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V. A. Solonnikov

LOCAL SOLVABILITY OF FREE BOUNDARY PROBLEM
FOR VISCOUS COMPRESSIBLE AND
INCOMPRESSIBLE FLUIDS IN THE SPACES

W2 (Qr), p > 2

ABsTrRACT. We prove local in time solvability of the free bound-
ary problem for two phase viscous compressible and incompressible
fluids in the spaces WEHJH/Q(QT) withp > 2,1 € (1/p,2/p).

§1. INTRODUCTION

The present paper is a continuation of the articles [1,2], where the evo-

lutionary free boundary problem for two phase viscous fluids of different

types was studied in the spaces W22+l’1+l/2, I € (1/2,1). Our aim is to

extend the solvability theorem of this problem to the case p > 2. The
problem has the form

p Dw + (v Vv )=V-T (v )+Vp =p f,

V-vm =0 in Q,

ot (Dt + (v - V)oh) = V- TH(v") + Vp(p") = pT £,

Dipt +V-(pTvt)=0 in Qf, (1.1)
viio=vE in QF, plmo=pf i Qf,

v =0, [|r,=0, V,=v-n|p,,

(—p(pT)+p )n+ [T(u)n] = —cHn on Ty

It is assumed that the incompressible fluid fills the variable unknown do-
main (2, that is a strictly interior subdomain of a container Q C R3 and
the compressible fluid is contained in the domain Q; = Q\Q, surrounding
Q; . The surface 'y = 99, is a free interface between Qif. The unknown
functions are the velocities v*(z,t), z € Qti, the pressure p~(z,t) of the
incompressible fluid and the density p™(z,t) of the compressible one, and
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p(pT) is a positive smooth strictly increasing function representing the
pressure of the compressible fluid. By T* we mean viscous parts of the
stress tensors

T (v )=p Sv™), TH(w")=p"S")+ufIV vt
where p* > 0, ,uf > —2ut /3 are constant viscosity coefficients,
S(w) = (Ve w) + (Vew)"

is the doubled rate-of-strain tensor, the superscript 7' means transposition,
I is the identity matrix, o is a positive constant coefficient of the surface
tension, H is the doubled mean curvature of I'y, V;, is the velocity of
evolution of I'; in the direction of n, the exterior normal to I'; with respect
to Q;, [u]|r, is the jump of the functions u® given in QF on the surface
Ft7 i.e.,
[UHFt = u+|rt - U’_|Ft'

We consider Problem (1.1) in the Lagrangian coordinates y € Q(J{ UT'gUQy

connected with the Eulerian coordinates z € QF UT;UQ; by the equation

t

x=1y+ /u(y,T)dT = Xu(y, 1), (1.2)
0

where u(y, 7) is the velocity vector field written as a function of the La-

grangian coordinates. We also represent p* in the form p* = p++97 (2, 1),

where p™ = M /| is the mean value of p™ and M+ = [ ptdx is total

o
mass of the compressible fluid. Tt is clear that [ 97 (x,t)dz = 0 and |QF|
of

are independent of ¢. In addition, we define 9~ (z,t) = p~(x,t) — p(pT),

0= (y, 1) = 0= (Xu(y, t),t) and f(y,t) = f(Xu(y,),t). Then Problem (1.1)

is converted into

P Diu” =V, Ty, (u™)+ V0~ = p_j?7

Vu-u” =0 in Q,

(P +6M)Deut = Vo - Ty (uh) + Vaup(p' +67) = (37 +67)F,

D+ (T + 0V -ut =0, 0F)mo =61 = p7 —p" in QF,

utlimo=ui=vi i QF, wt|g=0, [u]|r, =0,

(—p(p* +67) + p(pt) + 0 )n + [Tu(u)n] = —cHn on Ty,

(1.3)
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where V,, = L7V, = LTV, is the transformed gradient V, L = (g—;)

is the Jacobi matrix of the transformation (1.2), L=L7L L =detL,
L=1inQ;,Su(u) =Vy®@u+ (V, ®@u)l is the transformed doubled
rate-of-strain tensor,

T, (uw ) =p" Su(uw”), Tf(uh)=ptSy(ut)+ 4 IVy -ut, H=H(Xy,1).

u

The elements of the transposed co-factors matrix LT are given by
(LT Yim = (VX X VXi)m, (1.4)
where X; = (Xu)j and (4, j, k) is a cyclic permutation of (1,2, 3). The kine-
matic condition V,, = u - n is fulfilled automatically. The normal n(X,,,t)
to I'; is connected with the normal ng to Iy by the formula
_ H:Tno (y)
LT (y)|

Since Hn = A(t)X,, where A(t) is the Laplace-Beltrami operator on I'y,
it can be shown that the corresponding linear problem has the form

(1.5)

P DT — Vi — (W + V(Y 0T) 4+ pivet = £

DT +75V.-vT=ht in Qf,

p Dw —p Vo 4V =f", V.o =hT in Qf,

viimo=vi in QF, 0Tj—o=6 in QF, (1.6)
[v]lr, =0,  [poS(v)no]|r, = b,

t t
— P10 +07 +[no - T(v)m0] om0 / A(0)v(y,7)d7|r, =b+0 / Bdr,
0 0
where f£, h®, b, b, B, v, 6 are some given functions and p; =p'(5+) >0.
In the paper [3], the following theorem is proved.

Theorem 1. Let X, Ty € WpQH_l/p, p>2,1¢€(1/p,2/p). For arbitrary
fe w2 uQs), h— e wpt2(Q1) such that Db~ = V- H + Hiy,
H, Hy € W2(Qp), ht € WHLO(QF) n W2((0, T); WHQ)),

be W1€+171/p,l/2+1/271/2p(GT%

be Wy VP0G NW2((0,T), WER(T)),



LOCAL SOLVABILITY OF FREE BOUNDARY PROBLEM 99

B e ﬁ/\,lfl/p’l/%l/Qp(GT), vi € WZJr2 2/”(Qi) 0F € Wé‘“(QS‘), satisfy-
ing the compatibility conditions

V05 () = Ry (9) in O (AT (womollr, = (0. 0), bomo =0,
[UOHFO =0, UO|Z =0, .

problem (1.6) has a unique solution in an arbitrary finite time interval
(0,T), and the inequality

[ollGzriasrrz oy + 167 g2 py FHO lyierog-)

el (0, T); W3 (2
17 2 o mywy oy 187 ||W£“’°<Q¥>
1P Nz o,y oy + 1P oot

< oY1y t172 sy + 10 lggeno gy + 1B sz o) + 1Hll g
+[In* Hwﬁlvo(g;) + ||h+||wé/2((0 mwiedy T ol LHL-1/p0/241-1/20 (g
+sup 160, O)llyyi+1-3/0 gy + 1lly1+1-1/20 6, + Hb”WI}M((O’T);W;—l/p(FO))
+ IBllgi-1/pr2-1/20 gy + 002270 ) + 10 Tyt ot )

(1.8)

holds, where ¢(T') is a bounded non-decreasing function of T

We recall (see [3]) that the norms in the spaces W, (2) and W;’T/Q(Q)
where Q C R™, Qr = Q x (0,T) are defined by

[lul|/? @) = Z /|Dju(30)|pd307 if 7 is an integer,

l7I<r g
and
|Diu(z) — Diu(y)P )
||u||W,(Q) Z / |$ mpy T dy, ifr=1[r]+p, 0<p<1,
lil=lrla
P P P
|| || TT/2(Q ) ||U||W7.’0( +||u||W£'T/2(QT)
T
— [ Nt Ol oyt + / 4 3y 02
0

In addition, if 2 = Qt UQ~, then we set

||“||p T(UQE) T ||U||p T (Q+) + ||“||p Q=)
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and define the norms

Hv”%ﬁ“'””%u()%) = ||’U||€V§+LO(UQ%) + HDtv”%},””(uQ%)

+5Up (100 )l 2ri-arn gy

T
P _ P —pl/2 . P
0ty = 10, + T2 [ )
0

||b”%};ﬁ-l—1/p,1/2+l/2—1/2p(GT) - ||b”IIjV;_H_1/p’1/2+l/2_1/2p(GT)

. P
5D [[C, DI ps1-0/m -

The imbedding and trace theorems for the spaces defined above can be
found in [4]. Now we state the main result of the paper.

Theorem 2. Assume that I'g € W,l;+3_1/p, Y e W2l+2_1/p, le(1/p,2/p),
p(pt) is C2-function with Lipschitz continuous second derivatives, and the
compatibility conditions

Vug =0, [ulloS(uo)nollr, =0, [uo]lr, =0, wugls =0

are satisfied. Then there exists such T > 0 that for arbitrary f,
Ve Wy ?(Qr), Dif € Ly(Qr), |j] = 1,2, where Qr = 2% (0,T), Prob-
lem (1.3) has a unique solution (u™,0%) such that u € W,?H’HZ/Q(UQ;E),

1/2 _ -
05, D0t € W, T0QE) N WL (0, 1) WHQ), 07 € WE(Qz) N
W,l;/2((0, T); W3(y)) and the inequality

Y (,60) = lullgariaiag e + 10 s

Q%) ((0,T);WE(Q7))
- + +
10 w0z H 107 e iy H 107 lggar2 o zywa ety

+ +
Db [[yy1+1.0 + (| D0 ||W;l7/2((

@ 0,7 WHOQF)) (1.9)

< C(T)(||u0||W}l7+2—1/2p(UQ§) + ol Hollytrr-1/m

1/p—1/2 2
+ ||03FHW},+1(QS') +T /p=l/ ||0(;FHWZ£+1(QS') + ”f”Wzl'lm(QT))

holds, where ¢(T) is a non-decreasing function of T.
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§2. PROOF OF SOLVABILITY OF PROBLEM (1.3)

By separating linear and nonlinear terms we transform (1.3) into

p D —V-T (u )+ V0 =17 (u,07)+p F,
V-u =l (u”) inQy, t>0,

7Dt — V-THub) + p VOt =1 (uh,07) + (5T +67)F,
DOt +5V-u=1(ut,07) in QF, t>0,

ulimo =ug i Qy, o =04 =p5 —7,

[u]lr, =0, [pIoS(w)no]lr, = I3(u)lr,, (2.1)

t

—p10T + 07 + [ng -T(u)no]‘ro +ong - /A(O)u(y, T) dT‘FO
0

/ +l6 )dT*O’Ho, ’u,|2:0,
0

where Hy = H|;—o,

(u,0) =Vu Ty(u ) =V-T (u”)+ (V- Vu)i,
I (u,0) =V Ti(u") =V -TH(uh)
+p1(v Vu)0' = Vu(p(p" +67) —p(p") —pi6") — 0 Diu’,
Iy (w) =(V—=Vu)-u =V Lu),
Lu )=I-L Yu =I-L)u",
I3(u,0) =757 (V—-Vu) u" =0V, -ut,
I3(u) = [ullo(ToS(w)no — MSu(uw)n)]| 1 , (2.2)
la(u) = [no - T(uw)no — n - Tu(u)n] = (p(* +67) =" (7") —p167)| .,

Is(u) = oD (nA(t)) - /u(y,T) dr +o(n-A(t) —ng - A(0))u,

ls(u) = o(RA(L) + nA() ‘ i =Din, A(t) = DA(),

Mog =g —no(no-g), Ilg=g—n(n-g).
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The operator A(t) is given by

f Z @Sa NS 5y (2.3)

a,B=1

where g = det(gag), @, 8= 1,2, gop = 86)5(“ ~%)S(“ are elements of the metric

tensor on Iy, ¢g®” and Jop are elements of the inverse and transposed co-

factors matrices to (gag), respectively. We assume that (s1,s2) are local

Cartesian coordinates on the tangential plane to I'g with the origin at the

point yo = 0. Let Ty, C T'g be a neighborhood of the origin defined by the

equation

1+3-1 2
53:¢(51,52)€Wp p(K), K = {51+82 d }

the ys-axis being directed along 1(yo). Then the set I', = X, I'[ C I'; is

given by the equations

t
z,yzs,y—l—/uv s1, 82, ¢(s1,82), 7)dr v =1,2,
0

. (2.4)
z3 = ¢(s1,52) + /U3(817S2,¢(51752)a7) dr,
0
where u; are projections of u on the s;-axes and
Gap = s O = 6045 + ¢a¢5 + (baUSﬁ + ¢BU3a + UaB
=1 98 058
3
+ Upa + Z UiaUig, (2.5)
i=1
/ 8 0
/ uz ) dTa ¢a = _¢
8Sa 0sq
0
The time derivative A(t) of A(t) is given by
A(t) = ——' 2.6
®) 2g ; 8sa 95290 B3, 85 (2:6)
where g5 = Dtg\;?, g = Dsyg.
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The proof of Theorem 2 rests on Theorem 1 and on the estimates of
nonlinear expressions (2.2).

Proposition 1. Let
+ + +
2w 0) = 1l 2 sy + M2 lhwisro o) + 12 Iy oy wy i)
+ ||'DtL(u)||ﬁ/\;();,z/2(Q;) + ||l3(u)||W}L)+l—1/p,l/2+1/2—1/2p(GT)
F a2 0.2y wi=77 o)
+ ||l4(u)||/‘w‘zl)+l—l/p,0(GT) + ||l5(u)||/‘W\Zl)—l/p,l/2—1/2p(GT).

Ifup =0, 05 =0 and

(TV7 + TV )Y (u,0) <6 <1, 1/p' =1—1/p, (2.7)
where Y (u, 0) is defined in (1.9), then
Z(u,0) < cdY (u, ) (2.8)

and
() llgpi-r/p1r2=12 gy S €lltllyasrrerrs o) Tele) w1, @),
€1 << ].

(2.9)

If f e Wi2(Qr) and V§ € Ly(Qr), then

152y < W hzor2igy + 1V Sy S0Pty ). (210)

Proof. We invoke some auxiliary inequalities (cf. [5] for p = 2), namely,
luollwyay < ellelhg @ ol .
oy < ellalwy ey lIolyeo-r e 1< /. (211)
”uv”W})(D)gc(”u”W})(D)HUHW;‘(Q)+HUHWZ§(D)HUHW§(D))7 if {>n/p,

where £ is a bounded domain in R", n = 2,3, s > n/p. If u,v depend
also on ¢t € (0,7'), then (2.11) imply

HU’UHW})*O(QT) < CHUHWIL)*O(QT) t:(lépT ||U('vt)||W;/P+%(Q)a

) (2.12)
QT =0 x (OaT)a
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where [ < n/p, s € (0,1 —1/p). In addition, from
[A:(=h)uv][L, ) < Sup lo(y, [ A(=R)u(- 1)L, @)

+ 1Ai(=h)vll L, @ llullz,, @)
T T
TP2 / ||uv(-,t)||1£p(m) dt < 7702 / [[u(- 7t)||1£p(g)dt SQI;P v]?
T
0 0

it follows that

HUUHW;}J/?(QT) < CS};IE|U(y,t)|||u||ﬁ7£,l/2(QT)
(2.13)
+ CHUHﬁ/\zl)/?((o,T);W;/P—l(Q)) fgg H“(v t)HW})(Q)a

where l —n/p+n/qg =0,1/q0=1/p—1/q1, I <n/p. If I > n/p, then

||UU||‘7V‘£J/2(QT) < C( fgg |U’(ya t)| Hvllwgvl/z(gﬂ +S§f |U(y7 t)|||u||W£,l/2(QT))-

(2.14)
In view of (2.7) and (1.4), we have

||L*]I||W;“(UQ§)+”7L - nOHWﬁlfl/P(po) <eT'? ||V“||WZ’,“’0(UQ$) s,

IDE s ety <Vl s, (2.15)
t
||9+(., t)”Wzlfl(Q(J{) < ||93_||W11)+1(QO+) +/ ||D79+||W,£+1’0(QJ) d.T7 Vi<T.
0

Hence the expressions I3 (u, 0F), [T, (except for P),
Vo THu®) =V -TT(u"), 0TDu,

as well as I3, [no - T(u)ng — n - Ty (u)n)]r, are estimated by the same
arguments as in [5] in the case p = 2, by ¢dY, i.e., the norms of all these
expressions satisty (2.8). The W,l;’l/2 (Qr)-norm of f is estimated as in [2],

i.e., by passing to the Eulerian coordinates and by using the relations

.f(Xu(ya t)vt) - f(Xu(y7t - T)vt)

1
__ / VF (Xuly,t — A7), Oy, t — Ar)rdA,
0
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T

/d/ 1+pl/2/|f )ot) — F(Xu(y, t —7),8)[P dy

0
T

< CTpflf;nl/QHVfHZL)p(QT) /Sélp |u(y,t)|P dt.

T
0

Let us consider the term
P=Vu(p@t +07) —p(@E*) —pi0") =L (/" +6%) —p'(p"))Vor.
Since p € C**1(min p*, max p*), we have
' (5" +0%) =0/ (p)] < 07|,
(0" + 07 (y+2) —p' (0" + 0T (W) <l (y+2) =07 ()],
and, in view of (2.7),
1P lyy0 L) < CH‘9+||€VI+1(Q+),

1Pl <TV(l65 115

Lo@h Wit o)

( ( 1 + 1
+205p 0% (O / 16 (o gy, 1A () g, 40

< TV (|68 |1 +Y2p(u )" < ATHP163 [Gyren o) +6Y (u,6)),

witleh) ©)

1-pl/2 + P
i7E / IPI 540 <0 S 90701 010 )

< ch 721612 +Y™(u,0)),

witted)
18Pl 05, < I A(=RIVE" |, g, 5P 10 (4.1
Qp

+ ||Ai(_h)9+|‘Lq0(Q(‘)*')||V0+HLQ1(Q(‘)*'))7
1/p—1/2
1Pllygrzazy < TP 2D s gy s 167 (. O lwi o

we obtain

1Pl e, < (TP 21165113 +0Y (u,0)). (2.16)

@F) = withed)
The term in l4 containing the expression (p(p™ +61) —p(p™) fp19+)‘ro

is estimated in a similar way.
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We proceed with the estimates of I5(u) and lg(u). From (2.3)—(2.7)
it follows that the coefficients gop in A(t) are uniformly bounded and
coefficients gop in A(t) are controlled by |Vu|. By (2.2), I5 is equal to the

¢

sum l5 = ls1 + ls2 with l51 = 0Dy (nA(t)) [u(y, 7)dr, whence
0

t

Vs llyi-vrm ) < c||w||W£+1_1/p_%(F0)/||u||Wp2+l_1/p(F0)dT
0

< C(5||VU||W1€+171/;;7K(F0), S (O,Z — 1/]))7

¢
[A:(=h)ls1]|L,ro) < cllAc(=h) VL, wy) /S;lp u(y,t —7)|dr
0

0
h
—"—Hvu”Wé+1—1/p—%(ro)/||u('; T_h)HW;‘H_l/p(Fo) dT7
0

||l51||W1€71/p,l/271/2p(GT) < 06(||Vu||/W\£/271/2p((07T);W1}(F0))

+ ||U||sz)+1—1/p—u,o(GT)).

¢
The expression lso = o [ D (nA(7) d7 - u is estimated in the same way.
0

It remains to estimate lg(u). We have

HlGHW;—l/p(Fo)i CHVU||W}5+1—1/V;«(FO) ||y||W3+L—1/p(FO)< CHVU||W}Z7+1—1/p—;«(FO)7

T
1 p 3/2—pl/2 p P
e /||16||LP(FO) dt < e U [Vl o) 917 107
0

18e(=h)ls]l L, o) < clllBe(=R)VllL, o) + VU]l re1—1/p—se

X \/EHV’u,”W}zj_l—1/;;—%,0(017}“75))||’y||W}z)-*-2—1/2p(FO)7
(2.17)

hence

||Z6||/M7}l771/p,l/271/2}7(GT) < C(HVU”17(7;/2*1/”((0,T);W1}(Fo))

+ fgg HVUHWIZ)H/ZJ_%(FO))'
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The estimates of the expressions (2.2) obtained above imply inequalities
(2.8), (2.9) with the constants bounded for small T'. This completes the
proof of Proposition 1.

Scheme of proof of Theorem 2.
We seek the solution of Problem (1.3) in the form

u=u +w, 0=01+0,
where w1, 0, and w, 65 are defined as the solutions of

p Diuy —V-T (uy])+VO =0, V-uy =0 in Q,

Pt Deuf = V- T (u]) + p1 VO =0,

DO +pTV-ul =0 in Qf, t>0,

uils =0, ui(y,0)=u5(y) in Q, 6f(y,0)=6](y) in QF,

[U'l”FO =0, [MHOS(ul)nOHFo =0,
t

—p10f 4605 +[no - T(u1)nol+ono - A(0) [ wi(§,7) dr|r, =—0H|i=o,
0

(2.18)
p Diw —V-T (w ) +Vls =17 (u,0 ) +p f, V-w=Ilo(u") in Qy,
P D =V TH(w) +pi1 Vo =1 (ut,0%) + (5* +61)f,
Dte;_ +ﬁ+v cwt = l;(u+79+)7 0;(3/70) =0 in ng
w|z =0, w(y,0)=0in QF,
[w][r, =0,  [plloS(w)no]|r, = ls(u),
¢
—p103 + 05 + [no - T(w)no] + ono - A(0) [w(y, 7)dr]r,
0
¢
= la(u) = [(Is(u) + ls(w)))d,
0
(2.19)

By Theorem 1, problem (2.18) is uniquely solvable and the solution
satisfies the inequality

Y (u,01) < o(T)(luolly1+2=2rn oy + 100 s o)

+ o Hy (2.20)

le=2rmg))
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The solution of Problem (2.19) can be constructed by iterations:

P,y =V T (W) + V05 0y = 1 (i, 07) + o™ Fons
Veow,, =1 (u,) in Qf,
ﬁJrlthrJrrLJrl7V'T+(w;+1)+plvegr,m+1:l{r(ujmert)Jr(ﬁJrJro:rn)fMa
DibF iy + 9V w] =15 (wh,08) in QF,

w:@+1|2 =0, wi+1(ya0) =0 in Qéta 9;m+1(y70) =0 in QS‘,
[Wint1]lr, =0, [ploS(wmt1)n0]lr, = I3(um),

t
=103 1105 1+ [0 T(Win1)120] |1, — om0 A(0) [ W11 (y, 7) A7,
0

t

=ly(up) — bf(lg,(um) + lg(ur,)) dr,

(2.21)
where m = 1,2,..., Uy, = U1 + Wy, Oy = 01 + 02, Frn = F(Xu,, s 1),
w1 = 0, 92’1 = 0.
By Theorem 1 and Proposition 1, problem (2.21) with given w,, €
Wt 2(QE 05, € WP (Gr), Voo € Wo(QF), is uniquely
solvable and the solution satisfies the inequality

Y(wm+17 92,m+1) g C(T)(Z('U/m, em) + Hl4(um7 GM)HWIQ/2((O’T) Wlil/p(l"g))

’ P

sl asmirzaren gy & W) lyimireronay)
1 Fmllserzgp + 10mFmllysir o)
< A(T)OY (tm, Om) + | Fmll 172 1))

1Y (s On) + c1(e0) [l @r) + T2 100113141 )
(2.22)
Hence

Y (i1, Omi1) <Y (w1,01) + Y (Wing1,02m11) < c(T)(01Y (Wi, 0)
+ IVFmllor sup U |+ €Y (W, ) + c1(e1)l|umllQr + ¢F(T))

< AT)(61Y (wm, Om) + cr(e1)[umllr + F(T)),
(2.23)
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where 61 = 0 + €1,
F(T)= ||uOHW1€+2—2/p(UQé{:) + ||93_||W11)+1(Qa-) + Tl/pHeg_H?/V},“(Qg)
+ HHOHWIL,“_UP(FO) + H-fHWZl)vl/Q(QT)'

We obtain a uniform estimate for Y, (T') = Y (s, 0. Inequality (2.23)
holds for arbitrary ¢ < T', hence
¢
YP o (t) <0YE() +a /Yn’;(T) dr + c2 FP(t), (2.24)
0

because

t
-1
et DI 0y < el ) + / (O [ SV P
0

< |‘UOHI£I,(QO) + Y (t)

and
t

t
[l 0y 8 < sl o, + [ V20
0 0

For m = 0, (1.9) reduces to (1.8). If (1.9) holds for all Y;(T), j =
2,...,m, then (2.24) yields
Yo () < caFP(t) + A(Y,, _y + coFP(2))
AP () + co(FP + AFP + -+ AT FP(t),

where
t
AF(t) = S2f () + s / f(7)dr.
0

As is shown in [2], this implies

Vi1 (8) < o(T)(0:2Y5 (1) + FP(1)))-

hence inequality (1.9) for Y11 follows.

The convergence of the approximations w,,, 8,, to the solution of (1.3)
and the uniqueness of the solution is verified as in [2]. The solution satisfies
inequality (1.9) and, for small T', also (2.7).
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It follows that the surface
t

Ft: {x:y+/u(ya’r)d7—a y€F07}
0

is contained in the §— neighborhood of I'y and belongs to the class W,?H_l/p.

Equation
~(p@E"+07) —p(F")) +07 + [0 Tu(u)n] = —oH (2.25)

allows us to show that I'; is more regular. Let G be a smooth closed surface
also located in the d— neighborhood of I'y, so that I'; is given by the
equation

z=n+N(mr(n,t) = X(n,1), (2.26)

where IN is the normal to G and r € Wﬁ“‘l/”(g). Assume that near a
certain point 1y € G the surface I'; is given by the equation ns = (11, 12),
where 7' = (n1,712) € Q belongs to the tangential plane to G at the point
1o and the n3— axis is directed along N (7). In this coordinates, Equation
(2.25) takes the form

Dy

0
d(n,t) = o T —,
a;Q 677@ 1 + |V'¢|2

)

(2.27)

where d(nvt) = g(xvt)|;c=X(77,t)a
g(xv t) = _(p(ﬁ-‘r + 19(% t)) - p(ﬁ-i_)) +9° (ma t)
+[n - T(v)n] € WP, x (0,T)),

which implies d(n, t) € W,l;+1_1/p’0((’5T), &1 = Gox (0,T). Equation (2.27)
is nonlinear elliptic whose coefficients are expressed in terms of the deriva-

tives of ¢ and their norms are controlled by ||Vu||Wz+171/p(F0). From the
P

regularity theorem for the solutions of elliptic equations one can conclude
that ¢ € W£+l_1/p’0(ﬂ’ x (0,7)), Q" C Q; since 1y is arbitrary we have
re WSH_I/I”O(GST) and

H?"||WZ:)3+L—1/1;,0(®T) < C(Y(’U., 9) + F(T)) < CF(T) (228)

In addition, from D; X, € W,?H_l/p’O(GT) it follows that Dyr(-,t) €
WpQH_l/p’O(@T) and

||'Dt7“||W§+L—1/p,o(®T) < CHUHW;‘H_”P"’(@T)? (2.29)
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hence

||T(',t)||Ws+z—2/p(®)

< C(||T||Wg+l—1/p,0(®T) + ||DtT||W§+L—1/p,o(®T)) < CF, (230)

ie, T, e Wpt™2/7(®), vt el0,T)

Under certain not too strong restrictions on f it can be shown that for
0<t<TTI: € W;’H_l/p(@) (cf. [2] for p = 2). This is a consequence of
the following proposition.

Proposition 2. Assume that p € C*+1(min p, max p) and f satisfies ad-
ditional restrictions:

F e W ((to, T); WHQ)) nWEH/2(Q, 1)
with oy € (1/p,1),Vf € W;l,’l/2(QT). Then u'® (y,t) = u(y,t) —u(y,t—s)
and 6) (y,t) = 0(y,t) — O(y,t — s) satisfy the inequality

(¥ ()
H“ s HWE“’HIM(UQtiz,tl) + zﬂ;(”v@ s ||er)’l/2(Qf,i2,t1)

+ Hei(s)Hng/?( < C(u,0,r)s?,

AL
where a > 1/p, 0<to<ti <T,ty = (tl — (tl —to)/4), 0 < s <
min(t; — t2,%o), Qtj;tl = OF X (to,t1) and C is a constant dependent on
the norms of the solution of (1.3).

In the case p = 2 this result is obtained in [2], Theorem 6.
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