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ON THE MAXIMAL L,-L; REGULARITY THEOREM
FOR THE LINEARIZED ELECTRO-MAGNETIC FIELD
EQUATIONS WITH INTERFACE CONDITIONS

ABsTrACT. This paper deals with the maximal Lp-L4 regularity
theorem for the linearized electro-magnetic field equations with in-
terface conditions and perfect wall condition. This problem is mo-
tivated by linearization of the coupled magnetohydrodynamics sys-
tem, which generates two separate problems. The first problem is
associated with the well studied Stokes system. Another problem
related to the magnetic field is studied in this paper. The maximal
Ly-Lg regularity theorem for the Stokes equations with interface
and non-slip boundary conditions has been proved by Pruess and
Simonett [15], Maryani and Saito [12]. Combination of these results
and the result obtained in this paper yields local well-posedness for
MHD problem in the case of two incompressible liquids separated
by a closed interface. We plan to prove it in a forthcoming paper.
The main part of the paper is devoted to proving the existence
of R bounded solution operators associated with the generalized
resolvent problem. The maximal Ly-Lg regularity is established by
applying the Weis operator valued Fourier multiplier theorem.

§1. INTRODUCTION

First of all, we formulate the magneto-hydro-dynamic (MHD) equations
in the two liquids case. Let 2 be a bounded domain in the N-dimensional
Euclidean space RY and let Q; be a subdomain of Q, Q_ = Q\ Q.
The boundary of ©Q we denote by S, let it be a smooth closed surface.
The boundary of Q4 is a closed surface I'. We assume that dist (I', S) =
inf{lx —y| | z € T,y € S} > d > 0. Let Q4 and I'; be the evolution of
Qi and T for ¢t > 0, Q; = Q\ (24 UT}). Let ng, ng, and n be unit outer
normals to I, Ty and S, respectively (n; are oriented from Q. to Q).

Key words and phrases: Lp-Lq maximal regularity, linearized electro-magneto field
equations, interface condition.
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For any given functions hy () defined in Q;4, we denote by h the function
h(z) = ha(z) for x € Qig, t > 0 (Qor = Q4). The jump of h across T is
defined by

[A](xo) = Jim ho(2)— Jim h_(2)

TEQ 4 z€Q_

for every point x¢p € I';. We also use the notations O = Qe U Qi
Qr = {(z,t)|t € (0,T), =z €N}, Gr = {(z,t)|t € (0,T), x €T} The
MHD equations in the case of two liquids are as follows:

p(Orv+v - Vv)—Div (T (v, p)+ Ty (H))=0, divv=0 in Qr ,

([(T(v, p)+Tar(H))ne]] =0 H(T)ny, [[v]]=0, Vr,=v-n; on Gr ,
pd:H+Div {a teurl H- u(veH-H®v)} =0, divH=0 in Qr ,
[{otcwrl H - u(vo H-H®Vv)}ng]] =0 on Gp ,

[WH -n] =0, [H- <H,n; >n]] =0 on Gr ,

v=0,n-H_=0, (curlH_)n=0 on S x (0,7),

(v,H)|t=0 = (vo,Hp) in Q. (1.1)

Here, v = vi = (vei(2,t),...,ven(z,1)) 7 is the velocity vector field,
MT stands for the transposed M, p = p(z,t) is the pressure field,
H = Hy = (Hi(z,t),...,Hin(z,t))" is the magnetic field, while vg
and Hj are prescribed initial data for v and H, respectively. Furthermore,
T = v2D(vy) — p+1 is the viscous stress tensor, D(vy) = Vv + (Vvy) T
is the doubled deformation tensor whose (i, j) component is 0;v+; + 0;v+;
with 9; = 0/0x;, I is the N x N unit matrix, Ty(H) = Ty (Hy) =
pr(Hi@Hy — %|Hi|21) is the magnetic stress tensor, curlv = curl vy =
(Vvi) T — (Vvy) is the doubled rotation tensor whose (i,7) component is
0;v+; — Ojv4; (see for example [6]), Vr, is the velocity of the evolution of
T'; in the direction of n;, and H(I';) is the doubled mean curvature of I';
that is given by the relation H(I';)n; = Ar,z, where Ar, is the Laplace
Beltrami operator on I';. The positive constants p = p+, u = p+, v = vy,
and a = a4 correspond to the mass density, the magnetic permeability,
the kinematic viscosity, and conductivity, respectively. By o we denote
the coefficient of the surface tension, it is also assumed to be a positive
constant. For any matrix field K with (4,j) component K;;, the quan-

N
tity Div K is an N-vector -functions with the ith component ) 9,K;;.
j=1

For any vector-functions u = (u1,...,uy)’ and w = (wi,...,wy)"

)
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N N
divu = ) djuj, u-Vw is a N-vector with the ith component Y u;0;w;,
j=1 j=1

and u ® w is a N x N matrix with the (¢, j)th components u;w;.
Note that
Av = —Divcurlv+ Vdivv, Div(veH-H®vV)
=vdivH-Hdivv+H Vv —v.VH. (1.2)
In the three dimensional case, we have
rotrot H=DivcurlH, rot(vx H)=Div(veH-HQvV),

(curl H)n; corresponds to the tangential components of curlH on I';. In
the three dimensional case, when the domain );_ is a vacuum region
MHD problem has been studied by Solonnikov [21], [22], Padula and Solon-
nikov [14], Frolova and Solonnikov [20]. In particular, L, estimates to the
corresponding linear problem has been obtained in [22]. Corresponding to
(1.1) linear problem for magnetic field in the three dimensional case has
been studied by Frolova in [9], where the unique solvability in Sobolev—
Slobodetskii spaces V[/;—'rl’lﬂ/2 was proved.

System (1.1) is overdetermined, because we have too many equations
for the magnetic field H. In this paper, we consider the equivalent system
of MHD equations:

p(dv + v - Vv) — Div (T(v,p) + Ty (H)) =0, divv =0 in Qr ,
[(T(v,p)+Tu(H))n]] =0 H(T¢)ny, [[v]]=0, Vr,=v-n onGr,
poH - o 'AH -Divu(veH-H®v) =0 in Qr,
[{otcurlH—pu(v o H-H ® v)}ny]] =0, [[udivH]]=0
[tH -n]] =0, [H- <H,n; >n¢]] =0 on Gr
v=0,n-H_ =0, (cwwlH_)n=0 on S x (0,7),
(v,H)|i=0 = (vo,Hp) in €. (1.3)

on G,

Namely, instead of the conditions div Hy = 0 in 4, we set the condition:
[[udivH]] = 0 on I". In Appendix, we prove that if the solution to (1.3) sat-
isfies the condition div H = 0 at the initial moment of time, then divH = 0
in Q; for any t > 0 as long as the solution exists. It yields equivalence of
the problems (1.1) and (1.3).

To prove local well-posedness of Eq. (1.3), the key step is to show the
maximal Ly,-L, regularity for the linearized equations. Since the coupling
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of v .and H in Eq. (1.3) is of lower order, it is sufficient to consider the
Stokes equations with interface condition and non-slip boundary condition
and linearized equations for the magnetic field separately.

The Stokes equations with interface and non-slip conditions have been
studied by Pruess and Simonett [15], Solonnikov [23], and also by Maryani
and Saito [12] (by different approaches). Parabolic systems were studied
by Zhitarashu [10] and Zhitarashu and Eidelman [11] in the L,, framework
(where conjugation problems also were considered), by Denk, Hieber and
Pruss [4] in the L,-L, framework. At the present paper, we prove the
maximal L,-L, regularity for the system of heat equations with interface
conditions and perfect wall conditions, which corresponds to the linear
equations for the magnetic field and has the form

pwoOH—a 'AH =f in O x (0, 00),
[[a tcurl H]ng = g’, [[BdivH]] = gn on I' x (0,00)

[H— (H,ng)no]] =h', [[BH -np]]=hy onT x (0,00), (1.4)
(curlH_.)n=g_, n-H_=h_ on S x (0,00)

H|,—o = Hy in Q.

Here 5 = 4, @ = a4, p = p+ are positive constants. Henceforth, we use
the notation g = (g’,gn), h = (h/,; hy). We assume that the domain Q
satisfies the following conditions.

Definition 1.1. Let 1 < 7 < co. We say that Q is a uniform W; /"
domain, if there exist positive constants «; (i = 1,2,3), and K such that
the following two assertions hold:

e For any z9 = (xo1,...,2on) € T, there exist a coordinate number
J and a function h(z}) € VVTSA/T(B(’I1 (z0;)) such that

~1/r F oy S K,
Il gy S K
QN Ba,(z0) = {z € RY | —ag + h(2) < z; < h(z}) + a3
(x5 € By, (20;))} N Ba, (20),
[N By, (zo) = {z € RY | z; = h(x}) (z} € By, (20;))} N Bay(x0). (1.5)
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e For any xg = (zo1,...,20n) € S there exist a coordinate number
j and a function h(x ) e WS 1/T(B' (z0;)) such that

<K,

hllis=1/r, 0 /o,

H HW: / (Ba, (5;))
QN Ba, (20) = {z € RY | z; > h(a}) (2 € By, (x5;))} N Bas (20),

SN Bay(xo) ={z eRY | z; = h(x}) (z € By, (20;))} N Bay,(x0). (1.6)

Here,
x; = (xlw"axj—1;$j+la"'7xN)7
$6j = (To1, -+, T0j—1,T0j+1, - - - s TON )
By, (wp;) = {af € RV [ o) — ay] < an}
and

B, (20) = {2 € RY | |z — 20| < a2}
Theorem below is the main result of the present paper.

Theorem 1.2. Let 1 < p,q < 00, 2/p+1/q # 1 and # 2. Let Q be a

uniform W,-Bfl/r domain with N < r < oo. Assume that there exists a

constant v > 0 such that the given functions £, g, h, g_, and h_ in (1.4)

satisfy the following conditions: e~ V'f € L,(R, L,(Q)N),
q

V)N HY2(R, L)),
QN N HA(R, L,(@)Y),
Q)N N HYA(R, Ly(Q-) V),
Q_)) N HL (R, Ly(Q)).

e Mge LR H,
e "he L,(R,H;
e Mg € Ly(R,H,
e "'h_ € Ly(R,H}

~—~~ ~ ~~

Let at the initial moment of time Hy € B2(1 1/p) (Q) and the following
compatibility conditions hold:

[[a tcurl Hyllng = g'|i—0, [[Bdiv Ho]] = gn|i=0 on T,
(curlHop_)n=g_|t=g on S
if1>2/p+1/q, and
[[Ho— < Ho,ng > ng]] =h'|—o, [[fHo ng]] =hnli=o on T,
n-Hy=h_|i=g on S (1.7)
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if2>2/p+1/q > 1. We do not impose any compatibility conditions if
2/p+1/q > 2. Then, problem (1.4) admits a unique solution

H € H((0,50), Ly()™) 1 Ly((0,00), HA(Q)Y))

satisfying the estimate:

le™ 0l 1, (0,009, Loe0) + €7 I, (0,000, 12 (00)%)

< C{HHOHBg};fl/p)(Q) + ||€_7tf||Lp(R,Lq(Q))

e 8l 2010y T e 8L, @ @) + e 0| L, @ L, @)

+le @ mz@) + e 82w L0 )

+lle gz, ®m2 o) + e 0hlL,® 1,0 )

+lle™ " L, a2y}

To prove Theorem 1.2, we use an R bounded solution operator associ-

ated with the following generalized resolvent equations corresponding to
problem (1.4):

pAH — o 'AH = f in Q,

[[a tcurlH]jng = g’, [[BdivH]] = gn onT, (18)
[H- <H,np >ng]] =h', [[fH ng]] = hy on T,
(curlH_.)n=g_, n-H_=h_ on S.

Now we give the definition of R boundedness of an operator family.

Definition 1.3. Let X and Y be two Banach spaces. A family of operators
T C L(X,Y) is called R-bounded on £(X,Y), if there exist constants
q € [1,00) and Cy > 0 such that for eachn € N, {T;}_; C T, {f;}}—; C X
and for all sequences {r;(u)}}_, of independent, symmetric, {1, 1}-valued
random variables on [0, 1], there holds the inequality:

1 n 1 n
[ @ siga<e, [IXn@hlide 09
o J=1 o J=l
The smallest Cy in (1.9) is called R-bound of 7 on £(X,Y"), and is denoted
by Re(x,v)(T).

Remark 1.4. The definition of R-boundedness is independent of ¢ €
[1,00) (cf. [3, p.26 3.2. Remarks (2)]). Namely, if there exist constants
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q € [1,00) and Cy for which (1.9) holds, then for any ¢ € [1,00), there
exists a constant C, for which (1.9) holds.

Theorem 1.5. Let 1 < ¢ < 00, 0 < € < 7/2, and N < r < co. Assume
that Q is a uniform WE_I/T domain in RN . Let

Zy(Q) ={F=(f.g,h,g_.h_) | £ € L), ge H (", he HI (N,
g- € Hy(Q)"™', ho e H(Q-)},
Zy(Q) ={(Fo, F1,..., Fio) | Fo, F1, Fs € Ly(Q)N, Fy, Fy € Hy(Q)V,
Fse HX ()N, Fs € Ly(Q_)N™', Fre Hy(Q_ )N,
Fs € Ly(Q-), Fo € HX(Q-), Fip € HZ(Q-)}.
Let
.={AeC\{0} | |arg\| < 7m—€}, T ={re€Z ][N =AM} (1.10)
Then, there exist a constant \1 = 1 and an operator family
AN € Hol (Sen,, £(Z,(), HA)N))
such that for any A € ¢ 5., F € Z,(Q), the unique solution of Eq. (1.8) is
given by H = A(N)F\F, where
E\F = (f,\Y?g, g, \n, A2, b A\ 2g g A AY2h b ) € 2,(Q).
(1.11)
The estimate
Rz, mz—+ oy (T W 2AN) [ A€ Bea}) <7, 7= ImA

is valid for £ = 0,1 and k = 0,1,2. Here, v is a positive constant depending
on p+t, QG+, 6i7 € 4, and N.

Remark 1.6. (1) The variables Fo, Fl, F27 Fg, F‘47 F‘57 Fﬁ, F‘77 Fg, Fg,
and Fyo correspond to f, \'/2g, g, Ah, A\'/2h, h, \'/?2g_, g_, Ah_, A\Y/2h_,
and h_, respectively.
(2) The norms of Z,(2) and Z,(2) are defined by
¥z, = IfllL ) + I8lla20) + [BllH20) + 8- la10-) + A=l H2(0-),
[(Fo, F1,. . Fro)ll 2,0 = 1(Fo, Py, F3) || p ) + [1(F2s Fu) a1 (o)
+ 1Fs | m2(0) + [|(Fo, Fs)| L o0 + [[(Frs Fo)llm2 o) + [ Frollmz)-

Finally, we explain some symbols used throughout the paper. For any
multi-index k= (k,...,knN), £; € No, we set 95 =07 --- O, |k| =K1 +
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- +ky. For 1<q <oo,meN, s€R, and any domain D C R, we denote by
Ly(D), H*(D), and B; (D) the standard Lebesgue, Sobolev, and Besov
spaces, respectively (W;(D) = B;q(D)), while || - [z, Dy, Il - HH;,L(D), and
I
(u,v)r, = [ uwvdo, and (u,v)s = [uvdo.
s 5
For H € {H", B; ,}, the function spaces H(D) (D = Dy U D_) and
their norms are defined by setting

HD)={f = fr | f+ eHDD)}  fllaaepy = I F4llaeosy + 1= llauno)-

For any Banach space X with the norm ||-|| x, X denotes the d product
space defined by {z = (z1,...,24) | z; € X}, while the norm of X is sim-
d

Bz, (p) denote the norms of these spaces. We set (u,v)p :g u(z)v(x) dr,

ply written by ||-||x, that is ||z||x = Y ||z;|/x. For any time interval (a, b),
j=1
Ly((a,b), X) and H}"((a,b), X) denote the standard X-valued Lebesgue

space and X-valued Sobolev space, while || - ||z ((a,b),x) and || -|

Hp((a,b),X)
denote their norms, respectively. Let L and L;l be the Laplace transform
and the Laplace inverse transform defined by

oo

uﬂ@r:/e*wmvuMu

) 1T .
L a0 = 5= [ gty + im)dr,

where A =y +ir € C. Let Hj (R, X), s > 0, be the Bessel potential space
of order s defined by

Hy(R,X) = {f € Lp(R, X) | le™" fllmyr,x) = e " A" fl v, x) < o0},
A*f = L WLIfI(V)]

for v > 0. For any two Banach spaces X and Y, £(X,Y) denotes the set
of all linear bounded operators from X into Y, while || - ||z(x,y) denotes
the operator norm. We write £(X, X) simply by £(X). For a domain U
in C, Hol (U, L(X,Y)) denotes the set of all £L(X,Y") valued holomorphic
functions defined on U. Given a vector a and a matrix K, al; and K|; ;)
denote the i-th component of a and (4, 7)th component of K, respectively.
For two N-vectors a and b with al; = a; and b|; = b;, < a,b >= a-
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N
b = > a;b;. For two N x N matrices A and B with A, ;) = a;; and
i=1

N
B,y = bij, A: B = 3 aijbi;. Throughout the paper, the letter C' de-
i,j=1
notes generic constants zmd Cap,... the constant which depends on a, b, - - -.
Values of C, C, ... may be changed from line to line.

The paper is organized as follows. In Sect. 2, the existence of R bounded
solution operators for the model problems are proved. In Sect. 3, the exis-
tence of R bounded solution operators for the bent space is proved. In Sect.
4, Theorem 1.5 is proved. In Sect. 5, Theorem 1.2 is proved with the help
of R bounded solution operators given in Theorem 1.5 and Weis’ operator
valued Fourier multiplier theorem [26]. In the Appendix, it is proved that
any solution H of Eq. (1.3) with divH|;—g = 0 satisfies Eq. (1.1).

§2. MODEL PROBLEMS

2.1. Model problem in the whole space. In this subsection, we con-
sider the whole space problem:

i AH — a;lAH =f inRV (2.1)
with k € {4+, —}. Let 3¢ be the set defined in (1.10). We know that
kA + a2 = Cr(IAl + 1)

for any A € ¥, and ¢ € RY with some constant Cy depending on
and ay. Let F and F: ! be the Fourier transform and the inverse Fourier
transform defined by

iz - 1 iz
FUNO = [ @) e, FOlo(€e) = g [ o€ de
RN RN
respectively. We define the operators K4 (\) acting on f € L,(RN)V by
the formula
_ Fif
Ke(Vf = 7! [L@IQ} , (22)
peA + o [€]

then H = K+ (A\)f € HZ(RY)™ is a unique solution of Eq. (2.1) for any X €
Ye and f € Ly(RY)N. Our proof is based on the theory of L, multipliers
in Fourier integrals initiated by Mihlin [13]. To prove the R boundedness

of K£4(A), we use the following lemma due to Denk and Schnaubelt [5,
Lemma 2.1] and Enomoto and Shibata [7, Theorem 3.3].
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Lemma 2.1. Let 1 < ¢ < o0 and let A C C, m = m(\,€) be a function
defined on A x (RN \ {0}) which is infinitely differentiable with respect to
¢ € RN\ {0} for each X € A. Assume that for any multi-index k € N}
there exists a constant C,; depending on k and A such that

£ m(X, )] < Crlé] ™! (2.3)

for any (X, €) € A x (RV\ {0}). Let Ky be an operator defined by Ky f =
fgl[m()\,g)ff(g)]. Then, the family of operators {Kx | A € A} is R-
bounded on L(Ly(RYN)) and

N < " .
RE(LQ(R ))({K,\ | AE A}) quN mlIg%XJrlc (2 4)

with some constant Cy N depending only on q and N.

At this point, we introduce some fundamental properties of R-bounded
operators and Bourgain’s results concerning Fourier multiplier theorems
with scalar multiplier.

Proposition 2.2. a) Let X and Y be Banach spaces, T and S be R-
bounded families in L(X,Y). Then, T+S={T+S|T T, SeS}is
also an R-bounded family in L(X,Y) and

Rexyy(T+S) S Rexv)(T) + Rex,v)(S).

b) Let X, Y and Z be Banach spaces, T and S be R-bounded families in
L(X,Y) and L(Y, Z), respectively. Then, ST = {ST |T €T, S € S} is
also an R-bounded family in L(X,Z) and

Rex,2)(ST) < Rex vy (T)Reyv,z) (S)-

c) Let 1 < p, ¢ < oo and let D be a domain in RN. Let m = m()\) be a
bounded function defined on a subset A in C and let M,,(\) be a map de-
fined by My,(\)f = m(A) f for any f € Ly(D). Then, Re(r,(py)({Mm(N) |
N € A}) < Cngnlmilr -

d) Let n = n(r) be a C*-function defined on R\ {0} which satisfies the
conditions |n(7)| <~y and |t/ (7)| < v with some constant v > 0 for any
7 € R\ {0}. Let T,, be the operator-valued Fourier multiplier defined by
Tof = F Y nF[f]] for any f with F[f] € D(R,Ly(D)). Then, T, can
be extended to a bounded linear operator from Ln(R,Lq(D)) into itself.
Moreover, denoting this extension also by T,, we have

1Tl oz, ®,L,(D)) < CDp,g7-
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Here, D(R, Ly(D)) denotes the set of all Ly(D)-valued C*-functions on
R with compact support.

Remark 2.3. (1) In view of (a) and (b), we can treat R norms like usual
norms.

(2) Let A = {A € C| |\ = Ao} with some \g > 0. Let mq = \~% with
0 <a<1. By (c¢),

R, ) {Mm,(A) [ X € A}) < O™ (2.5)

(3) Let KC(A) € Hol (A, L(Ly(D))) such that Rer, (py)({LA) | A€A}) <.
Then, by (b) we have

Rer,o)y{ALN) | A€ A})
S Rery(p) {Mm, (N) [ A € ANRL (L, ) ({KA) [ A€ A}) < Ag ™.

Applying Lemma 2.1 and Proposition 2.2, we have the following theo-
rem.

Theorem 2.4. Let 1 < g < 00, 0 < e < 7/2, and Ao > 0. Let X, and
e be the sets defined in (1.10), K1 (A) be the operators defined in (2.2).
Then, K+(A) € Hol (¢, L(Ly(RN)N, HZ(RN)N) and the estimate

R, @y a2 vy {70 (VL (V) | X € Beng}) <, 7= ImA

holds for £ = 0,1 and j = 0,1,2. The constant v, depends on Mg in such
a way that vy, — 00 as A\g — 0.

2.2. Model problem in a half-space. Let

Rf:{fz(xl,,.fN)ERN |xN >O}7
Ry ={z = (z1,...,2n) € RN | on =0}. (2.6)

In this subsection, we consider the half space problem:

AH-o'AH=f_ in RY,
{M * (2.7)

(curlHn=g_, H-n=h_ on RY,

where n = (0,...,0,—-1),g- =(g1,...,9n-1)-
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Theorem 2.5. Let 1 < ¢ < o0, 0<e<n/2, and Ao > 0. Let
XqRY)={(f-, g—, h) | - e LyRT)Y, g Hy(RY)™, ho € HFRY)},
X, RV ={(Fo—, Fs, Fr, Fs, Fy, Fro) | Fo— € Ly(RY)Y,
Fs € LRV, Fre HYRY)N™!, Fg € Ly(RY),
Fy e Hi(RY), Fipe HZ(RY)}.
Then, there exists an operator family B(A) € Hol (X, L(X,RY),
HZ(RV)N)) such that for any X € X, and (f-,g_,h_) € X (RY), the
unique solution of (2.7) is given by H = B(A\)F}(f_,g_,h_), where
Fr(fo,g_,h_)=(f-,\"?g g  Ah_ A2h_ h_) € X, (RY)
The estimate
Rc(xq(Rf),Hgﬂ'(Rf)N)({(TGT)Z(V/QB()\)) A€ Zent) S T=ImA
holds for £ = 0,1 and j = 0,1,2 with some constant v»,, which depends
on Ao in such a way that vy, — 00 as A\g — 0.

Remark 2.6. (1) The variables Fy_, Fg, Fr, Fg, Fy, and Fjg correspond
to f_, \Y2g_, g_, Ah_, A\Y/2h_, and h_ respectively.
(2) The norm of X, (RY) is defined by

1(Fo—, Fo, F8)ll o,y + [1(F7, Fo)ll r ) + 1 Froll 2 mry)-

Extending f_ by 0 into RY, and denoting this extension by f, we can
reduce (2.7) to the similar problem with homogeneous equation using the
solution K_(A)f constructed in the previous section. Thus, it is sufficient
to consider the problem:

{MAHafAHO in RY,

2.8
(curlHn=g_, H-n=h_ on RY. 28)

Let ' and .7-'{, ! e the partial Fourier transform with respect to 2/ =

(1,...,25y-1) € RN¥~! and the inverse partial Fourier transform with
respect to & = (&1,...,&nv—1) € RV~ defined by

F=Fl= / e (ol o) da,
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Applying the partial Fourier transform to the first equation in (2.8), we

have
a_p_MH+|¢H - D3H = 0.

Bounded solutions to this equation in Rf have the form ﬁj = Bje7v-N,

where w_ = Ja_pu_A+1|¢|%, B; €R,j=1,..,N.

We rewrite the boundary conditions in (2.8) componentwise:

HN:fh,,8NH]-:gj+8jHN:gjfajh,,jzl,...,Nfl.

Applying the partial Fourier transform, we obtain
ONHjloy=o = F'lg; = 0h-);  Hyloy=o = —h-.

Inserting ﬁj = Bje”“~"N into (2.9) yields the relation
1 ~ ~
Bi :*w_]:/[gj*ajhf]a BN = —h-.

Thus, we have

—wW_T
e N

H(¢ on) = — F'lgj — 0;h-](€,0),

Hy (€ on) = —e “="Nh_(¢',0).
We use the method suggested by Volevich [25] and obtain

o0

(€ an) = — / e ) Flgs 9 )€ yn) dy
0

i e—w-(zNtyN) , ,
+ [ P ovg; - 0,0 )€ o) du,
0

o

Fn(e o) = - / w_em @ (¢ ) dy
0

+/e_w_(l‘N—i_yN)aNﬁf(flayN)dyN-
0

Using the identities:

TP /(2 TP 7|2
_aud R _apd JEP
w_ w_— w> w

(2.9)

(2.10)
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we have

Hi(€ zn)=—

00
/)\1/267w7(1N+yN 7” ]-"[)\1/2 )\1/28 h_ ](flayN)dyN
w

2

-1

€' w?

1

=~
Il

7
/ ¢/l tontun) Sk a0 0 auh )(€,yw) dyn
0

a_p \'/? o ¢
= e ”*y”)L—J)

+ ()\1/267w,(mN+yN

0\8

(7'[31\79]‘ - 3j3Nh—](€'7yN)) dyn,

7 . a_p_ /2 . !
€)= Jue e T ]
0

(oz_,u_}"[)\h €, yn) Z F'[0¢h_)(¢, yN)) dyn

3 . /2 y
+ /()\1/26—0.;_(11\1-1-3;1\1)& /:3 + |€/|e—w_($N+yN)@)
0

— w_
. 7)\1/2 N IZ
(R PN 0k (€ ) ;§ 0u0xh-)' ) ) dyw.

We define the operators
Bj(A\)(F, - - -, Fio)

_ —w_(zNntyNn o h—
_/}‘Ell[)\l/Qe (o) S L ([ Py — 0 Fa) (€, un) | () dyy

2

-1

1
=3 [t il S 0, Py 0,0 ol )
J 7

1

M / 70.)7(93N+'9N)m
el )

+ .F /1 |:()\1/2€7w7(IN+yN)

0\8 T‘T
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(f/[aNF7j — 9;0NF10) (€, yN))] () dyn,

BN()\)(FG, - -7F10)

7 . o AL/2 /
:/.7:{/1 |:(>\1/26—w_(lN+yN)/':}73+|€/|e—w_($N+yN)f_3|)
0

N—-1
(a j. F' Fg E yN Z]:l akFIO f yN))}(x,)dyN
k=1
o0 _ 7)\1/2 !
+/fg/1 |:()\1/2€7w,(:bN+yN)a K +|£’|6*W—(93N+9N)%)
J el

(a,uJ\l/Q

w_

N—-1
F'[OnFol (€', yn) 1; Zf—k]"’ 3k3NF10](§’,yN))} (z") dyn-.

Obviously,
Hj(w) = Fo ' [H; (€ 2n)](@) = B;(N(A\ g, g, Ah—, AV h).

As a preparation for the proof of the R boundedness of B;()), we in-
troduce some classes of multipliers.

Definition 2.7. Let = C A x (RV=1\ {0}), A € C and let m: = —
C, (N &) = m(\€) be Ct with respect to 7 (A = v +i7) and C°° with
respect to &'.
(1) m(A, &) is called a multiplier on E of type 1 of the order s if there
hold the estimates:
98 m(X €] < Cu (N2 + 1€y,
108 (rrm(A,€))] < Cor (N[ + [€/])*7 1] (2.11)
for any multi-index #' € N)Y~! and (), ¢') € E with some constant
Cy depending solely on ' and Z.
(2) m(A, &) is called a multiplier on E of type 2 of the order s if there
hold the estimates:
98 m(X, €] < Cor (N2 + €)1,
108 (rrm(A, €))] < Cr (A + [€])7]¢) 71 (2.12)
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for any multi-index #' € N)Y ™! and (), ¢’) € E with some constant
C\ depending solely on ' and E.
Let M, ;(E) be the set of all multipliers on = of type 4 (z = 1,2) of the
order s. Especially, below we write M ; (X x (RN =1\ {0})) simply by Mj ;.

The following lemma immediately follows from the inequality
(A2 4 eIl < /)1
and the Leibniz rule.
Lemma 2.8. Let s1, so be two real numbers. Then, the following three
assertions hold.
a) Given m; € M, 1(E) (i = 1 ,2), we have mimg € My, 44, 1(Z).

b) Given ¢; € M, ;(E) (i = ) we have {10y € M, 45, 2(E).
c) Given n; € M, 2(E) (i = 1,2), we have ning € My, 4, 2(E).

For any s € R, w® € M 1. Moreover, £; € M 1, |¢/|> € M. To prove
the R-boundedness of the operators B;(\), we use the following lemma
due to Shibata and Shimizu [19, Lemma 5.6].

(1]

Lemma 2.9. Let 0 < € < 7/2. For given {o(\, &) € M_a1 and (1(\, ) €
M_s 2, we define the operators K;(A) (j =1,2) by

[K1(Mh)(z) = / Fo o\ €N e = n ) R y, ) (2)) dy,y

(K> /]:'1 (1N €N)IE e~ Entu) FIRI(E yy))(a") dyy
0

Then,
Re(ngeyy ({10, (N 203K;(N) [ A € 2e}) < Ong
(s=0,1, i+]a|=2, j=1,2).
Applying Lemma 2.9 to B,(\) and using Proposition 2.2, we observe
RE(XQ(]RQ’),HZ’“(]Rf))({(TaT)(Ai/QBj(A)) [ A€ Zent) < Mo

with some constant vy, that depends on )¢ in such a way that v,, — oo
as Ao — 0. Uniqueness follows from the existence of solutions to the dual
problem. This completes the proof of Theorem 2.5.
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2.3. Model interface problem. Let Rf and R}’ be the symbols defined
in (2.6) and

RY = {z = (21,...,25) €RY |2y <0}, RY =RYURY. (213)
Let n = (0,...,0,—1). Consider the problem
pAH — o 'AH = f in RV,
[[a tcurlH]n =g', [[BdivH]] = gn on RY, (2.14)
[H— (H-n)n]]=h', [[fH-n]]=hy onR}.
Theorem 2.10. Let 1 < g < o0, 0 < e <7/2, and \g > 0. Let
Y,(RY) = {(£,g.h) | £ € L,®Y)Y, ge HI®Y)Y, he HARMM),
V,(RN) = {(Fy, F1, Fy, F3, Fy, F5) | Fo, F1, F3 € Ly(RY)Y,
Fy, Fy € HYRMN, F5 e HZ(RV)V}.
Then, there exists an operator family
Br(\) € Hol (S, L(Vg(RY), HZ(RV)N))

such that for any A € X, (f,g,h) € Y,(RY), the unique solution of
Eq. (2.14) is given by H = Br(\)FY{(f, g, h), where

FY(f,g,h) = (f,\"/°g, g, A, A\'/?h, h) € Y, (RY).
The estimate
R gy vy sz vy (L0 VB (N)) | A € Beng}) < gy 7 = I

holds for £ = 0,1 and j = 0,1,2. The constant v, depends on Mg in such
a way that vy, — 00 as Ag — 0.

Remark 2.11. The norm of ), (RN) is defined by
[(Fo, F1, F3)l| 2,y + 1(F2, Fa)ll pa ey + 1F5] g2 ey
Let f = f1 and let £ be the zero extensions of fi to Rg. By using
K+ (MNfY, where K4 ()\) are the operators defined in (2.2), we can reduce

Eq. (2.14) to the case f = 0. Thus, it is enough to consider the following
problem:

p H — o 'AH =0 in RV,
[atcurlH]jn =g/, [[fdivH]]=gny  on R}, (2.15)
[H—(H-nn]]=h', [fH n]]=hy onRy.
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We assume that g € H}(RY)Y and h € HZ(RY)". The jump conditions
in (2.15) have the form

— a7 (0jHiN — ONH 1 j)|on=0+ + aZ (O;H-n — ONH_j)|an=0- = ;>

N N
By > 0iHyjlox=or —B- Y 0;H jlux=o- = gn, (2.16)

j=1 j=1
Hyj—H j=hj, —-BtHyn+B-H n=hy, j=1,..,N-1

Let Hy; = F'[H,;](¢', zn). Applying the partial Fourier transform to the
first equation in (2.15), we have

ui)\ﬁij + a;1|£'|2ﬁij - a;lDJQvﬁij =0 for £zn > 0. (2.17)

Let wy = agpusA+|¢|?. Bounded solution to (2.17) has the form
ﬁij = Ay;eT¥+%N_ To find A.;, applying the partial Fourier transform
to conditions (2.16) and inserting ﬁij, we arrive at the following linear
system

— a;l(ifjA+N + W+A+j) + Oé:l(ing,N — w,A,j) = gj (218)
N—-1 N-1
Br(D itjAL —wiAyn) =B (D i&GA j+w A N) =Gn, (2.19)
j=1 j=1
~ B 1 ~
A+j = A,j + hj, A+N = —A,N — —hN. (220)
B B

Multiplying (2.18) by i¢; and taking a sum from j = 1 through j = N —1,
we have

a P AN — ailwyi€ - AL — T PALy —aZlwoig’ - AL =g -7,

which, combined with (2.20), furnishes that

(a7 'wi +a”two )il - AL + P (et — a;lﬂ;)A,N

e e
=it g —aTtwyil - h — h.
L o By

Combination of (2.19) and (2.20) yields the following relation

(Bs — B)i€ - A — B_(wy +w_)A_N = Gn — Bai€ B —wihy. (2.22)
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We set

A (T oD SRR ()
By —B- —B- (w4 +w-) '

With the help of (2.21) and (2.22), we obtain
& A —it" g — aTlwii B — (a “1i¢12h
A < EA_N> _ ( ¢35 o ;ﬁg s _(wi%? &'l N> . 223)
By simple calculations, we observe that
det A= —B_{(wy +w_)(a}'wy +alw_)
—EP(Bs = B-)(ar )™ = (a=B-) ")}
= —BA{ai A+ €77) + aZt (a-p- A+ [€)
+ (a3 +aZlwpwo — €128+ = B-)((a84) ! = (a-B-) 1)}
= —B-A{(p+ + p)A + (B4 (a—p-) 7!
+ B (arB) HIEP + (3! + aZhwiw_}.
Hence
| det A| # 0, (2.24)
provided that (\,¢') € B, x (RV=1\ {0}). In fact, if 0 < arg A < 7, then
0 < arg((ps + p)A+ (Br(a-B-) " 4+ B-(ay B1) IEP) <
and 0 < arg((a;' + " wyw_) < 7. And, if —7 < arg A < 0, then
—m < arg((p4 + p—)A + (B+(a-f-) " + f-(asB4) " HIE?) <0

and —7 < arg((a;' + o= )wiw_) < 0. Thus, we have (2.24).
Now, we prove that there exists a constant ¢y > 0 such that

|det Al > co(|A] +[€']%) (2.25)
for any (), &) € . x (RVN=1\{0}). Really, in the case |¢'| > R;|\|'/? with
large Ry > 1, we have
[ det A| > B ((B+(a=B-)"" + B-(arBy) ) +ai' + o=t + O(Ry))IE'P.
Choosing Ry > 1 so large that

(Bi(a—p) ™ + B0 B1) ™) +ai’ +aTl + O(B?) = (o7 +ah),

we obtain
|det Al = (8-/2) (a3 ! + aZh) (Al + [€']%).



ON THE MAXIMAL Lp-Lg REGULARITY THEOREM 149

In the case |A\|'/2 > Ry|¢'| with a large number Ry > 1, we have
|det A| > B (py + p— + (o' + o= (arappp)? + O(R; )N
Choosing R, so large that
py+p-+ (@ + o) (o pp )P+ O(Ry?) = py + e,
we have
| det Al > (8- /2)(us + p-) (1N +1€').

Finally, we study the case when Ry'|¢'| < A2 < Ry|¢’|. We introduce

— 67
the notations \ = |/\‘+|€ ‘27 fy Ve
then |)\| + |§ | =1 and
Let

T << e <ldP <L
={(\&) €T x ®NTIN\{0}) [N +]€] =1

1 ~ 1 ~
<IN <1, —— <|E)P <1
1+ R? A 1+ R32 €' }

Obviously, A, is a compact set. If (A, &) € X x (RV~1\ {0}) satisfies
the condition: Ry |¢'] < |A|Y/2 < Ral¢/|, then (X, &) € A.. If we set Oy =
\/ @z pe X + €2, then we have |det A| = (|A|+]¢/[2)0(X, €) with (X, &) =

B (4 4+ )N+ (B (- B) T+ 8- (ar B) IR+ (a3 +aZh)@30).
By (2.24), ()\ € #0 for ()\ &) e v x (RN=1\ {0}), it implies

Thus, we have (2.25), provided that (\,&') € X, x (RN=1\ {0}) and
RyME| < IAY? < Ry|€'|. Tt completes the proof of (2.25).
Since

art = g (s ) BP0 S (02007
det A\ —(B+—p5-) ozjrlw+ +a tw_ ’
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we have
i€ A= Loy +o)ig 51€00
+ (g B) ™" = (= B-)HIE'Pan (€, 0)
+ (A + By (o B) TEP + aF wyw )ig - (€, 0)
+ (0= B) wy + (0 B) " w )€ PRa (€, 0)}, (2.26)
T A{(m B-)i€"-g'(€',0)+(af wi+aTtw )gn (€', 0)
— (Boajtwy + BraZlw)ie W' (€,0)
— (A + B (g ) THE P + aZ wiw )hn(€,0)}.
Since A4y = f-B7 Ay — B3 hy, using the formula of det A, we obtain

Agn= Bde {(B+=B8-)i€' - (€, 0)+ () 'y +a w )gn (€', 0)

— (B-aj'wy + Bra”lw )ig’ - 1(£,0)
+(u-A+ By (o B)THE R + o wiw ) (€, 0)}.
By (2.18), we have

A_n=

(2.27)

—gj = a lig AN —aZliGA N Falwi Ay +allw A

_(_B- P )igs — alics
= (Oz_i_ﬁ_,_AiN — Oé+ﬁ hN)ij — O _ ijA,N

+(a+w++a w_)A_; +a+w+h

It implies

1 - P
A_j=— —— (=95 — aF 'wihy + (o fy) 7 Nighn)
oy wy o wo

_ ((a+ﬁ+) ‘B~ a_l)ZEJA
— _
a+ Wy +a_Two

By (2.20)

1 - _ ~ R
Ayj= i —— (=g + aZtw_hj + (ay By) li€ hn)
+ + + o Tw_

_ ((04+5+)_157 —aZl)ig AN

(e w++a Yo

(2.28)
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Using the Volevich method [25], we have

oo

o) = - / @ gy AL (€ ) dyy
0

[e.e]
+ /w+e_w+(”N+yN)A+j(§',yN)dyN for xx > 0,
0

0

H_j(z) = /e”*(zNerN)@NA_j({’,yN)dyN
0
+ /w,e”*(mNerN)A,j(f’,yN)dyN for zy < 0.
—0o0

Using the identities (2.10) for wy, we obtain

+oo )\1/2

[’—\[ij(x) - _ / {Al/Qeq:W:(:(xN'f‘yN)%
J T

!
+|§/|e:':wi(zN+yN)%}aNA:tj(glvyN)dyN

(2.29)
+oo 1/2
+ /{Al/Qe:Fwi(rNerN)aiMi)‘
0 v

/
+ |€I|€:ij:(xN+yN)%}Aij(§I7yN) dyn

for £ > 0. In the sequel, we prove that there exist multipliers mz1 +j
mfkij, m?yij, mfk’ij and mg’%ij belonging to M_» 1, and multipliers
nj i, nyy; and n?kij belonging to M_; ; such that At; and Oy A+, are
represented as follows:

N N
Agy =" mi ;LN F NG yn)+ Y mi a0 E)F 10k (€ yw)
i=1 i,k=1

N N
+ > md N F RE yn) + D mily (N E)F N0 (€, yw)

i=1 i,k=1
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+ Y mi (N F[0i0khd) (€ yn)  for £y > 0; (2.30)
z,k,l:l
N

On A me-,ij X EVF Ongil(€ yn)+d_n? (N E)VF A2 Onhil (€ yn)

i=1 i=1
N
+ > i\ F0i0nhi](€ yn)  for ay > 0. (2.31)
ik=1

It suffices to prove (2.30) and (2.31) for Ay; and OnA4;, because A_; and
OnA_j can be treated in the same manner. First, we treat Ay given by
(2.27). We write

N-1
i -G (& un) =Y Flowgrl(€,yn)
k=1

and use (2.10) for wy, we obtain

)\1/2 7}\1/2
H+ + H
Wy W

= ay ’Lgk :1i§k a5 ’ .
=2 (P ) Flokan (€ o)

k=1

(a3 ws +aZlw )gn (€ yw) = ( )F N 2gn1(E )

N-1

= (ﬁ g A2 ﬁtuJW)

w_

(B-ai wy + BraZlw )it - B'(€,yn)
k=1
B oy Zfz ﬂ o

w_

N—

x F'INY20,h) (€, yn) — Z (

k=1 Wt

(LA + Be(a—B_) HE P + o 'wiw_)h I (€ yn)
—1

Z(M—-l-'u;r_)]:'[)\hzv (€ yn)— Z(a 57 o )fl[aihN](§'7yN)-
k=1

) P00 € )

Since
(det A)~' € M_oq, M 2wi'eMps, i&wi' €Mp1, w_wi'€ Moy,

we have (2.30) for A4 n.
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On the other hand, by (2.27), we see that

-1
OnAin(€ ) = S D5~ e v (€ )

+ (o wy +aZtw )ongn (€ un)
— (ﬂ,a;ler -+ ﬂJrOé:le)if/ . aNﬁl(glayN)
— (- A+ B(aB) E P + afwiw )anha (€, yn)}-

Notice that

N-1

ie" - Ong' (& yn) = D i&F [Ongi] (€ un),

k=1

N1
i€ OND (€ yn) = Z]: [OrONhi) (& yn),

k=1
(1A + B Bo) e + o wiw )Onhn(€ yw)
= (p— + prw_wiHAY2F N 20n b (€ yn)
N-1
+O‘+ w_wl D& F'[0ONhN] (€ yn).
k:l
Since
)\1/2 fk
— e M_ e M_ M_
dot A SNl e A €L th€ L
w_A\1/2 w_1y,
=7 M. — _cM_
w4 det A €M1 w4 det A €M1,

we have (2.31) for Oy A4 N.
Taking into account (2.10), we obtain the following relations:

R T o
g5 £ O‘:Flw:th + (g By)” ij +5+ -7'-/[)\2gj](§ YN)
+

N71i€ N— —1
wa—ff'[akgj](s',ym (”*f’Ah € yw) Z S F02h;)(¢ yw)
k=

+

B N— 1 o B ) ,Lg
(2 o€ 3 P )
W+ k=1 er
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Since
AL/2 ik
1 1 ) S M—2,17 1 € 1 ) S M—2,17
(@l wy +a” w_)wi (@l wy +a” wo)wi
1
S M_Q,l,

(aj'ws + aZtw )wy

in accordance with (2.28), we have (2.30) for A4;. On the other hand, we
see that

On (G5 £ o3 wehy + (asBe) "higihn) = F'[Ongi) (€ yn)

)\% ) N—-1 Oéili
+ (Hi—f'[)\fé)zvhj]('f' yn) = Y :F—&]:/[akaf\fh’](‘sl’y’v))
Wx k=1

wr
+<%}"/[A A;hn) (€ yn) Nz:l Oc+ﬂ+ ka [6k8th](€/,yN)).
k=1
Since
1/2 '
(a7 oy -l):alw_)wi eM_11, (o Ty —ii]zlw_)wi eEM_14,

we have (2.31) for OnA4,.

Let Fy, F», F3, F; and Fs be corresponding to A'/2g, g, Ah, A'/?h, and
h, respectively. We define operators B4 ;(A) acting on F = (Fy, ..., F5) by
the following rule:

«@ Az
Bi;(A /f, Aze:F“i(mN*yN)%+|§| ENENN) Eil)

N N

x (Z 1A ) FlON Foj) (€ yw) + Zn?,ii@\’5/).7:[0NF4]‘](€/7:UN)
j=1 =
N

£ 30 ) Floon Fai (€ un)) | () dux

k=1

+ /f;KA%exwi(zNwN)%Ni/\E +|§/|e¢wi<zN+yN>ﬂ)

W4 w4
0
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N
mj (N E)FIF)(E  yn) + Z m. (A ENF[0; Far) (€', yn)

1 G k=1

X
Mz

N
LNEFIF)E yn) + D mie i\ E)F10; Pl (€, yn)

J,k=1

+

'Mz 5

Il
2)—‘

J
+ Y M N FI0,0:F5)(E yn)) | (@) dyv.
gk e=1

We set (Br(\)F)(x ) (BL1(VF)(z), ..., (Ben(MF)(z)) for z € RY,
in accordance with ( 9), (2.30) and (2.31),

Br(\)(A\/2g, Vg, Ah, A\1/2Vh, V2h)

is a solution of problem (2.15). Moreover, by Lemma 2.9 and Proposition
2.2, we have

Ry vy i iy ({70 V2B N) | ) € Sng}) < g

for £=0,1 and k = 0,1,2 with some constant v,, that depends on Ag in
such a way that vy, — 0o as Ao — 0. Here,

ViRN) = {(F1,..., Fy) | Fi, F3 € Ly(RV)N
By, Fy € HY(RV)N, Fs e HZRY)V}
This completes the proof of the existence part of Theorem 2.10. Our final

task is to prove the uniqueness. Let H = Hy € Hg(Rﬁ)N satisfy the
homogeneous equations:

pMH — o 'AH =0 in RV,
[[a tcurl Hjn = 0, [[fdivH]] =0 on Ry, (2.32)
[H - (H-nn] =0, [BH-n]]=0 onR).

Let f be any elements in Ly(RY)Y and let G = G4 € Hg, RN be
solutions of the equations:

PAG —aTAG = f in RV,
a teurl G]ln = 0, af) tdivG]] =0 on RY, 2.33
0
[G—(G-n)n]]=0, [[(«B)'G -n]]=0 on RY.
By the divergence theorem of Gauss,
(Ha f)]RN = (H7 MXG)]RN - (H7 a_lAG)RN
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=\pH, G)zy — (H,a 'Diveuwrl Gy — (BH, (af) ' Vdiv G)zn
=A\pH, G)pn~ + % (o tewrl H, curl G)gn + (o 'div H, div Gz -
On the other hand, by the divergence theorem of Gauf,
0= (u\H — o 'AH, G)n
= A(uH, G)gn — (a7 'Divewl H, G)pn — (8VdivH, (af) ' G)gw

1
= ApH, G)an + E(oz_lcurlH, curl G)gn + (@ 'div H, div G)gn.

Thus, we have (H, f)Rg = 0. The arbitrary choice of f € L,(RY)Y yields

that H = 0, which shows the uniqueness. This completes the proof of
Theorem 2.10.

§3. R-BOUNDED SOLUTION OPERATORS IN A BENT SPACE

Let ® : RV — RY be a bijection of C! class and let ®~! be its inverse
map. Let V& = A+ B(x) and V®~! = A_; + B_1(x). We assume that A
and A_; are orthogonal matrices with constant coefficients and B(x) and
B_1(z) are matrices of functions in W2(RY) with N < r < co such that

IBllz @), |1 B-1llo. vy < My, [[VBllgr@n), [VB-1llm@y) < M.

(3.1)

Note that A_; = AT and AAT = AT A = 1. We will choose M; small

enough eventually, so that we may assume that 0 < M; <1 < M3 in the

following. We set Q1+ = ®RY), I' = ®(R)). Note that Q UT = RV.

Let n be the unit normal to I', outward with respect to Q,, ®~! =

(P_11,...,P_1 n). In this case I is represented by ®_; x(y) = 0. It im-
plies

Vo_ Bni,--- Byn)T
n— %5 1,N| _ (An1 +N N1, ANN + Bnw) , (32)
—1,N (Z(AN’L +BN'£)2)1/2

i=1
where A_1 = (A;;) and B_; = (Byj) (n is defined on the whole RY).
Choosing M; > 0 in (3.1) small enough, we have

n= (ANl....,ANN)T+bn, (3.3)
where b, = (bn1,...,bon) " € HYRY)N and satisfies the estimates:

ballz. @) < CnMi, Vb gy < Cn e Ms.
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For the interface problem
pAH — o 'AH = f in Q,
[a ' (curlH)n]] =g’, [[BdivH]] =gy  onT, (3.4)
[H-<H,n>n]]=h", [[BH-n]]=hy on T,

we have the following result.

Theorem 3.1. Let 1 < ¢ < 00 and 0 < € < 7/2. There exist constants
M; € (0,1), Ao = 1, and an operator family

By(A) € Hol (Se.x,, LV (RY), HF()™))

such that for any (f,g,h) € Y,(RY) and \ € ., the unique solution
to problem (3.4) is given by H = By(\)Fy(f,g,h), where Fy(f,g,h) =
(£, \'/2g, g, A\h, A\1/2h, h). Moreover, By()\) possesses the estimate:

Ry, @)1 (@) {(T0) (V2 By(A) [ A € e ng}) by 7 = Tm.

Here, My depends solely on €, pi, atx, B+, ¢ and N; Ao and -y, depend
solely on €, px, ax, B, Ms, ¢ and N. Y (RY), V,(RN) are defined in
Theorem 2.10.

We give a sketch of the proof. We transfer (3.4) into a problem in RN
by the change of the variable: * = ®~1(y) with y € Q4 and z € RY. In
this case,

N
0 0

— = i + Bej)=— 3.5

6:(]] ;(Ae] + e])axe7 ( )
where A_1 = (A;;), Bo1 0 ® = (B;;). As by (3.1) By, are small enough,
Theorem 3.1 can be deduced from Theorem 2.10 by the help of the fol-
lowing lemma which is a consequence of Sobolev’s imbedding theorem (cf.
Shibata [16, Lemma 2.4]).

Lemma 3.2. Let 1 < g <7 <00, 7> N. There exists a constant Cn ;4
such that for any o > 0, a € L.(RY) and b € W;(Rf) the following
estimate

__N_ g
labllz, ) < ol VBllL,@y) + Crvrngo™ ™ lall 7 G, 18], e

holds.
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The detailed proof of the similar result for the Stokes equations with free
boundary conditions is given in Shibata [17,18]. As the proof of Theorem
3.1 is almost parallel to the proof in [17,18|, we may omit the details.

Let Q4 = ®(RY), I' = ®(RY’), and n is the unit normal to I', outward
with respect to 4. Consider the problem:

(3.6)

p_AH - 'AH=f in Q,
(cwlHin=g_, H-n=h_ on .

Employing the similar arguments, we deduce from Theorem 2.5 the fol-
lowing result.

Theorem 3.3. Let 1 < g < oo and 0 <e < w/2. Let
Xy(Q) = {(F,g - h ) | FEL ()Y, g e HIQ)NT ho e HAQ,)),
X, () ={F = (Fy, F, F7, F3, Fy, F1o) | Fo€ Lo(Q4)N, Fs € Ly(Q )N,
Fre Hi(Qu )N, FseLy(Qy), Fo€ Hy(Qy), Fio € HZ (1)}
Then, there exist constants My € (0,1), Ao = 1, and an operator family
By(\) € Hol (Seny, £(, (22, HX(Q:)V))

such that for any A € L, », and (£,8-,h_) € Xq(Q4),
H = B,(\)F\(f,g_,h_), where

Fy(f,g,h)=(£,A g g M A?h b)),
is a unique solution of problem (3.6), and
RL(XQ(Q+),H§_1(Q+)N)({(TaT)l()‘j/QBb(A) | A€ Zeat) <, 7=ImA

for £ =0,1 and j =0,1,2. The constant My depends solely on €, u_, a_,
q, and N. The constants \g and 7, depend solely on e, u_, a—, Ma, q,
and N.

§4. PROOF OF THEOREM 1.5

4.1. Some preparations for the proof of Theorem 1.5. First, we
state some properties of a uniform Wf ~UT Jomain that we use to prove
Theorem 1.5 below. Employing the same argumentation as that in the
proof of Proposition 6.1 in Enomoto and Shibata [7], we can prove the
following result.
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Proposition 4.1. Let N < r < oo and let Q be a uniform W,-Bfl/r domain

in RN . Let My be the number given in Sect. 3. Then, there exist constants
My >0,0<d%d",d* <1, at most countably many N-vector of functions
P! HE,IOC(RN)N (1 = 0,1) and points :c? €ly=T,zj €l =S and
xij € Q4 such that the following assertions hold:
(i) The maps: RN > 2+ Pi(z) € RN (i =0,1,j € N) are bijective.
(i) @ = (U (@RY) N Bao (29))) U (U3 (@HRY) N Bas (a1)) ) U
U;;(Bd? (z3,) U Be2(22)),
de(.ﬁij) C Qg (I)g(RN)ﬂBdo(Ig) :QﬂBdo(Ig), (I)S(R(])v)ﬂ
Bd() (x;) =I'Nn Bd() (xjo),
PIRY) N By (z}) = QN By (x}), @j(Ry) N Bgi(z}) = SN
Bdl (le) _ B
(iii) There exist C* functions (j, (ij, ¢ (i=0,1), and Cij, (j €N),
such that

0 g ;7 C:Qtja ;a <:2|:] g ]-a SUPPC;a Supp(; C de(l';),
supp (3, supp (2, C Bge(21;)

H( ;7Cij7 ;aCi])”HgO(RN) < Co, CJ’L =1 on SUPPC;a Ci] =1 on SuppCija

1 o oo i oo 00
§;+ZZ§L =1 onQ, Zg;’:l on T, ZC}zl on S
i=0 j=1 + j=1 j=1 j=1

Here, co is a constant which depends on My, N, q and r, but

independent of j € N.

(iv) V&, =A: + B, V() ' =A | + B} _,, where A} and A} _,
are N X N constant orthogonal matrices with constant coefficients,
and B; and B;»,_l are N x N matrices of H%IOC(RN) functions
defined on RN which satisfy the conditions: ||(B}, B} _1)llL.w~) <

M; and ||V(B;)B;,—1)HH%(RN) < Ms fori=0,1 and j € N.

(v) There exists a natural number L > 2 such that any L+ 1 distinct
sets of {Bgi(x) | i = 0,1, j € NYU{Bg(z%;) | j € N} have an
emptly intersection.

In the sequel, we write By: (%), Bg(x7;) simply by Bi, B3, respec-
tively. By the finite intersection property stated in Proposition 4.1 (v), for



160

E. FROLOVA, Y. SHIBATA

any r € (1,00) and k € Ny, there exists a constant Cy , 1, such that

> - 1/r
DU lanay] - < Crrilflise
j=1

(4.1)
for any f € HF(Q) and 4, € {BO B1 Bij}.

By the help of (4.1), in the similar way as in the proof of Lemma 4.3 in
Shibata [16], we can prove the following proposition:

Proposition 4.2. Let 1 < ¢ < o0, ¢ = ¢q/(¢q—1) and i = 0,1,2. Let
Aj e {B]Q,B},Bij}. Then, the following assertions hold.

(i)

Let m be a non-negative integer. Let {fj}}?i1 be a sequence in

H'(Q) and let {g§€)};?°;1 (£=0,1,...,m) be sequences of positive
real numbers. Assume that

14 14
S (@i <00, (V' fi 0)al < Msg'?llellL, @nay
for any ¢ € Ly(Q) and £ =0,1,...,m

[e.e]
with some constant Ms independent of j € N. Then, f = > f;

j=1
exists in the strong topology of H;'(Q2) and

00 1
”vefHLq(Q) Y LMs( (6) ) !
j=1
Let n be a natural number. Let {f(z 2y (i =1,...,n) be se-
quences in Lqy(2) and let {gy 221 (i =1,...,n) be sequences of
positive numbers. Let a; (1 = 1,...,n) be any complex numbers.
Assume that
> (g7 < oo (7 0)al < Mag gl anay)
j=1

for any o € Ly(Q) andi=1,...,n

with some constant M3 independent of 7 = 1,2,3,.... In addition,
we assume that there exists a sequence of positive numbers {h;}52,



ON THE MAXIMAL Lp-Lg REGULARITY THEOREM 161

such that

0o n .

S <o |($0e) | < 00 el
j=1 =1

[ee] .
Then, f =% f;l) exist in the strong topology of Ly(S2),
j=1

< Gy, Ms ( > (hj)q> g

a(©) j=1

> aif®

=1

i=1,...,n and

4.2. Local solutions. In what follows, we use the notations
PIRY) = HY, @g(R{;’) =T;, ®}R ) H!;, and ®H(R{') = S}, and
set H?i = RV, Let n] and n1 be the unit normal to I'; oriented from
’H_OH (RN 4) into ’HO_» and the unlt outer normal to S , respectively. Let
HY=H,UH", and HY = HOUT; = ®Y(RY) = RN Let
F=(f,ghg_,h_)e Z,(Q). We consider the following problems:
pAH) — o 'AHO = 0fF in HY,
o~ (curl K] = O/, [[BdivHY =gy on Ty,
([H)— <H),n) >nf)] =, [[pn) H)]=hy onl;, (4.2)
poAHY —oZ'AHL = f 0 in HL,
n; . HJ1 = (:jlh_, (curlH})n} = C}g_ on S]l, (4.3)
psAHZ — o 'AHYL, = (G inHI;.  (44)
Note that n} (i = 0,1) are defined on the whole RN and ||n§|\H§<B;¢) <
CnM; (i =0,1). In addition, ng = n]Q on FﬂBJQ and n = n} on SHB}. By

Theorem 3.1, Theorem 3.3 and Theorem 2.4 there exist a constant A\g > 1
and operator families

TP(N) € Hol (S, LOVO(HY), HZ(HDHN)),

T;H(A) € Hol (S x,, L(Xy(HL), HZ (HE,)™)), (4.5)
T2;(\) € Hol (Se ng, L(Lg(H2;), HX(HL)N)
such that
H) = TY(WFY(E, (g, (Th), H) = T (VFA (G (g, G ho),

H2, = T2,(\GE,
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where
FY(Q, 0, ) = (Q0F, 020, (%g, AC"h, A/2¢0h, (¥h),
Fy(CH, (g, Gho) = (CF, N2 g, (g A ho A2 h ()

are unique solutions to the problems (4.2), (4.3) and (4.4), respectively.
Moreover, we have

Rc(yq(ﬂg),Hi"“(#})N)({(Tar)e(Ak/Qﬁo(A)) | A€ X)) < r,
R,y ity {0 PTHO)) [A € Ben}) <k (47)
R, v a2+, ({0 (NPT (0) A € Bexo}) < s

for £ =0,1and k+ |a] =2 (k =0, 1,2) with some constant ~ independent
of j € N. By (4.7), we obtain

Z|)\|k/2|\HO||H2 k(1) S <RI PG Qg D)y, o).
k=0

2
S NP os sy < AIEACE G Gho oy (48)
k=0
2

Z|>\|k/2||H HH2 ) S “HCJifHL (H3,)
k=0

for any j € N.

4.3. Construction of a parametrix. We define the parametrix U(A\)F
by the following formula

Z Z(ZHZ + Z Z(in (4.9)
i=0 j=1

oo

=Y GTYNFAGE (e ) + > GTHVEN(GE, G g, ¢ o)
j=1

j=1

+Y 3T <+Jf+Z<2 (WEf, F=(fghg h)eZ(Q).
j=1
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To represent the jump quantity, we make the following preparation: Let

TP = (TR, -, Ty (N)), and let B [73019()‘)|H%]F be the Lions exten-

sion of T} (\)F|r, into HS; such that

2
)\k/Q Ei'TO o |F ;2-+ < Ck||F 0y,
> NIBLTR o Pl < ColFloye
07 (Bx[TjNae 1F)Ie = 02T (N F)lryx - (Jal <2),
where
flr,+(20) = liirol f(z) forzo €Ty,

rEHRT;
Tz

Using these notations, we obtain
[l ewrl (OTP W) F)]In? = fla eurd TON)FlInd + RO,y 5 (VF,
[Bdiv (TN E)]] = G [[Bdiv TP (V) F]) + Ry ;(VF, (4.11)

where

0
Rt (N F ey = (72 s E) {03 B [T ey, 1F—a= B TN o JF) e

(% ){ FETA Ny JF = = B4 TSN o JF M
N

Ry 0P =0 (5 ){a;lE (T35 (Nlae, JF = = B4 [TH(Nlo JFHr.

k=1
Also we have the relation
curl (G TH A F) = (eurl THA)F + Ry (A F
with ) .
G a¢;
1 _ (5
08100 - (S ri0e - (K)o

Proposition 4.2 and estimates (4.8) imply U(MF € Hg(Q)N. Inserting

H = U(MF into (1.8) and taking into account that ng = nj on supp ¢ NT,

n = nj on supp ¢; NS, we arrive at

pAH - o 'AH=f - V}(\)F inQ,
(e~ tcurl HlJng, [[BdivH]]) =g~ V*(\)F onT,
[H- <ng,H>ng]] =h', [[fng-H]] =hy on T,
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[curl H Jjn=¢g — V3(\)F, H_-n=h_ on S, (4.12)
where
—a*l{z [2(V¢)) : (VTP VFR((E, g ()
+ (AT (A )FA(cﬁf,c;’g,c;’hﬂ
+a” 1{2 (V&) (VTHAFAG (F,80, ho)
+<A<;; T VFAG (F,80 )] (4.13)
agfj (VE2,) : (VT2 (003, 8) + (AC,)T2, (N, f]

F Z Rcurl] F)\ Cof Cogacoh) Rdw]( )F/{)(Z]Ofvé?gvé?h))v
1

<.
Il

VB(A)F = Rcurl]( )F)\ (le Cl ! 7<1 )

'M8

1

J
We set
V(AF = (VLA)F, VZ(\)F,0, V3(\F,0).

Proposition 4.2 and estimates (4.8) imply that V(X\) € Z,(Q),

IEAVNF z,0) < CA 2 BF 2,00 (4.14)
for any A € 3¢ x,, A1 = Ao = 1, where F) is the operator given in (1.11)
in Theorem 1.5. Since ||F)\F| z, (), A # 0 are equivalent norms of Z,(),
we can choose A; > A so large that in (4.14) C’)\l_l/2 < 1/2. We see that
there exists (I — V(A))™t € £(Z,(9)) and H = UN)(I — V(\))'F is
a solution of (1.8). The uniqueness follows from the existence theorem of
dual problem.

4.4. Construction of R-bounded solution operators. For F = (Fp,
Fla"'aFIO) S Zq(Q)v FO = (F07F1;F2;F37F47F5) S yq(Q); Fl = (F0|Q,;
Fs, F7, Fg, Fy, F1g) € X;(Q), we define the following operators:

1 oo 0o
=3 N VF Y G T (R,
+ j=1

i=0 j=1
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1§j 2(VE)) : (VT NG F + (AG) TSN F]
i TGP + (AT VG F
DY O_O (VEL,) (VT2 0GR + (AC)TE NG, AL
VE(AF = i(RMx ) FO, RSy s (NG FO),
ZRMJ (NG FY,
VN = (v (A)F, VE(\)F,0,V3(\)F,0). (4.15)

Obviously, UANF = UN)F,\F and V(A)F = V(A)F\F. By (4.5), (4.7)
and Proposition 4.2, we see that

UN) € Hol (S, £(24(Q), Hj()™Y)),
V(A) € Hol (S x,, £(24(), Z4(9))).

Moreover, by (4.7) and Proposition 4.2 we have

RL(&,(Q),H?*’“(Q)N)({(TaT)e(Akﬂu()‘)) | A€ Zem}) < Ck
Re(zy@){(70) FAV(A) | A € Sem}) SCM ™25 (0=0,1)

for any M > A\;. By (4.16), AA)F =UN)(I — V(\)) "L F exists and
qu(ﬂ),Hg—k(Q)N)({(Taf)e()‘kmfl()‘)) | A€ Xem}) <Cr

for {=0,1and k = 0,1, 2. Since V(A\)F,F = V(A)F, we have

FA(I-V())™

I

™
>
<

() = iFA(V(A)FA)j
§=0

=) (FAV(N) Fx = (1= FAV()) "' Fy,
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consequently,

H=UMNI-VQ\) 'F=UNF\NI-V\)'F
=UN)I — FRV(\) ' F\F = A\ F\F.

This completes the proof of Theorem 1.5.

§5. PROOF OF THEOREM 1.2

Since f, g, h, g_, and h_ in the right-hand side of Eq. (1.4) are defined
for t € R, we can divide a solution to problem (1.4) into two parts: H; =
H;: and Hy = Hy,, where H; (: = 1,2) are solutions to the following

problems:
poH; — o 'AH, = f
o teurlHy|jng = g/, [[BdivHy]] = gn
[Hi— < Hi,ng >ng]] =h', [[BH; ng]] =hn
(crlHi_)n=g_, n-Hi_=h_
and
pdHy — o 'AH, =0
o curl Hyjng = 0,  [[Bdiv Hy]] = 0
[Ho— < Hz,mp >mng]] =0, [[BHz-ng]]=0
(curlHe_)n=0, n-Hy_ =0
Ha =0 = Ho — Hili=o

in Q xR,
onI' xR,
onI' xR,
on S x R;

Applying the Laplace transform to Eq. (5.1), we arrive at

pAH; — o 'AH, = LIf] in €,

o 'curl Hy]lng = L[g'], [[BdivHi]|=Llgn]  onT,

[Hi— < Hi,no > ngl] = L[], [[BH; - ng]] = L{hw] onI',
(curlﬁl_)n =Llg_-], n- Hl_ = L[h_] on S.

By Theorem 1.5, we have H; = [A(A)G())], where

G()\) = (L[f], \'/?L[g], L[g], \L[h], \'/2L[h], L[h],

NV2L[g |, Llg ], AL[h-], ALl

-, Lh-])

(5.1)
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for A = v + it € ¢ 5,. The function H; = L;l[ﬁl] is a solution to the
non-stationary problem (5.1). To estimate H;, we use the Weis operator
valued Fourier multiplier theorem [26] stated as follows:

Theorem 5.1. Let X andY be two UMD Banach spaces and 1 < p < 00.
Let M be a function in C*(R\ {0}, L(X,Y)) such that
Rexy)({(p9,) M(p) | p € R\{0}}) = ke < o0 (£=0,1).

Let Ty be the operator defined by Tarp = F L MF[¢]] for any ¢ with
Flo] € DR, X). Then, Ty is extended to a bounded linear operator from
L,(R,X) into Lp(R,Y). Moreover, denoting this extension also by Tar, we
have

1Tvdl L, ry) < Clro + w19l & x)
for any ¢ € Ly(R, X) with some positive constant C depending on p.

Since any Lebesgue space and Sobolev space on domains in RY are UMD
space (cf. Amann [1]), applying Theorem 5.1 and taking into account that
L{f] = Fle7"*f] and e "L} '[g] = F;![g], we have

||€_7t0tH1HLP(R,Lq(Q)) + ||€_7tH1||LP(R,Hg(Q)) < C{||€_7tf|\LP(R,Lq(Q))

+lle™ gl 2@ 1, ) T e 8L @) T e 0L @ L)

e Bl gz + e 8 My, 0o T 8 @)
e 0h |, @ Loy + e ho L, @ u2 @)} (5.4)
Here, we have used the fact that

He_vtfHH;ﬂ(R,H;(Q)) < C{”e_’YtatfHLp(R,Lq(Q)) + He_’thHLp(]R,Hg(Q))}'

To solve problem (5.2), we use the semi-group approach. Let us consider
the resolvent problem:

M — (ap) 'AH = f in Q,

[[a~"curlH]ng = 0, [[AdivH]] =0 onT, (5.5)
[H- <H,nyg >np)] =0, [[fH-ng]]=0, onT,
(curlH.)n=0, n-H_=0 on S.

Let
Dy(Q) = {H e HX()V | [[a " 'cwlH]lng =0, [[BdivH]]=0 onT,
[H- <H,np >ng)]=0, [[FH-ng]]=0 onT,
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(curlH_.)n=0, n-H_=0 on S}
We set AH = (ua) ' AH for H € D, ().
Then, problem (5.5) takes the form
(A—A)H=f for He D,(Q).
Since R-boundedness implies usual boundedness, p(A) D % ,, and
IMIA = A) T ey + (A — A)71f|‘H§(Q) <Ol @)

Thus, the operator A generates Cy analytic semi-group {7T'(t)}t > 0 asso-
ciated with problem (5.2). Moreover, if we define

DQaP(Q) = (Lq (Q)7 Dq (Q))lfl/p,p;
where (-,-)1-1/p, denotes a real interpolation functor, we have the follow-
ing maximal regularity result.

Theorem 5.2. Let < g < 0o and let {T(t)}+>0 be the Co analaytic semi-
group defined above. Then,

le™ T OF N1, =y Lo + e TOE L, @, 120 < Collfll g2a-1m g
for any f € qup(Q) and v > A1 with some constant C' > 0, where Ay is
the same constant as in Theorem 1.5.
We see that

Dyp(Q) = {(H=Ha € Bi~V/P(Q) |

[[a  curl H]] = 0, [[3divH]] =0 [[H- < H,ng > ng]] = 0,

[AH -ng]]=0 on I, (curlH_)n =0, n-H_ =0 on S}
provided that 2/p+1/¢ < 1;

Dyp(92) = {H=Hy € B~ /7(Q) |
[H- <H,ny >ng]] =0, [[BH-ng]]=0onl, n-H_=0 on S}

provided that 1 < 2/p+ 1/q < 2, and D, ,(2) = B;(,}*l/p) (Q) provided
that 2/p +1/q > 2. Let Hy = T'(¢t)(Ho — Hy|t=0). By the compatibility

condition (1.7), Hy —H;|t—¢ € Dy (), consequently, by Theorem 5.2, Hy
satisfies the estimate:

le™ 0 sl (r o) T €7 Hall @, 120

< C(||H0||B§,(;71/p>(m + ||H1|t:o||B§f;fl/p>(Q))-
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We know that

Hy (R, Lo(2)) N Ly(Ry, HF () € BUC((0,00), B3 /7 (2))
where the inclusion is continuous and BUC' is the space of bounded uni-
formly continuous functions (cf. Tanabe [24, (1.18)]), therefore

HH1|t:0||B§fp1*1/P>(Q) <C(HeﬂtatHl||LZ,(R+,LQ(Q))+||@7WH1||LP(R+,H3(Q)))-

Thus, H = H; + H> is a required solution of Eq. (1.4). The uniqueness
follows from the existence of Cj analytic semi-group {T'(¢)}+>0. Theorem
1.2 is proved.

APPENDIX §A. DIVERGENCE FREE CONDITION

In this appendix, we show that if v, p, and H is a solution to problem
(1.3) with div H|;—o = 0 in , then div H = 0 on  as long as the solution
exists. Let K = (K4;;) = K4 be an N X N antisymmetric matrix of
functions from H}(Q+) and G = (G1,...,Gn)" = G+ € H{(Q)N. If K
and G satisfy the conditions:

[Kn:] =0, [[<G,7x>]=0 onT:, K_n|s =0,

where {741,...,7tny—1} is a orthogonal base of tangent space of T', then
the divergence theorem of Gauss implies
1
(DivK, G)g, = §(K’ curl G)g, - (A1)

Let Ty € (0,T7], and that ¢ = 11 (x) € Ly(Q2) be an arbitrary function. We
consider the following problem:

O + (au)’lAcp =0 in QTO,
[l =0, [[(ap) 'n;-Veg]]=0  on Gr, (A2)
n-(Ve_)=0 on S x (0,Tp),
50|t:T0 = l/} in QTD'

Let ¢ = ¢4 be a solution to (A.2), H a solution to (1.3), and div H|;=o = 0.
From [[p]] = 0 it follows that [[< V¢, ¢ >]] = 0. Consequently, with the
help of (1.2) and (A.1), we obtain

(OH, V), = (o "AH+Divu(v o H-H@ V), Vp)q,

1
= —E(oflcurlH—,u(v @ H-H® v),curl V)¢, —(udivH, (a,u)flAgo)Qt.
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Since (ap) " tAp = —0;p in Q) and curl Vo = 0, we have
(1O H, V) = (pdivH, 9;p)g,, -

Since [[(#0:H) - n¢]] = 0 as follows from [[¢H - n:]] = 0 and since [[¢]] = 0,
we arrive at
(HOH, V)e = —(0(pdivH), ¢)g,.
Combination of these two formulas gives us the relation
0 = (0¢(udiv H), cp)Qt + (pdivH, 8t<p)Qt
d
== /(udiv H)pdr — /v - V((pdivH)p) dz.
of Q¢
As we know that divv = 0 on €, we have

/V -V ((udivH)p) do = /div (v(udivH)p) d

s N
= /[[nt -v(udivH)g]] do + /v_ ‘n(p_divH_)p_ do.
I S
Since v_ -n =0 on S and [[n; - v]] = 0, we deduce

/V~V((udiv H)yp)dx = /(nt~v+)(u+div H o, —p_divH_¢_)do =0,
Q Ty
because [[udiv H]] = 0 and [[¢]] = 0. Thus, we have
d
pn (udivH)p dz = 0.
o
Integrating this formula from ¢ = 0 to ¢ = Tp and taking into account that
divH(-,0) = divHp = 0 on 2, we have

/ (udivH(-, Tp)y dz = 0.
By the arbitrary choice of 1, we have div H(x,Tp) = 0 for € Qg,. This
shows that

divH=0 in Qr.
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