )

+

N∑

j,k,ℓ=1

m5
jkℓ,±i(λ, ξ

′)F [∂j∂kF5ℓ](ξ
′, yN)

)]
(x′) dyN .

We set (BI(λ)F)(x) = ((B±1(λ)F)(x), . . . , (B±N (λ)F)(x)) for x ∈ RN
± ,

in accordance with (2.29), (2.30) and (2.31),

H = BI(λ)(λ
1/2g,∇g, λh, λ1/2∇h,∇2h)

is a solution of problem (2.15). Moreover, by Lemma 2.9 and Proposition
2.2, we have

RL(Y′
q(R

N ),H2−k
q (ṘN )N )({(τ∂τ )ℓ(λk/2BI(λ)) | λ ∈ Σǫ,λ0}) 6 γλ0

for ℓ = 0, 1 and k = 0, 1, 2 with some constant γλ0 that depends on λ0 in
such a way that γλ0 → ∞ as λ0 → 0. Here,

Y ′
q(R

N ) = {(F1, . . . , F5) | F1, F3 ∈ Lq(R
N )N ,

F2, F4 ∈ H1
q (R

N )N , F5 ∈ H2
q (R

N )N}.
This completes the proof of the existence part of Theorem 2.10. Our final
task is to prove the uniqueness. Let H = H± ∈ H2

q (R
N
± )N satisfy the

homogeneous equations:



µλH− α−1∆H = 0 in Ṙ
N ,

[[α−1curlH]]n = 0, [[βdivH]] = 0 on R
N
0 ,

[[H− (H · n)n]] = 0, [[βH · n]] = 0 on R
N
0 .

(2.32)

Let f be any elements in Lq(R
N )N and let G = G± ∈ H2

q′(R
N
± )N be

solutions of the equations:



µλG− α−1∆G = f in Ṙ
N ,

[[α−1curlG]]n = 0, [[(αβ)−1divG]] = 0 on R
N
0 ,

[[G− (G · n)n]] = 0, [[(αβ)−1G · n]] = 0 on R
N
0 .

(2.33)

By the divergence theorem of Gauss,

(H, f)
ṘN =(H, µλG)

ṘN −(H, α−1∆G)
ṘN
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=λ(µH,G)
ṘN −(H, α−1Div curlG)

ṘN −(βH, (αβ)−1∇divG)
ṘN

=λ(µH,G)
ṘN +

1

2
(α−1curlH, curlG)

ṘN +(α−1divH, divG)
ṘN .

On the other hand, by the divergence theorem of Gauß,

0 = (µλH− α−1∆H,G)
ṘN

= λ(µH,G)
ṘN − (α−1Div curlH,G)

ṘN − (β∇divH, (αβ)−1G)
ṘN

= λ(µH,G)
ṘN +

1

2
(α−1curlH, curlG)

ṘN + (α−1divH, divG)
ṘN .

Thus, we have (H, f)
Ṙ

N
±
= 0. The arbitrary choice of f ∈ Lq(R

N )N yields

that H = 0, which shows the uniqueness. This completes the proof of
Theorem 2.10.

§3. R-bounded solution operators in a bent space

Let Φ : RN → RN be a bijection of C1 class and let Φ−1 be its inverse
map. Let ∇Φ = A+B(x) and ∇Φ−1 = A−1 +B−1(x). We assume that A
and A−1 are orthogonal matrices with constant coefficients and B(x) and
B−1(x) are matrices of functions in W 2

r (R
N ) with N < r <∞ such that

‖B‖L∞(RN ), ‖B−1‖L∞(RN ) 6M1, ‖∇B‖H1
r (R

N ), ‖∇B−1‖H1
r (R

N ) 6M2.

(3.1)
Note that A−1 = A⊤ and AA⊤ = A⊤A = I. We will choose M1 small
enough eventually, so that we may assume that 0 < M1 6 1 6 M2 in the
following. We set Ω± = Φ(RN

± ), Γ = Φ(RN
0 ). Note that Ω̇ ∪ Γ = RN .

Let n be the unit normal to Γ, outward with respect to Ω+, Φ−1 =
(Φ−1,1, . . . ,Φ−1,N ). In this case Γ is represented by Φ−1,N (y) = 0. It im-
plies

n =
∇Φ−1,N

|∇Φ−1,N | =
(AN1 +BN1, . . . ,ANN +BNN )⊤

(
N∑
i=1

(ANi +BNi)2)1/2
, (3.2)

where A−1 = (Aij) and B−1 = (Bij) (n is defined on the whole RN ).
Choosing M1 > 0 in (3.1) small enough, we have

n = (AN1. . . . ,ANN )⊤ + bn, (3.3)

where bn = (bn1, . . . , bnN )⊤ ∈ H1
r (R

N )N and satisfies the estimates:

‖bn‖L∞(RN ) 6 CNM1, ‖∇bn‖H1
r (R

N ) 6 CN,rM
2
2 .
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For the interface problem





µλH− α−1∆H = f in Ω̇,

[[α−1(curlH)n]] = g′, [[βdivH]] = gN on Γ,

[[H− < H,n > n]] = h′, [[βH · n]] = hN on Γ,

(3.4)

we have the following result.

Theorem 3.1. Let 1 < q < ∞ and 0 < ǫ < π/2. There exist constants

M1 ∈ (0, 1), λ0 > 1, and an operator family

Bb(λ) ∈ Hol (Σǫ,λ0 ,L(Yq(R
N ), H2

q (Ω̇)
N ))

such that for any (f ,g,h) ∈ Yq(R
N ) and λ ∈ Σǫ,λ0 , the unique solution

to problem (3.4) is given by H = Bb(λ)Fλ(f ,g,h), where Fλ(f ,g,h) =
(f , λ1/2g,g, λh, λ1/2h,h). Moreover, Bb(λ) possesses the estimate:

RL(Yq(RN ),H2−j
q (Ω̇)N )({(τ∂τ )ℓ(λj/2Bb(λ)) | λ ∈ Σǫ,λ0}) 6 γb, τ = Imλ.

Here, M1 depends solely on ǫ, µ±, α±, β±, q and N ; λ0 and γb depend

solely on ǫ, µ±, α±, β±, M2, q and N . Yq(R
N ), Yq(R

N ) are defined in

Theorem 2.10.

We give a sketch of the proof. We transfer (3.4) into a problem in ṘN

by the change of the variable: x = Φ−1(y) with y ∈ Ω± and x ∈ RN
± . In

this case,

∂

∂yj
=

N∑

ℓ=1

(Aℓj +Bℓj)
∂

∂xℓ
, (3.5)

where A−1 = (Aij), B−1 ◦ Φ = (Bij). As by (3.1) Bℓj are small enough,
Theorem 3.1 can be deduced from Theorem 2.10 by the help of the fol-
lowing lemma which is a consequence of Sobolev’s imbedding theorem (cf.
Shibata [16, Lemma 2.4]).

Lemma 3.2. Let 1 < q 6 r < ∞, r > N . There exists a constant CN,r,q

such that for any σ > 0, a ∈ Lr(R
N
+ ) and b ∈ W 1

q (R
N
+ ) the following

estimate

‖ab‖Lq(RN
+ ) 6 σ‖∇b‖Lq(RN

+ ) + CN,r,qσ
− N

r−N ‖a‖
r

r−N

Lr(RN
+ )

‖b‖Lq(RN
+ )

holds.
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The detailed proof of the similar result for the Stokes equations with free
boundary conditions is given in Shibata [17, 18]. As the proof of Theorem
3.1 is almost parallel to the proof in [17, 18], we may omit the details.

Let Ω+ = Φ(RN
+ ), Γ = Φ(RN

0 ), and n is the unit normal to Γ, outward
with respect to Ω+. Consider the problem:

{
µ−λH− α−1

− ∆H = f in Ω+,

(curlH)n = g−, H · n = h− on Γ.
(3.6)

Employing the similar arguments, we deduce from Theorem 2.5 the fol-
lowing result.

Theorem 3.3. Let 1 < q <∞ and 0 < ǫ < π/2. Let

Xq(Ω+)={(f ,g−, h−) | f ∈Lq(Ω+)
N , g−∈H1

q (Ω+)
N−1, h− ∈ H2

q (Ω+)},
Xq(Ω+)={F = (F0, F6, F7, F8, F9, F10) | F0∈Lq(Ω+)

N , F6 ∈ Lq(Ω+)
N−1,

F7 ∈ H1
q (Ω+)

N−1, F8∈Lq(Ω+), F9 ∈ H1
q (Ω+), F10 ∈ H2

q (Ω+)}.

Then, there exist constants M1 ∈ (0, 1), λ0 > 1, and an operator family

Bb(λ) ∈ Hol (Σǫ,λ0 ,L(Xq(Ω+), H
2
q (Ω+)

N ))

such that for any λ ∈ Σǫ,λ0 and (f ,g−, h−) ∈ Xq(Ω+),
H = Bb(λ)F

1
λ (f ,g−, h−), where

F 1
λ(f ,g−, h−) = (f , λ1/2g−,g−, λh−, λ

1/2h−, h−),

is a unique solution of problem (3.6), and

RL(Xq(Ω+),H2−j
q (Ω+)N )({(τ∂τ )ℓ(λj/2Bb(λ) | λ ∈ Σǫ,λ0}) 6 γb, τ = Imλ

for ℓ = 0, 1 and j = 0, 1, 2. The constant M1 depends solely on ǫ, µ−, α−,

q, and N . The constants λ0 and γb depend solely on ǫ, µ−, α−, M2, q,
and N .

§4. Proof of Theorem 1.5

4.1. Some preparations for the proof of Theorem 1.5. First, we

state some properties of a uniform W
3−1/r
r domain that we use to prove

Theorem 1.5 below. Employing the same argumentation as that in the
proof of Proposition 6.1 in Enomoto and Shibata [7], we can prove the
following result.
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Proposition 4.1. Let N < r <∞ and let Ω be a uniform W
3−1/r
r domain

in RN . Let M1 be the number given in Sect. 3. Then, there exist constants

M2 > 0, 0 < d0, d1, d2 < 1, at most countably many N -vector of functions

Φi
j ∈ H3

r,loc(R
N )N (i = 0, 1) and points x0j ∈ Γ0 = Γ, x1j ∈ Γ1 = S and

x2±j ∈ Ω̇± such that the following assertions hold:

(i) The maps: RN ∋ x 7→ Φi
j(x) ∈ RN (i = 0, 1, j ∈ N) are bijective.

(ii) Ω =
(⋃∞

j=1(Φ
0
j(R

N ) ∩Bd0(x0j ))
)
∪
(⋃∞

j=1(Φ
1
j(R

N
+ ) ∩Bd1(x1j ))

)
∪

⋃∞
j=1(Bd2(x2+j) ∪Bd2(x2−j)),

Bd2(x2±j) ⊂ Ω±, Φ0
j(R

N )∩Bd0(x0j ) = Ω∩Bd0(x0j ), Φ0
j (R

N
0 )∩

Bd0(xij) = Γ ∩Bd0(x0j ),

Φ1
j (R

N
+ ) ∩ Bd1(x1j ) = Ω ∩ Bd1(x1j ), Φ1

j(R
N
0 ) ∩ Bd1(x1j ) = S ∩

Bd1(x1j ).

(iii) There exist C∞ functions ζij, ζ
2
±j, ζ̃

i
j (i = 0, 1), and ζ̃2±j, (j ∈ N),

such that

0 6 ζij , ζ
2
±j , ζ̃

i
j , ζ̃

2
±j 6 1, supp ζij , supp ζ̃

i
j ⊂ Bdi(xij),

supp ζ2±j , supp ζ̃
2
±j ⊂ Bd2(x2±j)

‖(ζij , ζ2±j , ζ̃
i
j , ζ̃

2
±j)‖H3

∞(RN ) 6 c0, ζ̃
i
j = 1 on supp ζij , ζ̃

2
±j = 1 on supp ζ2±j ,

1∑

i=0

∞∑

j=1

ζij +
∑

±

∞∑

j=1

ζ2±j = 1 on Ω,

∞∑

j=1

ζ0j = 1 on Γ,

∞∑

j=1

ζ1j = 1 on S

Here, c0 is a constant which depends on M2, N , q and r, but

independent of j ∈ N.

(iv) ∇Φi
j = Ai

j +Bi
j, ∇(Φi

j)
−1 = Ai

j,−1 + Bi
j,−1, where Ai

j and Ai
j,−1

are N×N constant orthogonal matrices with constant coefficients,

and Bi
j and Bi

j,−1 are N × N matrices of H2
r,loc(R

N ) functions

defined on RN which satisfy the conditions: ‖(Bi
j , B

i
j,−1)‖L∞(RN ) 6

M1 and ‖∇(Bi
j , B

i
j,−1)‖H1

r (R
N ) 6M2 for i = 0, 1 and j ∈ N.

(v) There exists a natural number L > 2 such that any L+1 distinct

sets of {Bdi(xij) | i = 0, 1, j ∈ N} ∪ {Bd2(x2±j) | j ∈ N} have an

empty intersection.

In the sequel, we write Bdi(xij), Bd2(x2±j) simply by Bi
j , B

2
±j , respec-

tively. By the finite intersection property stated in Proposition 4.1 (v), for
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any r ∈ (1,∞) and k ∈ N0, there exists a constant Ck,r,L such that

[ ∞∑

j=1

‖f‖rHk
r (Ω∩Aj)

]1/r
6 Ck,r,L‖f‖Hk

r (Ω)

for any f ∈ Hk
r (Ω) and Aj ∈ {B0

j , B
1
j , B

2
±j}.

(4.1)

By the help of (4.1), in the similar way as in the proof of Lemma 4.3 in
Shibata [16], we can prove the following proposition:

Proposition 4.2. Let 1 < q < ∞, q′ = q/(q − 1) and i = 0, 1, 2. Let

Aj ∈ {B0
j , B

1
j , B

2
±j}. Then, the following assertions hold.

(i) Let m be a non-negative integer. Let {fj}∞j=1 be a sequence in

Hm
q (Ω) and let {g(ℓ)j }∞j=1 (ℓ = 0, 1, . . . ,m) be sequences of positive

real numbers. Assume that

∞∑

j=1

(g
(ℓ)
j )q <∞, |(∇ℓfj , ϕ)Ω| 6M3g

(ℓ)
j ‖ϕ‖Lq′(Ω∩Aj)

for any ϕ ∈ Lq(Ω) and ℓ = 0, 1, . . . ,m

with some constant M3 independent of j ∈ N. Then, f =
∞∑
j=1

fj

exists in the strong topology of Hm
q (Ω) and

‖∇ℓf‖Lq(Ω) 6 Cq′,LM3

( ∞∑

j=1

(g
(ℓ)
j )q

) 1
q

.

(ii) Let n be a natural number. Let {f (i)
j }∞j=1 (i = 1, . . . , n) be se-

quences in Lq(Ω) and let {g(i)j }∞j=1 (i = 1, . . . , n) be sequences of

positive numbers. Let ai (i = 1, . . . , n) be any complex numbers.

Assume that

∞∑

j=1

(g
(i)
j )q <∞, |(f (i)

j , ϕ)Ω| 6M3g
(i)
j ‖ϕ‖Lq′ (Ω∩Aj)

for any ϕ ∈ Lq(Ω) and i = 1, . . . , n

with some constant M3 independent of j = 1, 2, 3, . . .. In addition,

we assume that there exists a sequence of positive numbers {hj}∞j=1
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such that
∞∑

j=1

(hj)
q <∞,

∣∣∣
( n∑

i=1

aif
(i)
j , ϕ

)
Ω

∣∣∣ 6M3hj ‖ϕ‖Lq′(Ω∩Aj).

Then, f (i) =
∞∑
j=1

f
(i)
j exist in the strong topology of Lq(Ω),

i = 1, . . . , n and

∥∥∥
n∑

i=1

aif
(i)
∥∥∥
Lq(Ω)

6 Cq′,LM3

( ∞∑
j=1

(hj)
q
) 1

q

.

4.2. Local solutions. In what follows, we use the notations
Φ0

j(R
N
± ) = H0

±j , Φ
0
j (R

N
0 ) = Γj , Φ

1
j(R

N
+ ) = H1

−j , and Φ1
j (R

N
0 ) = S1

j , and

set H2
j± = RN . Let n0

j and n1
j be the unit normal to Γj oriented from

H0
+j(R

N+) into H0
−j and the unit outer normal to S1

j , respectively. Let

Ḣ0
j = H0

+j ∪H0
−j and H0

j = Ḣ0
j ∪ Γj = Φ0

j(R
N ) = RN . Let

F = (f ,g,h,g−, h−) ∈ Zq(Ω). We consider the following problems:

µλH0
j − α−1∆H0

j = ζ̃0j f in Ḣ0
j ,

[[α−1(curlH0
j)n

0
j ]] = ζ̃0j g

′, [[βdivH0
j ]] = ζ̃0j gN on Γj ,

[[H0
j− < H0

j ,n
0
j > n0

j ]] = ζ̃0j h
′, [[µn0

j ·H0
j ]] = ζ̃0j hN on Γj , (4.2)

µ−λH
1
j − α−1

− ∆H1
j = ζ̃1j f in H1

−j ,

n1
j ·H1

j = ζ̃1j h−, (curlH1
j)n

1
j = ζ̃1j g− on S1

j , (4.3)

µ±λH
2
±j − α−1

± ∆H2
±j = ζ̃2±jf in H2

±j . (4.4)

Note that ni
j (i = 0, 1) are defined on the whole RN and ‖ni

j‖H3
r (B

i
j)

6

CNM2 (i = 0, 1). In addition, n0 = n0
j on Γ∩B0

j and n = n1
j on S∩B1

j . By
Theorem 3.1, Theorem 3.3 and Theorem 2.4 there exist a constant λ0 > 1,
and operator families

T 0
j (λ) ∈ Hol (Σǫ,λ0 ,L(Y0

q (H0
j ), H

2
q (Ḣ0

j )
N )),

T 1
j (λ) ∈ Hol (Σǫ,λ0 ,L(Xq(H1

−j), H
2
q (H1

−j)
N )),

T 2
±j(λ) ∈ Hol (Σǫ,λ0 ,L(Lq(H2

±j), H
2
q (H2

±j)
N )

(4.5)

such that

H0
j = T 0

j (λ)F
0
λ (ζ̃

0
j f , ζ̃

0
j g, ζ̃

0
j h), H1

j = T 1
j (λ)F

1
λ (ζ̃

1
j f , ζ̃

1
j g−, ζ̃

1
j h−),

H2
±j = T 2

±j(λ)ζ̃
2
±f ,

(4.6)
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where

F 0
λ (ζ̃

0
j f , ζ̃

0
j g, ζ̃

0
j h) = (ζ̃0j f , λ

1/2ζ̃0j g, ζ̃
0
j g, λζ̃

0
j h, λ

1/2ζ̃0j h, ζ̃
0
jh),

F 1
λ(ζ̃

1
j f , ζ̃

1
j g−, ζ̃

1
j h−) = (ζ̃1j f , λ

1/2ζ̃1j g−, ζ̃
1
j g−, λζ̃

1
j h−, λ

1/2ζ̃1j h−, ζ̃
1
j h−)

are unique solutions to the problems (4.2), (4.3) and (4.4), respectively.
Moreover, we have

RL(Yq(H0
j ),H

2−k
q (Ḣ0

j)
N )({(τ∂τ )ℓ(λk/2T 0

j (λ)) | λ ∈ Σǫ,λ0}) 6 κ,

RL(Xq(H1
−j),H

2−k
q (H1

−j)
N )({(τ∂τ )ℓ(λk/2T 1

j (λ)) | λ ∈ Σǫ,λ0}) 6 κ,

RL(Lq(Hi
±j)

N ,H2−k
q (Hi

±j)
N )({(τ∂τ )ℓ(λk/2T 2

±j(λ) | λ ∈ Σǫ,λ0}) 6 κ

(4.7)

for ℓ = 0, 1 and k+ |α| = 2 (k = 0, 1, 2) with some constant κ independent
of j ∈ N. By (4.7), we obtain

2∑

k=0

|λ|k/2‖H0
j‖H2−k

q (Ḣ0
j)

6 κ‖F 0
λ(ζ̃

0
j f , ζ̃

0
j g, ζ̃

0
j h)‖Yq(H0

j )
,

2∑

k=0

|λ|k/2‖H1
j‖H2−k

q (H1
j)

6 κ‖F 1
λ(ζ̃

1
j f , ζ̃

1
j g−, ζ̃

1
j h−)‖Xq(H1

j)
,

2∑

k=0

|λ|k/2‖H2
±j‖H2−k

q (H2
±j)

6 κ‖ζ̃2j±f‖Lq(H2
±j)
,

(4.8)

for any j ∈ N.

4.3. Construction of a parametrix. We define the parametrix U(λ)F
by the following formula

U(λ)F =
1∑

i=0

∞∑

j=1

ζijH
i
j +

∑

±

∞∑

j=1

ζ2±jH
2
±j (4.9)

=
∞∑

j=1

ζ0j T 0
j (λ)F

0
λ (ζ̃

0
j f , ζ̃

0
j g, ζ̃

0
j h) +

∞∑

j=1

ζ1j T 1
j (λ)F

1
λ (ζ̃

1
j f , ζ̃

1
j g−, ζ̃

1
j h−)

+

∞∑

j=1

ζ2+jT 2
+j(λ)ζ̃

2
+jf+

∞∑

j=1

ζ2−jT 2
−j(λ)ζ̃

2
−jf , F = (f ,g,h,g−, h−) ∈ Zq(Ω).
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To represent the jump quantity, we make the following preparation: Let
T 0
j (λ) = (T 0

j1(λ), . . . , T 0
jN (λ)), and let E∓[T 0

jk(λ)|H0
∓
]F be the Lions exten-

sion of T 0
jk(λ)F |Γ∓ into H0

∓j such that

2∑

k=0

|λ|k/2‖E±[T 0
jk(λ)|H0

∓j
]F‖H2−k

q (H0
j )

6 Cκ‖F‖Yq(H0
j)
,

∂αx (E±[T 0
jk(λ)|H0

∓j
]F )|Γ = ∂αx (T 0

jk(λ)F )|Γj∓ (|α| 6 2),

(4.10)

where

f |Γj∓(x0) = lim
x∈H0

∓j
x→x0

f(x) for x0 ∈ Γj .

Using these notations, we obtain

[[α−1curl (ζ0j T 0
j (λ)F )]]n

0
j = ζ0j [[α

−1curl T 0
j (λ)F ]]n

0
j +R0

curl,j(λ)F,

[[βdiv (ζT 0
j (λ)F )]] = ζ0j [[βdiv T 0

j (λ)F ]] +R0
div ,j(λ)F, (4.11)

where

R0
curl,j(λ)F |(k,ℓ)=

( ∂ζ0j
∂xk

)
{α−1

+ E−[T 0
jℓ(λ)|H0

+j
]F−α−1

− E+[T 0
jℓ(λ)|H0

−j
]F}|Γ

−
(∂ζ0j
∂xℓ

)
{α−1

+ E−[T 0
jk(λ)|H0

+j
]F − α−1

− E+[T 0
jk(λ)|H0

−j
]F}|Γ,

R0
div,j(λ)F =

N∑

k=1

( ∂ζ0j
∂xk

)
{α−1

+ E−[T 0
jk(λ)|H0

+j
]F − α−1

− E+[T 0
jk(λ)|H0

−j
]F}|Γ.

Also we have the relation

curl (ζ1j T 1
j (λ)F ) = ζ1j curlT 1

j (λ)F +R1
curl,j(λ)F

with

R1
curl,j(λ)F |(k,ℓ) =

( ∂ζ1j
∂xk

)
T 1
jℓ(λ)F −

(∂ζ1j
∂xℓ

)
T 1
jk(λ)F.

Proposition 4.2 and estimates (4.8) imply U(λ)F ∈ H2
q (Ω̇)

N . Inserting

H = U(λ)F into (1.8) and taking into account that n0 = n0
j on supp ζ0j ∩Γ,

n = n1
j on supp ζ1j ∩ S, we arrive at

µλH− α−1∆H = f −V1(λ)F in Ω̇,

([[α−1curlH]]n0, [[βdivH]]) = g −V2(λ)F on Γ,

[[H− < n0,H > n0]] = h′, [[βn0 ·H]] = hN on Γ,
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[[curlH−]]n = g′
− −V3(λ)F, H− · n = h− on S, (4.12)

where

V1(λ)F = α−1{
∞∑

j=1

[2(∇ζ0j ) : (∇T 0
j (λ)F

0
λ (ζ̃

0
j f , ζ̃

0
j g, ζ̃

0
jh)

+ (∆ζ0j )T 0
j (λ)F

0
λ (ζ̃

0
j f , ζ̃

0
j g, ζ̃

0
j h)]

+ α−1{
∞∑

j=1

[2(∇ζ1j ) : (∇T 1
j (λ)F

1
λ ζ̃

1
j (f ,g

′
−, h−)

+ (∆ζ1j )T 1
j (λ)F

1
λ ζ̃

1
j (f ,g

′
−, h)] (4.13)

+ α−1
∑

±

∞∑

j=1

[2(∇ζ2±j) : (∇T 2
±j(λ)ζ̃

2
±jf) + (∆ζ2±j)T 2

±j(λ)ζ̃
2
±jf ]

V2(λ)F =

∞∑

j=1

(R0
curl,j(λ)F

0
λ (ζ̃

0
j f , ζ̃

0
j g, ζ̃

0
j h), R

0
div,j(λ)F

0
λ (ζ̃

0
j f , ζ̃

0
j g, ζ̃

0
j h)),

V3(λ)F =

∞∑

j=1

R1
curl,j(λ)F

1
λ (ζ̃

1
j f , ζ̃

1
j g

′
−, ζ̃

1
j h−).

We set

V(λ)F = (V1(λ)F,V2(λ)F, 0,V3(λ)F, 0).

Proposition 4.2 and estimates (4.8) imply that V(λ) ∈ Zq(Ω),

‖FλV(λ)F‖Zq(Ω) 6 Cλ
−1/2
1 ‖FλF‖Zq(Ω) (4.14)

for any λ ∈ Σǫ,λ1 , λ1 > λ0 > 1, where Fλ is the operator given in (1.11)
in Theorem 1.5. Since ‖FλF‖Zq(Ω), λ 6= 0 are equivalent norms of Zq(Ω),

we can choose λ1 > λ0 so large that in (4.14) Cλ
−1/2
1 6 1/2. We see that

there exists (I − V(λ))−1 ∈ L(Zq(Ω)) and H = U(λ)(I − V(λ))−1F is
a solution of (1.8). The uniqueness follows from the existence theorem of
dual problem.

4.4. Construction of R-bounded solution operators. For F = (F0,
F1, . . . , F10) ∈ Zq(Ω), F

0 = (F0, F1, F2, F3, F4, F5) ∈ Yq(Ω), F
1 = (F0|Ω− ,

F6, F7, F8, F9, F10) ∈ Xq(Ω), we define the following operators:

U(λ)F =
1∑

i=0

∞∑

j=1

ζijT i
j (λ)F

i +
∑

±

∞∑

j=1

ζ2±jT 2
±j(λ)F0,
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V1(λ)F = α−1
∞∑

j=1

[2(∇ζ0j ) : (∇T 0
j (λ)ζ̃

0
j F

0 + (∆ζ0j )T 0
j (λ)ζ̃

0
j F

0]

+ α−1
∞∑

j=1

[2(∇ζ1j ) : (∇T 1
j (λ)ζ̃1j F

+ + (∆ζ1j )T 1
j (λ)ζ̃

1
j F

1]

+ α−1
∑

±

∞∑

j=1

[2(∇ζ2±j) : (∇T 2
±j(λ)ζ̃

2
±jF0) + (∆ζ2±j)T 2

±j(λ)ζ̃
2
±jF0],

V2(λ)F =

∞∑

j=1

(R0
curl,j(λ)ζ̃

0
j F

0, R0
div,j(λ)ζ̃

0
j F

0),

V3(λ)F =

∞∑

j=1

R1
curl,j(λ)ζ̃

1
j F

1,

V(λ)F = (V1(λ)F,V2(λ)F, 0,V3(λ)F, 0). (4.15)

Obviously, U(λ)F = U(λ)FλF and V(λ)F = V(λ)FλF. By (4.5), (4.7)
and Proposition 4.2, we see that

U(λ) ∈ Hol (Σǫ,λ1 ,L(Zq(Ω), H
2
q (Ω̇)

N )),

V(λ) ∈ Hol (Σǫ,λ1 ,L(Zq(Ω), Zq(Ω))).

Moreover, by (4.7) and Proposition 4.2 we have

RL(Zq(Ω),H2−k
q (Ω̇)N )({(τ∂τ )ℓ(λk/2U(λ)) | λ ∈ Σǫ,M}) 6 Cκ

(k = 0, 1, 2),

RL(Zq(Ω))({(τ∂τ )ℓFλV(λ) | λ ∈ Σǫ,M}) 6 CM−1/2κ (ℓ = 0, 1)

(4.16)

for any M > λ1. By (4.16), A(λ)F = U(λ)(I − V(λ))−1F exists and

RZq(Ω),H2−k
q (Ω̇)N )({(τ∂τ )ℓ(λk/2A(λ)) | λ ∈ Σǫ,M}) 6 Cκ

for ℓ = 0, 1 and k = 0, 1, 2. Since V(λ)FλF = V(λ)F, we have

Fλ(I−V(λ))−1 =

∞∑

j=0

FλV(λ)j =

∞∑

j=0

Fλ(V(λ)Fλ)
j

=
∞∑

j=0

(FλV(λ))jFλ = (I− FλV(λ))−1Fλ,
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consequently,

H = U(λ)(I −V(λ))−1F = U(λ)Fλ(I−V(λ))−1F

= U(λ)(I − FλV(λ))−1FλF = A(λ)FλF.

This completes the proof of Theorem 1.5.

§5. Proof of Theorem 1.2

Since f , g, h, g−, and h− in the right-hand side of Eq. (1.4) are defined
for t ∈ R, we can divide a solution to problem (1.4) into two parts: H1 =
H1± and H2 = H±2, where Hi (i = 1, 2) are solutions to the following
problems:

µ∂tH1 − α−1∆H1 = f in Ω̇× R,

[[α−1curlH1]]n0 = g′, [[βdiv Ĥ1]] = gN on Γ× R,

[[H1− < H1,n0 > n0]] = h′, [[βH1 · n0]] = hN on Γ× R,

(curlH1−)n = g−, n ·H1− = h− on S × R;

(5.1)

and

µ∂tH2 − α−1∆H2 = 0 in Ω̇× (0,∞),

[[α−1curlH2]]n0 = 0, [[βdiv Ĥ2]] = 0 on Γ× (0,∞),

[[H2− < H2,n0 > n0]] = 0, [[βH2 · n0]] = 0 on Γ× (0,∞),

(curlH2−)n = 0, n ·H2− = 0 on S × (0,∞),

H2|t=0 = H0 −H1|t=0 in Ω̇.

(5.2)

Applying the Laplace transform to Eq. (5.1), we arrive at

µλĤ1 − α−1∆Ĥ1 = L[f ] in Ω̇,

[[α−1curl Ĥ1]]n0 = L[g′], [[βdiv Ĥ1]] = L[gN ] on Γ,

[[Ĥ1− < Ĥ1,n0 > n0]] = L[h′], [[βĤ1 · n0]] = L[hN ] on Γ,

(curl Ĥ1−)n = L[g−], n · Ĥ1− = L[h−] on S.

(5.3)

By Theorem 1.5, we have Ĥ1 = [A(λ)G(λ)], where

G(λ) = (L[f ], λ1/2L[g], L[g], λL[h], λ1/2L[h], L[h],

λ1/2L[g−], L[g−], λL[h−], λ
1/2L[h−], L[h−])
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for λ = γ + iτ ∈ Σǫ,λ1 . The function H1 = L−1
λ [Ĥ1] is a solution to the

non-stationary problem (5.1). To estimate H1, we use the Weis operator
valued Fourier multiplier theorem [26] stated as follows:

Theorem 5.1. Let X and Y be two UMD Banach spaces and 1 < p <∞.

Let M be a function in C1(R \ {0},L(X,Y )) such that

RL(X,Y )({(ρ∂ρ)ℓM(ρ) | ρ ∈ R \ {0}}) = κℓ <∞ (ℓ = 0, 1).

Let TM be the operator defined by TMφ = F−1[MF [φ]] for any φ with

F [φ] ∈ D(R, X). Then, TM is extended to a bounded linear operator from

Lp(R, X) into Lp(R, Y ). Moreover, denoting this extension also by TM , we

have

‖TMφ‖Lp(R,Y ) 6 C(κ0 + κ1)‖φ‖p(R,X)

for any φ ∈ Lp(R, X) with some positive constant C depending on p.

Since any Lebesgue space and Sobolev space on domains in RN are UMD
space (cf. Amann [1]), applying Theorem 5.1 and taking into account that
L[f ] = F [e−γtf ] and e−γtL−1

λ [g] = F−1
τ [g], we have

‖e−γt∂tH1‖Lp(R,Lq(Ω̇)) + ‖e−γtH1‖Lp(R,H2
q (Ω̇)) 6 C{‖e−γtf‖Lp(R,Lq(Ω̇))

+ ‖e−γtg‖
H

1/2
p (R,Lq(Ω̇))

+ ‖e−γtg‖Lp(R,H1
q (Ω̇)) + ‖e−γt∂th‖Lp(R,Lq(Ω̇))

+ ‖e−γth‖Lp(R,H2
q (Ω̇)) + ‖e−γtg−‖H1/2

p (R,Lq(Ω−))
+ ‖e−γtg−‖Lp(R,H1

q (Ω−))

+ ‖e−γt∂th−‖Lp(R,Lq(Ω−)) + ‖e−γth−‖Lp(R,H2
q (Ω−))}. (5.4)

Here, we have used the fact that

‖e−γtf‖
H

1/2
p (R,H1

q (Ω̇))
6 C{‖e−γt∂tf‖Lp(R,Lq(Ω̇)) + ‖e−γtf‖Lp(R,H2

q (Ω̇))}.

To solve problem (5.2), we use the semi-group approach. Let us consider
the resolvent problem:





λH− (αµ)−1∆H = f in Ω̇,

[[α−1curlH]]n0 = 0, [[βdiv Ĥ]] = 0 on Γ,

[[H− < H,n0 > n0]] = 0, [[βH · n0]] = 0, on Γ,

(curlH−)n = 0, n ·H− = 0 on S.

(5.5)

Let

Dq(Ω̇) = {H ∈ H2
q (Ω̇)

N | [[α−1curlH]]n0 = 0, [[βdiv Ĥ]] = 0 on Γ,

[[H− < H,n0 > n0]] = 0, [[βH · n0]] = 0 on Γ,
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(curlH−)n = 0, n ·H− = 0 on S}.
We set AH = (µα)−1∆H for H ∈ Dq(Ω̇).

Then, problem (5.5) takes the form

(λ−A)H = f for H ∈ Dq(Ω̇).

Since R-boundedness implies usual boundedness, ρ(A) ⊃ Σǫ,λ1 , and

|λ|‖(µλ−A)−1f‖Lq(Ω̇) + ‖(µλ−A)−1f‖H2
q (Ω̇) 6 C‖f‖Lq(Ω̇).

Thus, the operator A generates C0 analytic semi-group {T (t)}t > 0 asso-
ciated with problem (5.2). Moreover, if we define

Dq,p(Ω̇) = (Lq(Ω̇),Dq(Ω̇))1−1/p,p,

where (·, ·)1−1/p,p denotes a real interpolation functor, we have the follow-
ing maximal regularity result.

Theorem 5.2. Let < q <∞ and let {T (t)}t>0 be the C0 analaytic semi-

group defined above. Then,

‖e−γt∂tT (t)f‖Lp(R+,Lq(Ω)) + ‖e−γtT (t)f‖Lp(R+,H2
q (Ω̇)) 6 Cγ‖f‖B2(1−1/p)

q,p (Ω̇)

for any f ∈ Dq,p(Ω̇) and γ > λ1 with some constant C > 0, where λ1 is

the same constant as in Theorem 1.5.

We see that

Dq,p(Ω̇) = {H = H± ∈ B2(1−1/p)
q,p (Ω̇) |

[[α−1curlH]] = 0, [[βdivH]] = 0 [[H− < H,n0 > n0]] = 0,

[[βH · n0]] = 0 on Γ, (curlH−)n = 0, n ·H− = 0 on S}

provided that 2/p+ 1/q < 1;

Dq,p(Ω̇) = {H = H± ∈ B2(1−1/p)
q,p (Ω̇) |

[[H− < H,n0 > n0]] = 0, [[βH · n0]] = 0 on Γ, n ·H− = 0 on S}

provided that 1 < 2/p + 1/q < 2, and Dq,p(Ω̇) = B
2(1−1/p)
q,p (Ω̇) provided

that 2/p + 1/q > 2. Let H2 = T (t)(H0 − H1|t=0). By the compatibility

condition (1.7), H0−H1|t=0 ∈ Dq,p(Ω̇), consequently, by Theorem 5.2, H2

satisfies the estimate:

‖e−γt∂tH2‖Lp((R+,Lq(Ω̇)) + ‖e−γtH2‖Lp(R+,H2
q (Ω̇))

6 C(‖H0‖B2(1−1/p)
q,p (Ω̇)

+ ‖H1|t=0‖B2(1−1/p)
q,p (Ω̇)

).
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We know that

H1
p (R+, Lq(Ω̇)) ∩ Lp(R+, H

2
q (Ω̇)) ⊂ BUC([0,∞), B2(1−1/p)

q,p (Ω̇))

where the inclusion is continuous and BUC is the space of bounded uni-
formly continuous functions (cf. Tanabe [24, (1.18)]), therefore

‖H1|t=0‖B2(1−1/p)
q,p (Ω̇)

6C(‖e−γt∂tH1‖Lp(R+,Lq(Ω̇))+‖e−γtH1‖Lp(R+,H2
q (Ω̇))).

Thus, H = H1 + H2 is a required solution of Eq. (1.4). The uniqueness
follows from the existence of C0 analytic semi-group {T (t)}t>0. Theorem
1.2 is proved.

Appendix §A. Divergence free condition

In this appendix, we show that if v, p, and H is a solution to problem
(1.3) with divH|t=0 = 0 in Ω̇, then divH = 0 on Ω̇ as long as the solution
exists. Let K = (K±ij) = K± be an N × N antisymmetric matrix of

functions from H1
q (Ωt±) and G = (G1, . . . , GN )⊤ = G± ∈ H1

q (Ω̇)
N . If K

and G satisfy the conditions:

[[Knt]] = 0, [[< G, τt >]] = 0 on Γt, K−n|S = 0,

where {τt1, . . . , τtN−1} is a orthogonal base of tangent space of Γt, then
the divergence theorem of Gauss implies

(DivK,G)Ω̇t
=

1

2
(K, curlG)Ω̇t

. (A.1)

Let T0 ∈ (0, T ], and that ψ = ψ±(x) ∈ Lq(Ω̇) be an arbitrary function. We
consider the following problem:





∂tϕ+ (αµ)−1∆ϕ = 0 in Q̇T0 ,

[[ϕ]] = 0, [[(αµ)−1nt · ∇ϕ]] = 0 on GT ,

n · (∇ϕ−) = 0 on S × (0, T0),

ϕ|t=T0 = ψ in Ω̇T0 .

(A.2)

Let ϕ = ϕ± be a solution to (A.2), H a solution to (1.3), and divH|t=0 = 0.
From [[ϕ]] = 0 it follows that [[< ∇ϕ, τt >]] = 0. Consequently, with the
help of (1.2) and (A.1), we obtain

(µ∂tH,∇ϕ)Ω̇t
= (α−1∆H+Div µ(v ⊗H−H⊗ v),∇ϕ)Ω̇t

=−1

2
(α−1curlH−µ(v⊗H−H⊗ v), curl∇ϕ)Ω̇t

−(µdivH, (αµ)−1∆ϕ)Ω̇t
.
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Since (αµ)−1∆ϕ = −∂tϕ in Ω̇t and curl∇ϕ = 0, we have

(µ∂tH,∇ϕ)Ω̇t
= (µdivH, ∂tϕ)Ω̇t

.

Since [[(µ∂tH) · nt]] = 0 as follows from [[µH · nt]] = 0 and since [[ϕ]] = 0,
we arrive at

(µ∂tH,∇ϕ)Ω̇t
= −(∂t(µdivH), ϕ)Ω̇t

.

Combination of these two formulas gives us the relation

0 = (∂t(µdivH), ϕ)Ω̇t
+ (µdivH, ∂tϕ)Ω̇t

=
d

dt

∫

Ω̇t

(µdivH)ϕdx−
∫

Ω̇t

v · ∇((µdivH)ϕ) dx.

As we know that div v = 0 on Ω̇t, we have
∫

Ω̇t

v · ∇((µdivH)ϕ) dx =

∫

Ω̇t

div (v(µdivH)ϕ) dx

=

∫

Γt

[[nt · v(µdivH)ϕ]] dσ +

∫

S

v− · n(µ−divH−)ϕ− dσ.

Since v− · n = 0 on S and [[nt · v]] = 0, we deduce
∫

Ω̇t

v ·∇((µdivH)ϕ) dx =

∫

Γt

(nt ·v+)(µ+divH+ϕ+−µ−divH−ϕ−) dσ = 0,

because [[µdivH]] = 0 and [[ϕ]] = 0. Thus, we have

d

dt

∫

Ω̇t

(µdivH)ϕdx = 0.

Integrating this formula from t = 0 to t = T0 and taking into account that
divH(·, 0) = divH0 = 0 on Ω̇, we have

∫

Ω̇T0

(µdivH(·, T0)ψ dx = 0.

By the arbitrary choice of ψ, we have divH(x, T0) = 0 for x ∈ ΩT0 . This
shows that

divH = 0 in Q̇T .
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