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ESTIMATES OF THE DISTANCE TO THE SOLUTION

OF AN EVOLUTIONARY PROBLEM OBTAINED BY

LINEARIZATION OF THE NAVIER–STOKES EQUATION

Abstract. The paper is concerned with a linearization of the Navi-
er–Stokes equation in the space-time cylinder QT . The main goal is
to deduce computable estimates of the distance between the exact
solution and a function in the energy admissible class of vector val-
ued functions. First, the estimates are derived for the case, where
this class contains only divergence free (solenoidal) functions. In
the next section, estimates of the distance to sets of divergence free
functions depending on the space and time variables are considered.
These results are used to extend earlier derived estimates to non–
solenoidal approximations. The corresponding estimates contain an
additional term, which can be viewed as a penalty for the violation
of the divergence free condition.

§1. Introduction

We consider a linearization of the classical Navier–Stokes equations in
a bounded Lipschitz domain Ω, which is to find a vector valued function
u(x, t) (velocity) and a scalar valued function p(x, t) (pressure) such that

ut −Divσ + (a · ∇)u = f in QT := Ω× (0, T ), T > 0, (1.1)

divu = 0 in QT , (1.2)

σ = νε(u)− p I in QT , (1.3)

u(x, 0) = φ(x) in Ω, u = 0 on ST := ∂Ω× (0, T ). (1.4)

Here φ ∈ L2(Ω,R
d) is a given divergence free vector valued function,

x ∈ Ω is the Cartesian coordinate, ν is a positive constant (viscosity),
f ∈ L2(QT ,R

d), div and Div denote the spatial divergence operators for
the vector and tensor valued functions, respectively, ∇ denotes the spatial
gradient operator, and ε(u) is the symmetric part of ∇u.

Key words and phrases: Divergence free functions, incompressible viscous fluids,
LBB condition, estimates of the distance to the exact solution.
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Below we use standard notation for the Bochner spaces, namely, for
a separable Banach space X endowed with the norm ‖ · ‖X , L2(0, T ;X)
denotes the space of functions with the norm

‖v‖2L2(0,T ;X) :=

T∫

0

‖∇v‖2X dt < ∞.

For the scalar and vector valued functions in Ω, we use Lebesgue and
Sobolev spaces Lp(Ω) and W l

p(Ω) (where l, p > 1) and mark them above
by ◦ if the respective functions vanish on ST . L2 norms of the functions in
Ω and QT are denoted by ‖ · ‖Ω and ‖ · ‖QT

, respectively. In what follows,
we use the spaces

W
1,0
2 (QT ,R

d) := L2(0, T,W
1
2 (Ω,R

d))

and
◦

W
1,0
2 (QT ,R

d) := L2(0, T,
◦

W
1

2 (Ω,Rd))

supplied with the norm

‖w‖1,0,QT
:=




T∫

0

(‖∇w‖2Ω + ‖w‖2Ω) dt




1/2

.

For the functions in
◦

W
1,0
2 (QT ,R

d), we also use the norm

||||||w |||||| 1,0,QT
:= ‖∇w‖QT

,

which is equivalent to ‖w‖1,0,QT
. Next, let

◦

W
1,1
2 (QT ,R

d) := {w ∈ W 1
2 (QT ), w = 0 on ST }

and

||||||w |||||| 1,1,QT
:=
(
‖∇w‖2QT

+ ‖wt‖
2
QT

)1/2
.

The subspaces of divergence free functions in
◦

W 1
2(Ω),

◦

W
1,0
2 (QT ), and

◦

W
1,1
2 (QT ) are denoted by

◦

S1(Ω),
◦

S 1,0(QT ), and
◦

S 1,1(QT ), respectively.
For a bounded Lipschitz domain ω, CF (ω) denotes a constant in the

Friedrichs inequality ‖w‖ω 6 CF (ω)‖∇w‖ω that holds for the functions
in H1(ω) vanishing on ∂ω and CP (ω) denotes a constant in the Poincare
inequality for the functions having zero mean in ω.

Mean value of a function g in the set ω is denoted by {|g|}ω and tilde
is used to mark spaces containing functions having zero mean values with
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respect to spatial variables, i.e., L̃2(0;T ;X) is the subspace of functions in
L2(0;T ;X) with zero mean values on Ω for a.e. t ∈ (0, T ).

Henceforth, it is assumed that the vector valued function a in (1.1) is di-
vergence free and sufficiently regular (e.g., a ∈ L∞(Ω)) and that the prob-

lem is uniquely solvable with the generalized solution u ∈
◦

S 1,1(QT ,R
d))

satisfying the integral relation (see, e.g., [3, 4, 12, 13])

∫

QT

(νε(u) : ε(w) + (a · ∇)u · w)dxdt +

∫

QT

ut · wdxdt

=

∫

QT

f · wdxdt ∀w ∈
◦

S
1,0(QT ). (1.5)

Instead of (1.5), we can also use the identity

∫

QT

(νε(u) : ε(w) + (a · ∇)u · w) dxdt + [u · w ]
T

0
−

∫

QT

u · wt dxdt

=

∫

QT

f · w dxdt, (1.6)

where

[ ζ ]
T

0
:=

∫

Ω

(ζ(x, T )− ζ(x, 0))dx

and the test functions belong to
◦

S 1,1(QT ) (notice that for these functions
we can define their traces on the faces of QT related to t = 0 and t = T ).

Our goal is to deduce estimates, able to verify that a given function

v(x, t) ∈
◦

W
1,1
2 (QT ,R

d)) belongs to a certain neighbourhood of u. For this
purpose, we introduce a suitable measure of the distance (natural for the
problem in question) and deduce majorants of the difference e(x, t) :=
u(x, t)−v(x, t) expressed in terms of v (numerical approximation), problem
data, and other quantities that are defined once a numerical approximation
has been constructed. If the value of such a majorant is computed, then
we obtain a guaranteed bound for the radius of the ball centred at the
approximate solution that contains the exact one.
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§2. The error identity and a computable error

majorant

First we assume that a function v compared with u belongs to the space
◦

S1,1(QT ). In this case, from (1.5) it follows that
∫

QT

(νε(e) : ε(w) + (a · ∇)e · w) dxdt +

∫

QT

et · w dxdt = Lv(w),

w ∈
◦

S
1,0(QT ),

(2.1)

where

Lv(w) :=

∫

QT

(f · w − νε(v) : ε(w)− (a · ∇)v · w − vt · w) dx dt

is a linear functional defined on w ∈
◦

S1,0(QT ). The quantity

|||||| Lv |||||| := sup

w∈
◦

S1,0(QT )

|Lv(w)|

‖∇w‖QT

(2.2)

defines a norm of this functional. The functional Lv (residual functional)
does not contain the exact solution u. It is computable for any test func-
tion w.

Consider the left hand side of (2.1). It is another linear functional Me,

which is defined for any w ∈
◦

S 1,0(QT ) and depends on the error e := u−v.
The corresponding norm

m(e) := sup

w∈
◦

S1,0

|Me(w)|

‖∇w‖QT

generates an error measure. Using in the above definition the norm
‖ε(w)‖QT

instead of ‖∇w‖QT
yields an equivalent measure, for which the

estimates are quite analogous and differ only by the Korn’s constant.
From (2.1) and (2.2), it follows the basic error identity 1

m(e) = |||||| Lv |||||| . (2.3)

It is clear that m(e) > 0 and m(e) = 0 if v = u. On the other hand,
if m(e) = 0, then (2.3) implies |||||| Lv |||||| = 0, so that Lv(w) = 0 for any

1Similar error identities arise in many other problems (e.g., see [8–11]). They form
the basis for the derivation of computable bounds of the distance between a given
function and the exact solution.
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w ∈
◦

S 1,1(QT ). In view of (1.5), this means that in such a case the function
v coincides with u. Thus, m(e) is a natural characteristic of the error e.

Notice that

Me(e) =

∫

QT

(νε(e) : ε(e) + (a · ∇)e · e) dxdt+

∫

QT

et · e dxdt.

Since a is a divergence free function, the second term of Me(e) vanishes

and the last term is equal to 1
2

[
‖e‖2Ω

]T
0
, so that

Me(e) = ν‖ε(e)‖2QT
+

1

2

[
‖e‖2Ω

]T
0
. (2.4)

If v(x, 0) = φ, then
[
‖e‖2Ω

]T
0

is reduced to ‖e(T )‖2Ω. Thus,

m(e) >
Me(e)

‖∇e‖QT

> ν1/2C−1
K (Ω)M1/2

e (e), (2.5)

where CK(Ω) is a constant in the Korn’s inequality and we see that m(e)
really controls the distance between v and u.

In view of (2.3), getting an estimate of the error measure requires com-
putation of the norm |||||| Lv |||||| . However, in general, the quantity |||||| Lv |||||| is
not computable (because it contains supremum over an infinite amount
of functions). Below we bypass this principal difficulty and deduce a com-
putable majorants of |||||| Lv |||||| . For this purpose, we reform the functional Lv

using a suitable integral identity that follows from an integration by parts
relation.

Theorem 1. Let v ∈
◦

S 1,1(QT ), q ∈ L2(QT ), and

τ ∈ HDiv(QT ) := {τ ∈ L2(QT ,M
n×n
sym )

∣∣ Div τ ∈ L2(QT ,R
d)}.

Then

ν‖ε(e)‖2QT
+

1

2
‖e(T )‖2Ω 6

1

2
‖e(0)‖2Ω +

C2
K(Ω)

ν

T∫

0

(R1(t)+R2(t))
2dt, (2.6)

where

R1(t) := ‖τ−νε(v) +qI‖Ω, R2(t) := CF (Ω)‖ϑ‖Ω,

and ϑ := f− vt+Divτ − (a · ∇)v.
Let Ω be decomposed into a collection of disconnected open Lipschitz

sets such that Ω = ∪N
i=1Ωi and in addition for almost all t ∈ [0, T ] it holds

{|ϑj |}Ωi
= 0, ∀ j = 1÷ d, i = 1÷N. (2.7)
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Then the estimate (2.6) holds with R2(t) replaced by

RN
2 (t) :=

(
N∑

i=1

C2
P (Ωi)R

2
2i(t)

)1/2

,

where R2i(t) := ‖ϑ‖2Ωi
.

The right hand sides of (2.6) vanishes if and only if

v = u, τ = σ̂ := νε(u)− pI, and q = p.

Proof. Notice that for any τ ∈ HDiv(QT ), q ∈ L2(QT ) (without a loss
of generality we may assume that {|q|}Ω = 0 for a.a. t ∈ [0, T ]), and any

w ∈
◦

S 1,0(QT ), it holds
∫

QT

(Div τ · w + (τ + qI) : ε(w))dxdt = 0. (2.8)

By means of (2.8) we reform the functional Lv as follows:

Lv(w) =

∫

QT

(τ − νε(v) + qI) : ε(w) dxdt +

∫

QT

ϑ · w dxdt

6

T∫

0

(R1(t)‖ε(w)‖Ω + ‖ϑ‖Ω‖w‖Ω) dt

6

T∫

0

(R1(t) + CF ‖ϑ‖Ω) ‖∇w‖Ω dt

6

(
‖R1(t) +R2(t)‖(0,T ))

)
‖∇w‖QT

.

(2.9)

Hence
|||||| Lv |||||| 6 ‖R1(t) +R2(t)‖(0,T ).

In view of (2.3)–(2.5),

νC−2
K Me(e) 6 |||||| Lv ||||||

2,

and we arrive at (2.6).

If the right hand side of (2.6) vanishes, then for any w ∈
◦

S 1,0(QT )

0 =

∫

QT

ϑ · wdxdt=

∫

QT

(f · w − τ : ε(w)− (a · ∇)v · w − vt · w)dxdt. (2.10)
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Since R1(t) = 0, we have τ = νε(v) − qI, so that
∫

QT

(f · w − νε(v) : ε(w)− (a · ∇)v · w − vt · w)dxdt = 0.

This identity shows (cf. (1.5)) that v is the exact solution.
Now we reform the second term of (2.9) with the help of (2.7):

∫

Ω

ϑ · wdx 6

N∑

i=1

d∑

j=1

∫

Ωi

ϑj · wjdx 6

N∑

i=1

CP (Ωi)
d∑

j=1

‖ϑj‖Ωi
‖∇wj‖Ωi

6

N∑

i=1

CP (Ωi)‖ϑ‖Ωi
‖∇w‖Ωi

6 RN
2 (t)‖∇w‖Ω.

Hence

|||||| Le |||||| 6 ‖R1(t) +RN
2 (t))‖(0,T ),

and by similar arguments we deduce the majorant with the term RN
2 (t)

instead of R2(t). It is clear that if we set v = u, τ = σ, and q = p, then the
majorant vanishes. On the other hand, if R1(t) = RN

2 (t) = 0, then again
(2.10) holds together with the constitutive relation, and we conclude that
u = v. �

Remark 1. The right hand side of (2.6) contains the tensor valued func-
tion τ (which can be viewed as an approximation of the exact stress
σ = νε(u) − qI) and the scalar valued function q (which is an approxi-
mation of the exact pressure p). It is defined by integral type norms which
easily computable. If the function τ is balanced and the integral relations
(2.7) hold, then the term R2(t) can be replaced by RN

2 (t) containing con-
stants in the Poincare inequalities for subdomains. These constants are
proportional to the diameter of Ωi (moreover for convex domains there
exists a simple estimate for such a constant, see [6]) and usually are es-
sentially smaller than the global constant CF (Ω). Therefore, such a form
is advantageous for computations.

Also, it is worth noting that the term R2(t) can be represented in
a somewhat different form R2(t) := CF (Ω)‖Divτ̂ − vt + f‖Ω, where
τ̂ = τ − a⊗ v and ⊗ denotes the tensor product of vectors.

Remark 2. If the flow is stationary, then all the functions do not depend
on t so that u(x, t) = u(x, T ) = u(x, 0) and R1 and R2 do not depend
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on t. We formally integrate in time and arrive at the estimate

‖ε(e)‖Ω 6
CK

ν
(‖τ − νε(v) + qI‖Ω + CF (Ω)‖Divτ − (a · ∇)v + f‖Ω) .

§3. Distance to the sets
◦

S1,0
and

◦

S1,1

Very often numerical approximations of problems related to incompress-
ible viscous fluids do not exactly satisfy the divergence free condition.
Therefore, our next goal is to extend (2.6) to a wider class of functions,
which may not satisfy this condition. From now on, we assume that a func-

tion v̂ compared with u belongs to
◦

W
1,1
2 (QT ,R

d) (notice that approxima-
tions constructed by the majority of methods possess such a regularity).
However, the function v̂ may not satisfy the condition divv̂ = 0.

We need easily computable majorants for the quantities

d(v̂,
◦

S
1,0(QT ,R

d)) := inf
v◦∈

◦

S1,0(QT ,Rd)

|||||| v̂ − v◦ |||||| 1,0,QT
,

d(v̂,
◦

S
1,1(QT ,R

d)) := inf
v◦∈

◦

S1,1(QT ,Rd)

|||||| v̂ − v◦ |||||| 1,1,QT
,

which define distances between the function v̂ and the spaces
◦

S 1,0(QT )

and
◦

S 1,1(QT ), respectively. Also, we estimate the distance generated by
the special norm

||| w |||QT
:=

(
ν‖∇w‖2QT

+
1

2
‖w(T )‖2Ω

)1/2

,

i.e., the quantity

d̃(v̂,
◦

S
1,1(QT ,R

d)) := inf
v◦∈

◦

S1,1(QT ,Rd)

||| v̂ − v◦ |||QT
.

The corresponding estimates follow from properties of the orthogonal

projector PΩ that maps
◦

W
1
2(Ω,R

d) to the subspace
◦

S 1(Ω) containing
the divergence free fields. We use the following well known result (e.g.,

see [7, 8]): for any ŵ ∈
◦

W1
2(Ω) the projector satisfies the estimate

‖∇(ŵ − PΩŵ)‖Ω 6 CΩ‖divŵ‖Ω, (3.1)

where CΩ is a constant in the inf–sup (LBB) condition (see [1, 2, 4, 5]).
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In fact, this projection estimate is a form of the well known stability
lemma established in the above cited publications, which says that for any

f ∈ L2(Ω) with zero mean, there exists a vector field vf ∈
◦

W 1
2(Ω,R

d) such
that

divvf = f and ‖∇vf‖Ω 6 CΩ‖f‖Ω.

Moreover, the function w◦ = PΩŵ ∈
◦

S 1(Ω) defined by the orthogonal
projection operator PΩ exists and is unique. Below we use this fact to
deduce the desired estimates.

Lemma 1. For any v̂ ∈
◦

W
1,1
2 (QT ,R

d)

d(v̂,
◦

S
1,0(QT ,R

d)) 6 CΩ‖divv̂‖QT
, (3.2)

If v̂ is more regular, i.e.,

v̂ ∈
◦

V
1,1
2 (QT ,R

d) := {v̂ ∈
◦

W
1,1
2 (QT ,R

d) | divv̂t ∈ L2(QT )},

then

d(v̂,
◦

S
1,1(QT ,R

d)) 6 CΩ

(
‖divv̂‖2QT

+ C2
F (Ω)‖divv̂t‖

2
QT

)1/2
, (3.3)

d̃(v̂,
◦

S
1,1(QT ,R

d)) 6 CΩ

(
ν‖divv̂‖2QT

+
1

2
C2

F (Ω)‖divv̂(T )‖
2
Ω

)1/2

. (3.4)

Proof. First, we consider v̂ of a special class. Functions in this class can
be called incremental approximations because they are associated with a
finite amount of time intervals (tk, tk+1), tk+1 > tk, t0 = 0, and tm = T .
Let the function v̂ be defined by the relation

v̂(x, t) =λ(t)v̂k(x) + (1−λ(t))v̂k+1 for t ∈ [tk, tk+1], (3.5)

where v̂k ∈
◦

W 1
2(Ω) are some functions depending on the spatial variables

only and

λ(t) :=
tk+1 − t

δk
, δk = tk+1 − tk.

Functions of this class form the set V
(m)
0 (QT ,R

d). We do not assume that

the functions v̂k are divergence free, so that V
(m)
0 (QT ,R

d) ⊂
◦

W
1,1
2 (QT ,R

d),

but in general a function v̂ ∈ V
(m)
0 (QT ,R

d) does not satisfy the condition
divv̂ = 0.

Let v◦,k = PΩv̂k, so that (see (3.1))

‖∇(v̂k − v◦,k)‖Ω 6 CΩ‖divv̂k‖Ω k = 0, 1, 2, . . . ,m. (3.6)
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Then the function v◦ defined by

v◦(x, t) =λ(t)v◦,k(x) + (1−λ(t))v◦,k+1(x), t ∈ [tk, tk+1] (3.7)

belongs to
◦

S1,1(QT ,R
d)) and the relation v◦ = PQT

v̂ defines the operator

PQT
:

◦

W
1,1
2 (QT ,R

d) →
◦

S
1,1(QT ,R

d).

Notice that PΩ is a linear mapping, so that v◦(x, t) defined by (3.7) satisfies

‖∇(v̂ − v◦)‖Ω(t) 6 CΩ‖divv̂‖Ω(t) ∀ t ∈ [tk, tk+1]. (3.8)

We have

|||||| v̂−v◦ ||||||
2
1,0,QT

=

m∑

k=0

tk+1∫

tk

‖∇(v̂ − v◦)‖
2
Ωdt

6C
2
Ω

m∑

k=0

tk+1∫

tk

‖divv̂‖2Ωdt=C
2
Ω‖divv̂‖

2
QT

.

Hence for any v̂ ∈ V
(m)
0 (QT ,R

d)

d(v̂,
◦

S
1,0(QT ,R

d)) 6 CΩ‖divv̂‖QT
.

Let ṽ be a smooth function vanishing on ST . For any ǫ > 0, we can find

sufficiently large m and the corresponding v̂ ∈ V
(m)
0 (QT ,R

d) such that
|||||| ∇(ṽ − v̂) |||||| 1,0,QT

6 ǫ. Therefore,

|||||| ṽ − v◦ |||||| 1,0,QT
6 |||||| v̂ − v◦ |||||| 1,0,QT

+ ǫ6CΩ‖divv̂‖QT
+ ǫ6CΩ‖divṽ‖QT

+ 2ǫ,

and the distance estimate also holds for ṽ. Since smooth functions are

dense in
◦

W
1,1
2 (QT ,R

d), we extend the estimate to this class of functions.

Consider the norm |||||| v̂ − v◦ |||||| 1,1,QT
, where v̂ ∈

◦

V
1,1
2 (QT ,R

d). We have

(v̂ − v◦)t =
1

δk
(v̂k+1 − v̂k − v◦,k+1 + v◦,k) for t ∈ [tk, tk+1]. (3.9)

Notice that

‖v̂k+1 − v̂k − v◦,k+1 + v◦,k‖Ω 6 CF (Ω)‖∇(v̂k+1 − v̂k − v◦,k+1 + v◦,k)‖Ω

and P(v̂k+1 − v̂k) = v◦,k+1 − v◦,k. We conclude that

‖v̂k+1 − v̂k − v̂◦,k+1 + v̂◦,k‖Ω 6 CF (Ω)CΩ‖div(v̂k+1 − v̂k)‖. (3.10)
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On each interval [tk, tk+1]

divv̂k+1 − divv̂k = δk(divv̂)t = δkdivv̂t.

Using (3.9) and (3.10), we obtain

‖(v̂ − v◦)t‖
2
QT

6 C2
FC

2
Ω

m∑

k=0

tk+1∫

tk

‖divv̂t‖
2dt = C2

FC
2
Ω‖divv̂t‖

2
QT

. (3.11)

Since

|||||| v̂ − v◦ ||||||
2
1,1,QT

= |||||| v̂ − v◦ ||||||
2
1,0,QT

+ ‖(v − v◦)t‖
2
QT

,

we obtain (3.3) for any v̂ ∈∈ V
(m)
0 (QT ,R

d). By analogous arguments based

on density of smooth functions in
◦

V
1,1
2 (QT ,R

d), this estimate is extended
to this class of functions.

Finally, consider the quantity

||| v̂ − v◦ |||2QT
:= ‖∇(v̂ − v◦)‖

2
QT

+
1

2
‖(v̂ − v◦)(T )‖

2
Ω

for ∈̂
◦

W
1,1
2 (QT ,R

d). Here the first term is estimated by (3.8) and for the
second one we have

‖(v̂ − v◦)(T )‖Ω = ‖v̂m − v◦,m‖Ω 6 CF (Ω)‖∇(v̂m − v◦,m)‖Ω

6 CΩCF (Ω)‖divv̂m‖Ω = CΩCF (Ω)‖divv̂(T )‖Ω.

Using density of smooth fields in
◦

V
1,1
2 (QT ,R

d) and properties of their
traces on the faces of QT related to t = 0 and t = T , this estimate is
extended to the whole class of functions. �

Remark 3. From (3.2), it follows that for any f(x, t) ∈ L2(QT ) such that

f = divv̂ for some vector valued function v̂ ∈
◦

W
1,1
2 (QT ,R

d), there exists

ŵ ∈
◦

W
1,1
2 (QT ,R

d) satisfying the conditions

divŵ = f for a.e. t ∈ (0, T ),

|||||| ŵ |||||| 1,0,QT
6 CΩ‖f‖QT

.

Analogous estimates for the norms |||||| ŵ |||||| 1,1,QT
and ||| ŵ ||| follow from (3.3)

and (3.4).
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§4. Estimates for non–solenoidal approximations

Now we extend the estimates derived in Sect. 2 to functions, which may
not satisfy the divergence free condition. In the vast majority of cases, the
function v̂ is obtained by an incremental type computational method and,

therefore, belongs to V
(m)
0 (QT ,R

d) ⊂
◦

V
1,1
2 (QT ,R

d), so that we can use
Lemma 1.

Let us estimate the quantity

||| e |||2QT
:= ν

T∫

0

‖ε(e)‖2Ωdt+
1

2
‖e(T )‖2Ω,

where e = u− v̂ and for simplicity, we assume that v̂(x, 0) = φ(x).

Using (3.7) we define v◦ ∈
◦

S1,1(QT ,R
d). Then, the estimates (3.3)– (3.4)

hold. Hence

||| e |||2QT
=||| u− v̂ |||2QT

6 α ||| u− v◦ |||2QT
+α′ ||| v̂ − v◦ |||2QT

, (4.1)

where α and α′ are arbitrary positive numbers satisfying 1
α + 1

α′
= 1. The

first norm is estimated as follows (see Theorem 1):

||| u−v◦ |||2QT
6

C2
K

ν

T∫

0

(‖τ −νε(v◦)+qI‖Ω+‖f −v◦t+Divτ − (a ·∇)v◦‖Ω)
2dt.

In view of (3.8), we have for t ∈ [0, T ]

‖τ − νε(v◦) + qI‖Ω 6 R̂1(t) + ν‖ε(v̂ − v◦)‖Ω 6 R̂1(t) + νCΩ‖divv̂‖Ω

and (cf. (3.11))

‖f − v◦t +Divτ − (a ·∇)v◦‖Ω 6 R̂2(t)+ ‖(a ·∇)(v̂− v◦)‖Ω+ ‖v̂t− v◦t‖Ω

6 R̂2(t) + CΩ (‖a‖∞‖divv̂‖Ω + CF (Ω)‖divv̂t‖Ω) ,

where

R̂1(t) := ‖τ − νε(v̂) + qI‖Ω,

R̂2(t) = ‖f − v̂t +Divτ − (a · ∇)v̂‖Ω.
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Hence we find that

||| v̂ − v◦ |||2QT
6

C2
K

ν

T∫

0

β
(
R̂1(t) + R̂2(t)

)2
dt

+ β′
C

2
Ω

T∫

0

((ν + ‖a‖∞)‖divv̂‖Ω + CF (Ω)‖divv̂t‖Ω)
2
dt,

(4.2)

where β and β′ are positive conjugate numbers.
The second term in (4.1) is estimated with the help of Lemma 1:

||| v̂ − v◦ |||2QT
6 C

2
Ω(ν‖divv̂‖

2
QT

+
1

2
C2

F (Ω)‖divv̂(T )‖
2
Ω). (4.3)

Using (4.1)–(4.2) and making simple calculations, we obtain the following
generalization of Theorem 1.

Theorem 2. For any v̂ ∈ V
(m)
0 (QT ,R

d), τ ∈ HDiv(QT ), and q ∈ L2(QT ),
it holds

||| e |||2QT
6

C2
K

ν

T∫

0

αβ
(
R̂1(t) + R̂2(t)

)2
dt+ C

2
ΩΦ(v̂), (4.4)

where

Φ(v̂) = c1‖divv̂‖
2
QT

+ c2‖divv̂t‖
2
QT

+ c3‖divv̂(T )‖
2
Ω,

c1 = αβ′γ
(
(ν + ‖a‖∞)2 + α′ν

)
, c2 = αβ′γ′ C2

F (Ω), c3 =
α′

2
C2

F (Ω),

and α, β, and γ are arbitrary numbers greater than 1, α′, β′, and γ′ are

the corresponding conjugate numbers. The right hand side of (4.4) vanishes

if and only if v̂ = u, and τ = ν∇u− pI, and q = p.

Remark 4. The term Φ(v̂) vanishes if v̂ is a solenoidal function. Therefore,
this term can be viewed as a penalty for the violation of the divergence–
free condition. In general, the estimate has the same structure as analogous
estimates derived in [7,8,11] for the stationary Stokes and generalized Os-
een problems. However, the penalty term in (4.4) has a more complicated
structure and together with norm of ‖divv̂‖QT

includes two other terms
generated by the evolutionary nature of the problem (1.1)–(1.4).

The constants α, β, and γ are in our disposal. They should be selected to
minimize the right hand side of (4.4) with v̂, τ , and q found in a numerical
experiment.
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Also, it is worth noting that the functionals forming right hand sides
of the estimates (2.6) and (4.4) generate variational functionals associated
with the problem (1.1)–(1.4), minimization of which with respect to v, τ ,
and q results in the exact velocity, stress, and pressure, which therefore
can be found by direct minimization. The corresponding values of the
functionals serve as reliable measures of the distance to the exact solution.
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— Arch. Rat. Mech. Anal. 5 (1960), 286–292.

7. S. Repin, Aposteriori estimates for the Stokes problem. — J. Math. Sci. 109, No. 5
(2002), 1950–1964.

8. S. Repin, Estimates of deviations from exact solutions for some boundary-value

problems with incompressibility condition. — St. Petersburg Math. J. 16, No. 5
(2004), 124–161.

9. S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de
Gruyter, Berlin, 2008.

10. S. Repin, Estimates of deviations from exact solutions of initial-boundary value

problem for the heat equation. — Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.

Rend. Lincei (9) Mat. Appl. 13, No. 2 (2002), 121–133.
11. S. Repin, Estimates of deviations from exact solution of the generalized Oseen

problem. — Zap. Nauchn. Semin. POMI 410 (2013) 110–130.
12. V. A. Solonnikov, Estimates for solutions of a non-stationary linearized system of

Navier–Stokes equations. — Zap. Nauchn. Semin. LOMI 70 (1964), 213–317.
13. R. Temam, Navier–Stokes equations. Theory and numerical analysis. — Studies in

Mathematics and its Applications, 2, North-Holland, Amsterdam (1979).

Поступило 9 января 2020 г.St. Petersburg Department
of Steklov Mathematical Institute, RAS,
Fontanka 27, 191011 St.Petersburg, Russia

E-mail : repin@pdmi.ras.ru


