3anucku Hay THBIX
cemunapos [IOMU
Towm 488, 2019 r.

D. D. Cherkashin

ON THE ERDOS-HAJNAL PROBLEM IN THE CASE OF
3-GRAPHS

ABsTRACT. Let m(n,r) denote the minimal number of edges in an
n-uniform hypergraph which is not r-colorable. For the broad history
of the problem see [10]. It is known [4] that for a fixed n the sequence
m(n,r)
r'n,

has a limit.

The only trivial case is n = 2 in which m(2,r) = (T;I). In this
note we focus on the case n = 3. First, we compare the existing
methods in this case and then improve the lower bound.

§1. INTRODUCTION

A hypergraph H = (V, E) consists of a finite set of vertices V and a
family E of the subsets of V', which are called edges. A hypergraph is called
n-uniform if every edge has size n. A vertex r-coloring of a hypergraph
H = (V,E) is a map from V to {1,...,r}. A coloring is proper if there
are no monochromatic edges, i.e., any edge e € F contains two vertices of
different color. The chromatic number of a hypergraph H is the smallest
number y(H) such that there exists a proper x(H)-coloring of H. Let
m(n,r) be the minimal number of edges in an n-uniform hypergraph with
chromatic number more than r.

Erdés and Hajnal [7] introduced problems on determining m(n,r) and
related quantities. We are interested in the case when n is much smaller
than r (see [10] for general case and related problems).

1.1. Upper bounds. Erdds conjectured [6] that

m(n,r) = ((n—l)r-ﬁ—l)

n
for r > ro(n), that is achieved on the complete hypergraph.

Key words and phrases: extremal combinatorics, hypergraph colorings.
The work was supported by the Russian Scientific Foundation grant 16-11-10014.

168



ON THE ERDOS-HAJNAL PROBLEM 169

However Alon [3] disproved the conjecture by using the estimate

m(n,r) < m>1101T(r(n +a—1)4+1,n+a,n),
az

where the Turdn number T'(v, k,n) is the smallest number of edges in an
n-uniform hypergraph on v vertices such that every induced subgraph on
k vertices contains an edge. Different bounds on Turdn numbers refine the
complete hypergraph construction when n > 3 (see [11] for a survey). So
the case n = 3 is in some sense the most interesting.

Also note, that using the same inequality with better bounds on Turan
numbers Akolzin and Shabanov [2] showed that

m(n,r) < Cn®Inn -r".

Alon conjectured that the sequence m(n,r)/r™ has a limit which was
proved by Cherkashin and Petrov [4]. Denote the corresponding limit by
L,,. In this paper we are interested in estimates on L3z. The best known
upper bound follows from the complete hypergraph:

4
Ls < 3
1.2. Lower bounds. There are several ways to show an inequality of type
m(n,r) = c¢(n)r™ (i.e. L, > ¢(n)). Note that Erdds conjecture implies in
particular that
(n—1"

n!

Alon [3] suggested to color vertices of an n-uniform hypergraphin a < r
colors uniformly and independently, and then recolor a vertex in every
monochromatic edge in unused color. The expected number of monochro-
matic edges is

L, =

|E|-a'™™.
Note that we have r — a remaining colors, and we can color n — 1 ver-
tices in each unused color such that no new monochromatic edge appears.
Summing up, if
|E| <a" Yr—a)(n—1)
then a hypergraph H = (V, E) has a proper r-coloring. Substituting a =

n—1

LTTJ, we get

m(nr) > (n—1) [ "] {” - 17‘Jn_1 .

n n
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This method gives Lg > 8/27 > 0.296.

Another way is due to Pluhdr [9]. He introduced the following useful
notion. A sequence of edges a1, ...,a, is an r-chain if |a; Na;| = 1 if
li —j| =1 and a; Na; = @ otherwise; it is an ordered r-chain if i < j
implies that every vertex of a; is not bigger than any vertex of a; (with
respect to a certain fixed linear ordering on V).

Pluhdr’s theorem states that existence of an order on V' without ordered
r-chains is equivalent to r-colorability of H = (V, E). Let us prove a lower
bound on m(n,r) via this theorem. Consider a random order on the vertex
set. Note that the probability of an r-chain to be ordered is

[(n = DP[(n —2)""2
((n—1)r+1)! '
From the other hand, the number of r-chains is at most 2|E|"/r! since
every set of r edges generates at most 2 chains. So if
|E|" [(n — 1)Y?[(n —2)1]"2
2
r! ((n—1)r+1)!
then we have a proper r-coloring of H. After taking r-root and some cal-
culations we have

<1,

m(n,r) > cy/nr’,

and in particular Lz > 4/ > 0.199.
Combining two previous arguments with Cherkashin—Kozik approach [5]
Akolzin and Shabanov [2] proved that

m(n,r) > c%r”,
without explicit bounds on ¢. We show that this method gives the bound
L3 > 0.205 in Section 3.

Cherkashin and Petrov [4] suggested an approach, based on the evalua-
tion of the inverse function, to show that the sequence m(n,r)/r"™ has
a limit. Denote by f(N) the maximal possible chromatic number of an
n-uniform hypergraph with N edges. Also f(0) = 1 by agreement. The
function f non-strictly increases and satisfies

m(n,r) =min{N : f(N) > r}.

Therefore m(n,r) ~ Cr™ if and only if f(N) ~ (N/C)'/™. The following
lemmas were proved in [4].
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Lemma 1. For any N > 0 and any positive integer p we have

f(N) < SUITR... S flar) + fla2) + -+ + f(ap).

Lemma 2. Denote ¢, = [(1 —2Y/"=1)="]. For any M > 0 the inequality
F(N) S NY™.  max  f(a)-a= /"

M<a<ce, M
holds for all N > M.
It is known that f(0) =1, f(1)=... = f(6) =2, f(7)=...= f(26) =
3 (see [1]). Lemmas 1, 2 and computer calculations were used to get
L3 > 0.324.

The contribution of the paper is the following theorem, which is proved
by refining Pluhar approach via inducibility arguments.
Theorem 1. 4
e?

Ls > > 0.54.

Structure of the paper. In Section 2 we show how to apply inducibility
to the chain argument and prove Theorem 1. In Section 3 we find the
constant in Akolzin—Shabanov theorem for n = 3 and show that even if we
apply Theorem 2 to the corresponding part of the proof, the constant will
be still worse than in Theorem 1.

§2. INDUCIBILITY TOOL

Theorem 2. Suppose H = (V, E) is a hypergraph. Then it has at most
|E| _ 1 r—1
B (2

We need a notion of inducibility. Denote by I(G,H) the number of
induced subgraphs of G, isomorphic to H. Let P, be a graph with r vertices
and r — 1 edges which form a simple path. The following basic bound was
proved by Pippenger and Golumbic.

r-chains.

Lemma 3 (Pippenger—-Golumbic [8]). Let G be a graph on N wvertices.

Then L
N /N-1\""
I(G,P) < — .

(G, Fr) 2(7"1)
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It turns out that the bound is close to optimal. The following example
is about e2/2 times worse than the bound in Lemma 3 (we assume that r
is fixed and n tends to infinity).

Example 1. We construct the sequence of graphs Gy inductively. Let G
be a copy of Cry1. Define an auziliary graph Fy, = (Vi, Ey) (which is the
(r + 1)*=1-blow-up of Cpy1):

Vi = WEuW2u. - uwy !

with |Wi| = (r+1)*= for alli; edges connect all the pairs of vertices from
parts with adjacent indices (i is adjacent to i+1 modulo r+1, in particular
r+1 is adjacent to 1). Then, Gy, is obtained from Fy, by drawing the graph
Gr—1 on each vertex set Wy.

Now consider the graph Gy on N = (r + 1)k vertices. Note that

Gy, Pr) = I(Fy, Pr) + (r + )I(Gy—1, )
=(r+1) <%) + (r+ DI(Gr-1, B).

Proof of Lemma 3. Let X(q,l) denote the largest possible number of
ways of sequentially choosing ¢ objects wp,ws, ..., wg—1 from among [
objects, subject to rules whereby the set of objects that are eligible to be
chosen as w; depends only on the previous choices wg, w1,...,w;_1, and
whereby no object that is eligible to be chosen as w; will be eligible to be
chosen as w; for any i+1 < j < g—1. Also, define X (0,1) = 1. If ¢ > 0, let
m denote the number of objects eligible to be chosen as wg. For any choice
of wp, the remaining ¢ — 1 objects can be chosen in at most X (¢—1,1—m)
ways. Thus
X(gq,1) < 1I<naoélmX(q —1,1—m).

IMx

From these relations, we obtain

l q
X< (1) 1)
by induction on ¢: the base ¢ = 1 is obvious. To prove the step it is enough

to maximize the right-hand side of
I—m\"!
X(q,l) < max m (—) .
1<m<l qg—1

Taking the derivative with respect to m, we get the maximum at m =1/q,
and we are done.
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Now we are ready to prove the initial statement. Fix the first vertex
vg. The number of ways to continue an induced r-path is at most X (r —
1, N — 1). There are N ways to choose the first vertex and every copy of
induced P, is counted twice. Substitution of (1) finishes the proof. O

Proof of Theorem 2. Consider an auxiliary graph G = (E, F') with ver-
tex set being equal to the edge set of H and edges connecting pairs of
vertices which intersect (as hyperedges) on exactly one vertex.

Note that every r-chain forms induced P, in G (note that the reverse
consequence is wrong, because a non-edge in G can correspond to the pair
of hyperedges with large intersection, which is impossible in r-chain). Every
copy of P, is formed by at most two different r-chains, so the number of
r-chains is at most 2I(G, P,). Hence, Lemma 3 finishes the proof. O

Proof of Theorem 1. Let us try to color H via Pluhdr’s greedy algo-
rithm. Recall that the probability of an r-chain to be ordered is

[(n—DP[n—2)]"> 4
((n—1r+1)! C@r+1)”
Using Theorem 2 we get that if

[E|(El -1 4

<1,
(r—=1r"1 (2r+1)!
then hypergraph is r-colorable. Summing up,
(2 DIr—1)r-11 4
L3>1im\/(r+)(r L4 O
r—o0 4 73 e?

§3. ANALYSIS OF THE AKOLZIN—-SHABANOV PROOF

We rewrite the proof from [2] with optimization in the case n = 3.
First, for every vertex v introduce the weight w(v) as randomly (accor-
dingly to the uniform distribution and independently) chosen number from
[0,1]. Fix parameters p € [0,1], a < r. An edge e is called bad if
L—p

— 1 <
fexwl) —plpel) < =55

otherwise it is called good.

The coloring algorithm is the following. First we color a (random) subhy-
pergraph, consisting of all good edges, in a colors via Pluhdr
approach; then we color (or recolor) some vertices from bad edges in un-
used 7 — a colors. If Pluhdr approach succeeds (i.e. there are no ordered
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a-chains) and we have at most (n—1)(r —a) bad edges, then the algorithm
return a proper r-coloring. Let us evaluate the probability of success.

Lemma 4 (Akolzin—Shabanov [2]). Let e be an edge, then

— n—1 — — — n—1 — 2
Ple - (22)" (52 (5)) n(152) La(52)"
a a a a a
Let C(A4,...,A,) denote the event that all the edges A; are good and
(Ay,...,A,) is an ordered a-chain.

Lemma 5 (Akolzin—Shabanov [2]).

a—1 a—1

< g o2 _P R .
P[C(A,...,Ad)] <a -1 % -

By Theorem 2 we have at most (|E|/(a — 1))%~! a-chains. Define ¢ =
|E|/r?; we need

a—1

(ﬂ)maa% =((+o(1)) 'i'fe)a: e+ 0(1))T3ﬁy <1.

a—1 a—1) ad
Also we need at most (n — 1)(r —a) = 2(r — a) bad edges:

1 3(1—p)3E
( MI|<L

P[X >2(r—a)] < o —a) pe

Define = r/a. Then we need cz3pe < 1 and

3c(1 — p)a?

21 <t

Computer simulations give that for p = 0.741 and x = 1.05 the algorithm
with ¢ = 0.42 returns a proper coloring with positive probability, which
implies Lg > 0.42.

If we simply follow the initial proof, the required inequalities are

cr®pe? <1 and

So pure Akolzin—Shabanov approach gives L3 > 0.205. Both constants are
worse than in Theorem 1.
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§4. OPEN PROBLEMS

e First, recall that the Erdés conjecture is still open in the case n = 3.
e Also it is natural to ask if m(n,r) is regular on the first variable, i.e.
lim 7771(71 +1r) =r?
w35 " m(n, )

e In the proof of Theorem 2 we consider an auxiliary graph G. The
problem is to describe the set of graphs, which may be achieved from an
r-chromatic n-uniform hypergraph. Also it may be reasonable to evaluate
the minimal number of vertices N(r) in a graph G, which has an ordered
induced r-path in every linear order of V(G).
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